1887

Chapter 24 : The and CACTA Superfamilies of Plant Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The and CACTA Superfamilies of Plant Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap24-2.gif

Abstract:

This chapter focuses primarily on what is known about the and superfamilies of plant mobile elements. It discusses features of their biology and their transposition mechanisms that have become known in the past decade. While sequences that structurally resemble these element families have been found in a variety of plant species, the authors deal only with those that are known to transpose. Control of transposition is complex, intimately tied to the developmental processes in the host maize plant, and has been the subject of genetically elegant and fascinating studies that date back half a century. was isolated as a 17-kb insertion in the highly unstable allele of . The genetic properties and molecular structure indicate that is an autonomous member of the CACTA superfamily. also shows some of the genetic characteristics of , most notably the ability to have both suppressor and mutator functions. Transposons have proven to be powerful mutagens that enable selection for disruptions of virtually any gene. Since their molecular isolation, plant transposons have been used extensively as probes to isolate genes mutagenized in exactly this manner. Two general approaches have been taken in plants: tagging with endogenous elements where they are available and well-characterized (primarily in maize, in petunia, and in Antirrhinum), and tagging with transposons from heterologous systems.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24

Key Concept Ranking

Cauliflower mosaic virus
0.4293323
0.4293323
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Autonomous plant elements. The diagram below shows the domains found within the TPase protein. b, basic regions; x, N-terminal fragment that can be removed without loss of TPase function; m, middle region where the reactive residues are likely to occur; N1, N2+3, nuclear localization signals; PQ, Pro-Glx repeat region essential for transposition; DNA, DNA binding domain; DIM, dimerization domain: hAT1, hAT2, hAT3, regions of strong sequence similarity among family TPase proteins, including those in animals and fungi. Introns are indicated by white bars within transcribed (hatched) region.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Mechanisms suggested for formation of defective elements. (A) Formation of internally deleted transposons in plants can occur following an excision event. (B) Synthesis-dependent strand annealing (SDSA). Once each new strand acquires a copy of sequence that can base pair with the other newly synthesized DNA, a new duplex is formed and the remaining “flaps” are removed by an exonuclease. (C) Similar to SDSA, except that one template being copied to repair the excision site is from an ectopic site. Resolution is again through sequences that can anneal; however, the new DNA is heteroduplex for an extensive region and this ectopic sequence can become incorporated into the transposon. (D) DNA synthesis errors such as slipped mispairing can create deletions. (E) These deletions can also be repaired using “filler DNA” sequences taken from a nearby sequence that is fortuitously similar to the sequence on both sides of the deletion breakpoint.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

dosage and excision frequency. A likely explanation for variations in transposition frequency in maize, as well as in other plants, is that the concentration of TPase must fall within an optimum range. Too little produces inefficient transposition and too much creates nonfunctional TPase complexes.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Hemimethylation and transposition. Following DNA replication, the TPase binding sites in each daughter element are hemimethylated differently, such that one daughter is more competent to transpose, in this case, the element shown on the left.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Aberrant transposition and /-induced chromosome breakage. The hemimethylation model in Fig. 4 has important implications for chromosome breakage and rearrangement. (A) Transposase attempting to utilize the transposition-competent left end and right end of the same element can result in element excision and transposition, with the excision site rejoined in a characteristic transposon footprint. (B) Transposase interacting with the transposition-competent left end of one element and the transposition-competent right end of a second element can lead to large-scale rearrangements. When the two elements involved are in opposite orientations, the two element ends in the aberrant transposition lie on opposite sister chromatids. Repair of the “excision site” forms a typical transposon footprint, but also produces a dicentric chromosome (centromere indicated by “C”). (C) Elements can be inserted one into the other, or can be nearby, but must be in opposite orientation with respect to one another. By the hemimethylation model, the transposition-competent daughter element for each of the two transposons would be on opposite sister chromatids.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Excision and reinsertion models for elements. (A) Template-switching model based on / elements in maize. Black triangles indicate positions of TPase cleavage.Transposon ends are synapsedby interactionsamongboundTPase molecules, indicated by dashed lines. DNA repair synthesis of flanking DNA is indicated below the synapsed element as a solid line for the DNA at one end of the element and a hatched line for the other. Template switches are indicated among some of the available templates; however, synthesis is not known to read into the transposon itself. (B) The hairpin model. Positioning of the TPase cleavage events (black triangles) is based on transposon footprints for each case, the bases adjacent to the transposon for , as well as for / and other elements in plants. Hairpin formation in the host DNA is by the direct transesterification of one strand by the other following TPase cleavage. Prior to rejoining, the excision site may be exposed to exonuclease degradation, as shown. (C) element reinsertion. The free 3′ OH group at the ends of the transposon may perform a similar attack on the target site DNA as the trans-esterification proposed in hairpin formation. The TPase molecules bound to the transposon could space the 3′ OH groups at a distance that causes them to attack a target on opposite sugar-phosphate backbones at positions separated by 8 bp, as indicated. The 8-bp gaps created are then filled in to create the target-site duplication.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

CACTA elements. Elements from this family are arranged to maximize the similarities within their coding regions (see text). Terminal-inverted repeats are represented as closed triangles and subterminal repeat regions are stippled. The most consistent similarity is in the crosshatched region corresponding to the gene for the putative TPase in /.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Subterminal repeat regions for CACTA elements. Each end of the indicated transposon is shown as a thick arrow representing the TIR and two thin lines. Subterminal repeats are shown as black arrowheads where they match the consensus sequence exactly or where they are mismatched at only one position. Hatched arrowheads indicate sites degenerate by two or more bases. Other shapes represent potential protein binding at the invariant nucleotides within each repeat. The filled shape in front of the arrowhead represents a protein on the face of the helix facing the reader, and the arrowhead in front of the shape represents contact would occur on the opposite face of the helix. Potential interactions between proteins are indicated by filled arcs, and possible interactions with proteins bound to more degenerate sites are indicated by open arcs. The sequences diagrammed are from sequencing results only; no evidence for their movement has been reported.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Model for the / transposome complex. TIRs indicated by large filled triangles. Subterminal repeats that make up TNPA binding sites are indicated by smaller filled triangles ( ) and stippled triangles ( ). TNPA molecules are represented as striped ovals, and TNPD molecules are represented as crosshatched boxes bound near the ends of the element.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Screening plant populations for insertion mutants by PCR. (A) Primer x within the gene of interest is tested against a primer y specific for the transposon. In theory, only in those samples where a transposon has inserted in or near the gene of interest should a product be possible. (B) Identification of potential candidates involves the use of large pools of samples from randomly transposon-mutagenized populations. By creating a three-dimensional grid of individual samples, pools can be created that will allow the screening of many samples quickly. If a positive result is obtained from pools II, 3, and d in the sample shown, only one plant is common to all three.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap24
1. Aarts, M. G.,, W. G. Dirkse,, W. J. Stiekema,, and A. Pereira. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715 717.
2. Aarts, M. G. M.,, P. Corzaan,, W. J. Stiekema,, and A. Pereira. 1995. A two-element Enhancer-inhibitor transposon system in Arabidopsis thaliana. Mol. Gen. Genet. 247: 555 564.
3. Agrawal, A.,, Q. Eastman,, and D. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394: 744 751.
4. Aida, M.,, T. Ishida,, H. Fukaki,, H. Fujisawa,, and M. Tasaka. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: 841 857.
5. Alleman, M.,, and J. L. Kermicle. 1993. Somatic variegation and germinal mutability reflect the position of transposable element Dissociation within the maize R gene. Genetics 135: 189 203.
6. Altmann, T.,, R. Schmidt,, and L. Willmitzer. 1992. Establishment of a gene tagging system in Arabidopsis thaliana based on the maize transposable element Ac. Theor. Appl. Genet. 84: 371 383.
7. Antequera, F.,, and A. Bird. 1988. Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J. 7: 2295 2299.
8. Athma, P.,, E. Grotewold,, and T. Peterson. 1992. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131: 199 209.
9. Athma, P.,, and T. Peterson. 1991. Ac induces homologous recombination at the maize P locus. Genetics 128: 163 173.
10. Atkinson, P. W.,, W. D. Warren,, and D. A. O’Brochta. 1993. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90: 9693 9697.
11. Azpiroz-Leehan, R.,, and K. A. Feldmann. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13: 152 156.
12. Baker, B.,, J. Schell,, H. Lorz,, and N. Fedoroff. 1986. Transposition of the maize controlling element Activator in tobacco. Proc. Natl. Acad. Sci. USA 83: 4844 4848.
13. Balcells, L.,, and G. Coupland. 1994. The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Mol. Biol. 24: 789 798.
14. Bancroft, I.,, A. M. Bhatt,, C. Sjodin,, S. Scofield,, J. D. Jones,, and C. Dean. 1992. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol. Gen. Genet. 233: 449 461.
15. Bancroft, I.,, and C. Dean. 1993. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol. Gen. Genet. 240: 65 72.
16. Bancroft, I.,, and C. Dean. 1993. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134: 1221 1229.
17. Banks, J. A.,, and N. Fedoroff. 1989. Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Dev. Genet. 10: 425 437.
18. Banks, J. A.,, P. Masson,, and N. Fedoroff. 1988. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 2: 1364 1380.
19. Baran, G.,, C. Echt,, T. Bureau,, and S. Wessler. 1992. Molecular analysis of the maize wx-B3 allele indicates that precise excision of the transposable Ac element is rare. Genetics 130: 377 384.
20. Beall, E.,, and D. Rio. 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 10: 921 933.
21. Becker, D.,, R. Lütticke,, M.-G. Li,, and P. Starlinger. 1992. Control of excision frequency of maize transposable element Ds in Petunia protoplasts. Proc. Natl. Acad. Sci. USA 89: 5552 5556.
22. Becker, H. A.,, and R. Kunze. 1996. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol. Gen. Genet. 251: 428 435.
23. Becker, H. A.,, and R. Kunze. 1997. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol. Gen. Genet. 254: 219 230.
24. Belzile, F.,, and J. I. Yoder. 1992. Pattern of somatic transposition in a high copy Ac tomato line. Plant J. 2: 173 179.
25. Bennetzen, J. L.,, K. Schrick,, P. S. Springer,, W. E. Brown,, and P. Sanmiguel. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37: 565 576.
26. Bhasin, A.,, I. Y. Goryshin,, and W. S. Reznikoff. 1999. Hairpin formation in Tn5 transposition. J. Biol. Chem. 274: 37021 37029.
27. Bhatt, A. M.,, C. Lister,, N. Crawford,, and C. Dean. 1998. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell 10: 427 434.
28. Bhattacharyya, M. K.,, A. M. Smith,, T. H. N. Ellis,, C. Hedley,, and C. Martin. 1990. The Wrinkled-Seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60: 115 122.
29. Bingham, P. M.,, R. Levis,, and G. M. Rubin. 1981. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25: 693 704.
30. Boehm, U.,, M. Heinlein,, U. Behrens,, and R. Kunze. 1995. One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant J. 7: 441 451.
31. Bolland, S.,, and N. Kleckner. 1995. The two single-strand cleavages at each end of Tn10 occur in a specific order during transposition. Proc. Natl. Acad. Sci. USA 92: 7814 7818.
32. Bonas, U.,, H. Sommer,, and H. Saedler. 1984. The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene. EMBO J. 5: 1015 1020.
33. Braam, L.,, I. Goryshin,, and W. Reznikoff. 1999. A mechanism for Tn5 inhibition: carboxyl-terminal dimerization. J. Biol. Chem. 274: 86 92.
34. Bradley, D.,, R. Carpenter,, H. Sommer,, N. Hartly,, and E. Coen. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72: 85 95.
35. Bravo-Angel, A. M.,, H. A. Becker,, R. Kunze,, B. Hohn,, and W. H. Shen. 1995. The binding motifs for Ac transposase are absolutely required for excision of Ds1 in maize. Mol. Gen. Genet. 248: 527 534.
36. Brettell, R. I.,, and E. S. Dennis. 1991. Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol. Gen. Genet. 229: 365 372.
37. Brown, J. J.,, M. G. Mattes,, C. O’Reilly,, and N. S. Shepherd. 1989. Molecular characterization of rDt, a maize transposon of the “ Dotted” controlling element system. Mol. Gen. Genet. 215: 239 244.
38. Brutnell, T. P.,, and S. L. Dellaporta. 1994. Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138: 213 225.
39. Brutnell, T. P.,, B. P. May,, and S. L. Dellaporta. 1997. The Ac-st2 element of maize exhibits a positive dosage effect and epigenetic regulation. Genetics 147: 823 834.
40. Caldwell, E. E.,, and P. A. Peterson. 1992. The Ac and Uq transposable element systems in maize: interactions among components. Genetics 131: 723 731.
41. Calvi, B. R.,, T. J. Hong,, S. D. Findley,, and W. M. Gelbart. 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66: 465 471.
42. Campisi, L.,, Y. Yang,, Y. Yi,, E. Heilig,, B. Herman,, A. J. Cassista,, D. W. Allen,, H. Xiang,, and T. Jack. 1999. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17: 699 707.
43. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1991. Transposition of En/ Spm in transgenic tobacco. Maydica 36: 305 308.
44. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1993. Definition and characterization of an artificial En/ Spm-based transposon tagging system in transgenic tobacco. Plant Mol. Biol. 23: 157 178.
45. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1993. Mobility of the maize transposable element En/ Spm in Arabidopsis thaliana. Plant J. 3: 773 784.
46. Carpenter, R.,, C. Martin,, and E. S. Coen. 1987. Comparison of genetic behavior of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Mol. Gen. Genet. 207: 82 89.
47. Casacuberta, E.,, J. Casacuberta,, P. Puigdomenech,, and A. Monfort. 1998. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J. 16: 79 85.
48. Chandlee, J. M.,, and L. O. Vodkin. 1989. Unstable expression of a soybean gene during seed coat development. Theor. Appl. Genet. 77: 587 594.
49. Charng, Y. C.,, C. Ma,, J. Tu,, and T. T. Kuo. 1997. A 200-bp constructed inducible PR-1a promoter fusion to the Ac transposase gene drives higher transposition of a Ds element than the native PR-1a promoter fusion drives. Plant Sci. 130: 73 86.
50. Chatterjee, M.,, and C. Martin. 1997. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize. Plant J. 11: 759 771.
51. Chatterjee, S.,, and P. Starlinger. 1995. The role of subterminal sites of transposable element Ds of Zea mays in excision. Mol. Gen. Genet. 249: 281 288.
52. Chen, C.-H.,, M. Freeling,, and A. Merckelbach. 1986. Enzymatic and morphological consequences of Ds excision from maize Adh1. Maydica 31: 93 108.
53. Chen, J.,, I. M. Greenblatt,, and S. L. Dellaporta. 1987. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117: 109 116.
54. Chen, J.,, I. M. Greenblatt,, and S. L. Dellaporta. 1992. Molecular analysis of Ac transposition and DNA replication. Genetics 130: 665 676.
55. Chin, H. G.,, M. S. Choe,, S. H. Lee,, S. H. Park,, J. C. Koo,, N. Y. Kim,, J. J. Lee,, B. G. Oh,, G. H. Yi,, S. C. Kim,, H. C. Choi,, M. J. Cho,, and C. D. Han. 1999. Molecular analysis of rice plants harboring an Ac/ Ds transposable element-mediated gene trapping system. Plant J. 19: 615 623.
56. Chomet, P. S.,, S. Wessler,, and S. L. Dellaporta. 1987. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 6: 295 302.
57. Chopra, S.,, V. Brendel,, J. Zhang,, J. D. Axtell,, and T. Peterson. 1999. Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc. Natl. Acad. Sci. USA 96: 15330 15335.
58. Coen, E. S.,, and R. Carpenter. 1988. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. EMBO J. 7: 877 883.
59. Coen, E. S.,, R. Carpenter,, and C. Martin. 1986. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47: 285 296.
60. Coen, E. S.,, T. P. Robbins,, J. Almeida,, A. Hudson,, and R. Carpenter,. 1989. Consequences and mechanism of transposition in Antirrhinum majus, p. 413 436. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
61. Colot, V.,, V. Haedens,, and J. L. Rossignol. 1998. Extensive, nonrandom diversity of excision footprints generated by Dslike transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol. Cell Biol. 18: 4337 4346.
62. Cooley, M. B.,, A. P. Goldsbrough,, D. W. Still,, and J. I. Yoder. 1996. Site-selected insertional mutagenesis of tomato with maize Ac and Ds elements. Mol. Gen. Genet. 252: 184 194.
63. Coupland, G.,, B. Baker,, J. Schell,, and P. Starlinger. 1988. Characterization of the maize transposable element Ac by internal deletions. EMBO J. 7: 3653 3659.
64. Coupland, G.,, C. Plum,, S. Chatterjee,, A. Post,, and P. Starlinger. 1989. Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86: 9385 9388.
65. Cuypers, H.,, S. Dash,, P. A. Peterson,, H. Saedler,, and A. Gierl. 1988. The defective En-I102 element encodes a product reducing the mutability of the En/ Spm transposable element system in Zea mays. EMBO J. 7: 2953 2960.
66. Dash, S.,, and P. A. Peterson. 1994. Frequent loss of the En transposable element after excision and its relation to chromosome replication in maize ( Zea mays L.). Genetics 136: 653 671.
67. Dean, C.,, C. Sjodin,, T. Page,, J. Jones,, and C. Lister. 1992. Behavior of the maize transposable element Ac in Arabidopsis thaliana. Plant J. 2: 69 81.
68. DeGreef, B.,, and M. Jacobs. 1996. Evidence for Tam3 activity in transgenic Arabidopsis thaliana. In Vitro Cell Dev. Biol. 32: 241 248.
69. Dellaporta, S. L.,, P. S. Chomet,, J. P. Mottinger,, J. A. Wood,, S.-M. Yu,, and J. B. Hicks. 1984. Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. Quant. Biol. 49: 321 328.
70. Dennis, E. S.,, W. L. Gerlach,, and W. J. Peacock. 1986. Excision of the Ds controlling element from the Adh1 gene of maize. Maydica 31: 47 57.
71. Dennis, E. S.,, M. M. Sachs,, W. Gerlach,, I. Beach,, and W. J. Peacock. 1988. The Ds1 transposable element acts as an intron in the mutant allele Adh1-Fm335 and is spliced from the message. Nucleic Acids Res. 16: 3315 3328.
72. Dooner, H. K.,, and A. Belachew. 1989. Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122: 447 457.
73. Dooner, H. K.,, and A. Belachew. 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129: 855 862.
74. Dooner, H. K.,, J. English,, and E. J. Ralston. 1988. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion. Mol. Gen. Genet. 211: 485 491.
75. Dooner, H. K.,, J. English,, E. J. Ralston,, and E. Weck. 1986. A single genetic unit specifies two transposition functions in the maize element Activator. Science 234: 210 211.
76. Dooner, H. K.,, J. Keller,, E. Harper,, and E. Ralston. 1991. Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3: 473 482.
77. Dooner, H. K.,, and I. M. Martinez-Ferez. 1997. Germinal excisions of the maize transposon Activator do not stimulate meiotic recombination or homology-dependent repair at the bz locus. Genetics 147: 1923 1932.
78. Dowe, M. F., Jr.,, G. W. Roman,, and A. S. Klein. 1990. Excision and transposition of two Ds transposons from the bronze mutable 4 Derivative 6856 allele of Zea mays L. Mol. Gen. Genet. 221: 475 485.
79. Dubois, P.,, S. Cutler,, and F. J. Belzile. 1998. Regional insertional mutagenesis on chromosome III of Arabidopsis thaliana using the maize Ac element. Plant J. 13: 141 151.
80. Eisses, J. F.,, D. Lafoe,, L. A. Scott,, and C. F. Weil. 1997. Novel, developmentally specific control of Ds transposition in maize. Mol. Gen. Genet. 256: 158 168.
81. Engels, W. R., 1996. P elements in Drosophila., p. 103 123. In H. Saedler, and A. Gierl (ed.), Transposable Elements. Springer, Heidelberg, Germany.
82. Engels, W. R.,, D. M. Johnson-Schlitz,, W. B. Eggleston,, and J. Sved. 1990. High-frequency P-element loss in Drosophila is homolog dependent. Cell 62: 515 525.
83. English, J.,, K. Harrison,, and J. D. G. Jones. 1993. A genetic analysis ofDNAsequence requirements for Dissociation state Iactivity in tobacco. Plant Cell 5: 501 514.
84. English, J. J.,, K. Harrison,, and J. D. G. Jones. 1995. Aberrant transpositions of maize double Ds-like elements usually involves Ds ends on sister chromatids. Plant Cell 7: 1235 1247.
85. Enoki, H.,, T. Izawa,, M. Kawahara,, M. Komatsu,, S. Koh,, J. Kyozuka,, and K. Shimamoto. 1999. Ac as a tool for the functional genomics of rice. Plant J. 19: 605 613.
86. Essers, L.,, R. Adolphs,, and R. Kunze. 2000. A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell 12: 211 224.
87. Fedoroff, N. 1989. The heritable activation of cryptic Suppressor-mutator elements by an active element. Genetics 121: 591 608.
88. Fedoroff, N.,, M. Schlappi,, and R. Raina. 1995. Epigenetic regulation of the maize Spm transposon. Bioessays 17: 291 297.
89. Fedoroff, N. V. 1995. DNA methylation and activity of the maize Spm transposable element. Curr. Top. Microbiol. Immunol. 197: 143 164.
90. Fedoroff, N. V. 1999. The Suppressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4: 11 19.
91. Fedoroff, N. V.,, and J. A. Banks. 1988. Is the Suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics 120: 559 577.
92. Fedoroff, N. V.,, D. B. Furtek,, and O. E. Nelson. 1984. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator. Proc. Natl. Acad. Sci. USA 81: 3825 3829.
93. Fedoroff, N. V.,, P. Masson,, J. A. Banks,, and J. Kingsbury,. 1988. Positive and negative regulation of the Suppressor-mutator element, p. 1 16. In O. E. Nelson, Jr. (ed.), Plant Transposable Elements. Plenum Press Corp., New York, N.Y..
94. Fedoroff, N. V.,, and D. L. Smith. 1993. A versatile system for detecting transposition in Arabidopsis. Plant J. 3: 273 289.
95. Feldmar, S.,, and R. Kunze. 1991. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 10: 4003 4010.
96. Ferris, P. J. 1989. Characterization of a Chlamydomonas transposon, Gulliver, resembling those in higher plants. Genetics 122: 363 377.
97. Feschotte, C.,, and C. Mouches. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17: 730 737.
98. Finnegan, E. J.,, G. J. Lawrence,, E. S. Dennis,, and J. G. Ellis. 1993. Behavior of modified Ac elements in flax callus and regenerated plants. Plant Mol. Biol. 22: 625 633.
99. Finnegan, E. J.,, B. H. Taylor,, E. S. Dennis,, and W. J. Peacock. 1988. Transcription of the maize transposable element Ac in maize seedlings and in transgenic tobacco. Mol. Gen. Genet. 212: 505 509.
100. Fitzmaurice, W. P.,, L. V. Nguyen,, E. A. Wernsman,, W. F. Thompson,, and M. A. Conkling. 1999. Transposon tagging of the sulfur gene of tobacco using engineered maize Ac/ Ds elements. Genetics 153: 1919 1928.
101. Fladung, M.,, and M. R. Ahuja. 1997. Excision of the maize transposable element Ac in periclinal chimeric leaves of 35S Ac- rolC transgenic aspen- Populus. Plant Mol. Biol. 33: 1097 1103.
102. Frank, M. J.,, D. Liu,, Y. F. Tsay,, C. Ustach,, and N. M. Crawford. 1997. Tag1 is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco. Plant Cell 9: 1745 1756.
103. Frank, M. J.,, D. Preuss,, A. Mack,, T. C. Kuhlmann,, and N. M. Crawford. 1998. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes. Mol. Gen. Genet. 257: 478 484.
104. Frey, M.,, J. Reinecke,, S. Grant,, H. Saedler,, and A. Gierl. 1990. Excision of the En/ Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J. 9: 4037 4044.
105. Frey, M.,, S. M. Tavantzis,, and H. Saedler. 1989. The maize En-1/ Spm element transposes in potato. Mol. Gen. Genet. 217: 172 177.
106. Fridlender, M.,, K. Harrison,, J. D. G. Jones,, and A. A. Levy. 1996. Repression of the Ac-transposase gene promoter by Ac transposase. Plant J. 9: 911 917.
107. Fridlender, M.,, Y. Sitrit,, O. Shaul,, O. Gileadi,, and A. A. Levy. 1998. Analysis of the Ac promoter: structure and regulation. Mol. Gen. Genet. 258: 306 314.
108. Fugmann, S. D.,, I. J. Villey,, L. M. Ptaszek,, and D. G. Schatz. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5: 97 107.
109. Fusswinkel, H.,, S. Schein,, U. Courage,, P. Starlinger,, and R. Kunze. 1991. Detection and abundance of mRNA and protein encoded by transposable element Activator (Ac) in maize. Mol. Gen. Genet. 225: 186 192.
110. Gallego, M. E.,, P. Sirand-Pugnet,, and C. I. White. 1999. Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Mol. Biol. 39: 83 93.
111. Gerats, A. G. M.,, M. Beld,, H. Huits,, and A. Prescott. 1989. Gene tagging in Petunia hybrida using homologous and heterologous transposable elements. Dev. Genet. 10: 561 568.
112. Gerats, A. G. M.,, H. Huits,, E. Vrijlandt,, C. Marana,, E. Souer,, and M. Beld. 1990. Molecular characterization of a nonautonomous transposable element ( dTph1) of petunia. Plant Cell 2: 1121 1128.
113. Gerlach, W. L.,, E. S. Dennis,, W. J. Peacock,, and M. T. Clegg. 1987. The Ds1 controlling element family in maize and Tripsacum. J. Mol. Evol. 26: 329 334.
114. Giedt, C.,, and C. Weil. 2000. The maize LAG1-0 mutant suggests reproductive cell lineages show unique gene expression patterns early in vegetative development. Plant J. 24: 815 824.
115. Gierl, A. 1996. The En/ Spm transposable element of maize. Curr. Top. Microbiol. Immunol. 204: 145 159.
116. Gierl, A.,, H. Cuypers,, S. Lutticke,, A. Pereira,, Z. Schwarz-Sommer,, S. Dash,, P. A. Peterson,, and S. Saedler,. 1989. Structure and function of the En/ Spm transposable element system of Zea mays: identification of the suppressor component of En, p. 115 120. In O. E. Nelson, Jr. (ed.), Plant Transposable Elements. Plenum Press Corp., New York, N.Y..
117. Gierl, A.,, S. Lutticke,, and H. Saedler. 1988. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 7: 4045 4053.
118. Gierl, A.,, Z. Schwarz-Sommer,, and H. Saedler. 1985. Molecular interactions between the components of the En-I transposable system of Zea mays. EMBO J. 4: 579 583.
119. Girke, T.,, H. Schmidt,, U. Zahringer,, R. Reski,, and E. Heinz. 1998. Identification of a novel Delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15: 39 48.
120. Giroux, M. J.,, M. Clancy,, J. Baier,, L. Ingham,, D. Mccarty,, and L. C. Hannah. 1994. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl. Acad. Sci. USA 91: 12150 12154.
121. Gloor, G.,, J. Moretti,, J. Mouyal,, and K. Keeler. 2000. Distinct P-element excision products in somatic and germline cells of Drosophila melanogaster. Genetics 155: 1821 1830.
122. Gorbunova, V.,, and A. A. Levy. 1997. Circularized Ac/ Ds transposons: formation, structure and fate. Genetics 145: 1161 1169.
123. Gorbunova, V.,, and A. A. Levy. 2000. Analysis of extrachromosomal Ac/ Ds transposable elements. Genetics 155: 349 359.
124. Gorbunova, V.,, C. Ramos,, B. Hohn,, and A. A. Levy. 2000. A nuclear protein that binds specifically to several maize transposons is not essential for Ds1 excision. Mol. Gen. Genet. 263: 492 497.
125. Grandbastien, M.-A.,, A. Spielmann,, and M. Caboche. 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 337: 376 380.
126. Grant, S. R.,, A. Gierl,, and H. Saedler. 1990. En/ Spm encoded TnpA protein requires a specific target sequence for suppression. EMBO J. 9: 2029 2035.
127. Grant, S. R.,, S. Hardenack,, S. Trentmann,, and H. Saedler. 1993. Functional cis-element sequence requirements for suppression of gene expression by the TnpA protein of the Zea mays transposon En/ Spm. Mol. Gen. Genet. 241: 153 160.
128. Grappin, P.,, C. Audeon,, M. C. Chupeau,, and M. A. Grandbastien. 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252: 386 397.
129. Greenblatt, I. M. 1968. The mechanism of Modulator transposition in maize. Genetics 58: 585 597.
130. Greenblatt, I. M. 1974. Movement of Modulator in maize: a test of an hypothesis. Genetics 77: 671 678.
131. Greenblatt, I. M. 1984. A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of transposable element. Modulator, in maize. Genetics 108: 471 485.
132. Greenblatt, I. M.,, and R. A. Brink. 1962. Twin mutations in medium variegated pericarp maize. Genetics 47: 489 501.
133. Grevelding, C.,, D. Becker,, R. Kunze,, A. von Menges,, V. Fantes,, J. Schell,, and R. Masterson. 1992. High rates of Ac/ Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc. Natl. Acad. Sci. USA 89: 6085 6089.
134. Groose, R. W.,, H. D. Weigelt,, and R. G. Palmer. 1988. Somatic analysis of an unstable mutation for anthocyanin pigmentation in soybean. J. Hered. 79: 263 267.
135. Handler, A. M.,, and S. P. Gomez. 1997. A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac. Gene 185: 133 135.
136. Haring, M. A.,, J. Gao,, T. Volbeda,, C. M. Rommens,, H. J. Nijkamp,, and J. Hille. 1989. A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants. Plant Mol. Biol. 13: 189 201.
137. Haring, M. A.,, S. Scofield,, M. J. Teeuwendevroomen,, G. S. Leuring,, H. J. J. Nijkamp,, and J. Hille. 1991. Novel DNA structures resulting from dTam3 excision in tobacco. Plant Mol. Biol. 17: 995 1004.
138. Haring, M. A.,, M. J. Teeuwendevroomen,, H. J. J. Nijkamp,, and J. Hille. 1991. Transactivation of an artificial dTam3 transposable element in transgenic tobacco plants. Plant Mol. Biol. 16: 39 47.
139. Harrison, B. J.,, and J. R. S. Fincham. 1964. Instability at the Pal locus in Antirrhinum majus. 1. Effects of environment on frequencies of somatic and germinal mutation. Heredity 19: 237 258.
140. Harrison, B. J.,, and J. R. S. Fincham. 1968. Instability at the Pal locus in Antirrhinum majus. 3. A gene controlling mutation frequency. Heredity 23: 67 72.
141. Hartings, H.,, N. Lazzaroni,, V. Rossi,, and M. Motto. 1996. Distribution of sequences related to the Bg transposable element of maize in Zea and related genera. Theor. Appl. Genet. 92: 696 701.
142. Hartings, H.,, V. Rossi,, N. Lazzaroni,, R. D. Thompson,, F. Salamini,, and M. Motto. 1991. Nucleotide sequence of the Bg transposable element of Zea mays L. Maydica 36: 355 359.
143. Hartings, H.,, C. Spilmont,, N. Lazzaroni,, V. Rossi,, F. Salamini,, R. D. Thompson,, and M. Motto. 1991. Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Mol. Gen. Genet. 227: 91 96.
144. Hehl, R.,, and B. Baker. 1989. Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol. Gen. Genet. 217: 53 59.
145. Hehl, R.,, and B. Baker. 1990. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell 2: 709 721.
146. Hehl, R.,, W. K. Nacken,, A. Krause,, H. Saedler,, and H. Sommer. 1991. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 16: 369 371.
147. Hehl, R.,, H. Sommer,, and H. Saedler. 1987. Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Mol. Gen. Genet. 207: 47 53.
148. Heinlein, M. 1995. Variegation patterns caused by excision of the maize transposable element Dissociation (Ds) are autonomously regulated by allele-specific Activator (Ac) elements and are not due to trans-acting modifier genes. Mol. Gen. Genet. 246: 1 9.
149. Heinlein, M. 1996. Excision patterns of Activator (Ac) and Dissociation (Ds) elements in Zea mays L.: implications for the regulation of transposition. Genetics 144: 1851 1869.
150. Heinlein, M.,, T. Brattig,, and R. Kunze. 1994. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and petunia protoplasts. Plant J. 5: 705 714.
151. Heinlein, M.,, and P. Starlinger. 1991. Variegation patterns caused by transposable element Ac. Maydica 36: 309 316.
152. Henk, A. D.,, R. F. Warren,, and R. W. Innes. 1999. A new Aclike transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151: 1581 1589.
153. Herrmann, A.,, W. Schulz,, and K. Hahlbrook. 1988. Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Mol. Gen. Genet. 212: 93 98.
154. Hiom, K.,, and M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1: 1011 1019.
155. Hofmann, A. H.,, A. C. Codon,, C. Ivascu,, V. E. Russo,, C. Knight,, D. Cove,, D. G. Schaefer,, M. Chakhparonian,, and J. P. Zryd. 1999. A specific member of the Cab multigene family can be efficiently targeted and disrupted in the moss Physcomitrella patens. Mol. Gen. Genet. 261: 92 99.
156. Honma, M. A.,, B. J. Baker,, and C. S. Waddell. 1993. High-frequency germinal transposition of DsALS in Arabidopsis. Proc. Natl. Acad. Sci. USA 90: 6242 6246.
157. Hori, H.,, M. Suzuki,, H. Inagaki,, T. Oshima,, and A. Koga. 1998. An active Ac-like transposable element in teleost fish. J. Mar. Biotechnol. 6: 206 207.
158. Hoshino, A.,, Y. Abe,, N. Saito,, Y. Inagaki,, and S. Iida. 1997. The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone. Plant Cell Physiol. 38: 970 974.
159. Hoshino, A.,, Y. Inagaki,, and S. Iida. 1995. Structural analysis of Tpn1, a transposable element isolated from japanese morning glory bearing variegated flowers. Mol. Gen. Genet. 247: 114 117.
160. Houba-Herin, N.,, D. Becker,, A. Post,, Y. Larondelle,, and P. Starlinger. 1990. Excision of a Ds-like maize transposable element ( Ac-delta) in a transient assay in petunia is enhanced by a truncated coding region of the transposable element Ac. Mol. Gen. Genet. 224: 17 23.
161. Houba-Herin, N.,, M. Domin,, and A. S. Leprince. 1994. Some features about transposition of the maize element Dissociation in Nicotiana plumbaginifolia. Genetica 93: 41 48.
162. Houba-Herin, N.,, M. Domin,, and J. Pedron. 1994. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells. Plant J. 6: 55 66.
163. Hu, J.,, V. Reddy,, and S. Wessler. 2000. The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements. Plant Mol. Biol. 42: 667 678.
164. Hudson, A.,, R. Carpenter,, and E. S. Coen. 1987. De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207: 54 59.
165. Hudson, A. D.,, R. Carpenter,, and E. S. Coen. 1990. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus. Plant Mol. Biol. 14: 835 844.
166. Huits, H. S. M.,, H. J. W. Wijsman,, R. E. Koes,, and A. G. M. Gerats. 1995. Genetic characterisation of act1, the activator of a non-autonomous transposable element from Petunia hybrida. Theor. Appl. Genet. 91: 110 117.
167. Iida, S.,, A. Hoshino,, Y. Johzuka-Hisatomi,, Y. Habu,, and Y. Inagaki. 1999. Floricultural traits and transposable elements in the Japanese and common morning glories. Ann. N. Y. Acad. Sci. 870: 265 274.
168. Inagaki, Y.,, Y. Hisatomi,, T. Suzuki,, K. Kasahara,, and S. Iida. 1994. Isolation of a Suppressor-mutator/ Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6: 375 383.
169. Ito, T.,, M. Seki,, N. Hayashida,, D. Shibata,, and K. Shinozaki. 1999. Regional insertional mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/ Ds transposon in combination with a cDNA scanning method. Plant J. 17: 433 444.
170. Izawa, T.,, T. Ohnishi,, T. Nakano,, N. Ishida,, H. Enoki,, H. Hashimoto,, K. Itoh,, R. Terada,, C. Wu,, C. Miyazaki,, T. Endo,, S. Iida,, and K. Shimamoto. 1997. Transposon tagging in rice. Plant Mol. Biol. 35: 219 229.
171. Jarvis, P.,, F. Belzile,, and C. Dean. 1997. Inefficient and incorrect processing of the Ac transposase transcript in iae1 and wild-type Arabidopsis thaliana. Plant J. 11: 921 931.
172. Jarvis, P.,, F. Belzile,, T. Page,, and C. Dean. 1997. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition. Plant J. 11: 907 919.
173. Jones, J. D.,, F. Carland,, E. Lim,, E. Ralston,, and H. K. Dooner. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2: 701 707.
174. Jones, J. D. G.,, L. Harper,, F. M. Carland,, E. J. Ralston,, and H. K. Dooner. 1991. Reversion and altered variegation of an SPT:Ac allele in tobacco. Maydica 36: 329 335.
175. Kaiser, K.,, and S. F. Goodwin. 1990. “Site-selected” transposon mutagenesis of Drosophila. Proc. Natl. Acad. Sci. USA 87: 1686 1690.
176. Keller, J.,, J. D. Jones,, E. Harper,, E. Lim,, F. Carland,, E. J. Ralston,, and H. K. Dooner. 1993. Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Mol. Biol. 21: 157 170.
177. Keller, J.,, E. Lim,, and H. K. Dooner. 1993. Preferential transposition of Ac to linked sites in Arabidopsis. Theor. Appl. Genet. 86: 585 588.
178. Keller, J.,, E. Lim,, D. W. James, Jr.,, and H. K. Dooner. 1992. Germinal and somatic activity of the maize element Activator (Ac) in Arabidopsis. Genetics 131: 449 459.
179. Kempken, F.,, and U. Kuck. 1996. Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol. Cell. Biol. 16: 6563 6572.
180. Kennedy, A. K.,, A. Guhathakurta,, N. Kleckner,, and D. B. Haniford. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95: 125 134.
181. Kim, D. R.,, Y. Dai,, C. L. Mundy,, W. Yang,, and M. A. Oettinger. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13: 3070 3080.
182. Kim, H. Y.,, J. W. Schiefelbein,, V. Raboy,, D. Furtek,, and O. Nelson. 1987. RNA splicing permits expression of a maize gene with a defective Suppressor-mutator transposable element insertion in an exon. Proc. Natl. Acad. Sci. USA 84: 5863 5867.
183. Kishima, Y.,, S. Yamashita,, C. Martin,, and T. Mikami. 1999. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol. Biol. 39: 299 308.
184. Kishima, Y.,, S. Yamashita,, and T. Mikami. 1997. Immobilized copies with a nearly intact structure of the transposon Tam3 in Antirrhinum majus: implications for the cis-element related to the transposition. Theor. Appl. Genet. 95: 1246 1251.
185. Kleckner, N. 1990. Regulating Tn10 and IS10 transposition. Genetics 124: 449 454.
186. Knapp, S.,, G. Coupland,, H. Uhrig,, P. Starlinger,, and F. Salamini. 1988. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Genet. 213: 285 290.
187. Knapp, S.,, Y. Larondelle,, M. Rossberg,, D. Furtek,, and K. Theres. 1994. Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging. Mol. Gen. Genet. 243: 666 673.
188. Koes, R.,, E. Souer,, A. Vanhouwelingen,, L. Mur,, C. Spelt,, F. Quattrocchio,, J. Wing,, B. Oppedijk,, S. Ahmed,, T. Maes,, T. Gerats,, P. Hoogeveen,, M. Meesters,, D. Kloos,, and J. N. M. Mol. 1995. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci. USA 92: 8149 8153.
189. Kohli, A.,, S. Griffiths,, N. Palacios,, R. M. Twyman,, P. Vain,, D. A. Laurie,, and P. Christou. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591 601.
190. Koster-Topfer, M.,, W. B. Frommer,, M. Rochasosa,, and L. Willmitzer. 1990. Presence of a transposon-like element in the promoter region of an inactive patatin gene in Solanum tuberosum L. Plant Mol. Biol. 14: 239 247.
191. Kovalchuk, O.,, A. Arkhipov,, I. Barylyak,, I. Karachov,, V. Titov,, B. Hohn,, and I. Kovalchuk. 2000. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat. Res. 449: 47 56.
192. Krebbers, E.,, R. Hehl,, R. Piotorwiak,, W.-E. Lonnig,, H. Sommer,, and H. Saedler. 1987. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Mol. Gen. Genet. 209: 499 507.
193. Kroon, J.,, E. Souer,, A. Degraaff,, Y. B. Xue,, J. Mol,, and R. Koes. 1994. Cloning and structural analysis of the anthocyanin pigmentation locus rt of Petunia hybrida—characterization of insertion sequences in two mutant alleles. Plant J. 5: 69 80.
194. Krysan, P.,, J. Young,, and M. Sussman. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283 2290.
195. Kunze, R. 1996. The maize transposable element Activator (Ac). Curr. Top. Microbiol. Immunol. 204: 161 194.
196. Kunze, R.,, U. Behrens,, U. Courage-Franzkowiak,, S. Feldmar,, S. Kuhn,, and R. Lutticke. 1993. Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc. Natl. Acad. Sci. USA 90: 7094 7098.
197. Kunze, R.,, G. Coupland,, H. FuBwinkle,, S. Feldmar,, U. Courage,, S. Schein,, H.-A. Becker,, S. Chatterjee,, M.-G. Li,, and P. Starlinger. 1991. Structure and function of the maize transposable element Activator (Ac). NATO ASI Ser. Ser. A 212: 285 298.
198. Kunze, R.,, S. Kuhn,, J. D. G. Jones,, and S. R. Scofield. 1995. Somatic and germinal activities of maize Activator (Ac) transposase mutants in transgenic tobacco. Plant J. 8: 45 54.
199. Kunze, R.,, H. Saedler,, and W. E. Lonnig. 1997. Plant transposable elements. Adv. Bot. Res. 27: 470.
200. Kunze, R.,, and P. Starlinger. 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8: 3177 3185.
201. Kunze, R.,, P. Starlinger,, and D. Schwartz. 1988. DNA methylation of the maize transposable element Ac interferes with its transcription. Mol. Gen. Genet. 214: 325 327.
202. Kunze, R.,, U. Stochaj,, J. Laufs,, and P. Starlinger. 1987. Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J. 6: 1555 1563.
203. Lal, K. S.,, and C. L. Hannah. 1999. Maize transposable element Ds is differentially spliced from primary transcripts in endosperm and suspension cells. Biochem. Biophys. Res. Commun. 261: 798 801.
204. Landree, M. A.,, J. A. Wibbenmeyer,, and D. B. Roth. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13: 3059 3069.
205. Laufs, J.,, U. Wirtz,, M. Kammann,, V. Matzeit,, S. Schaefer,, J. Schell,, A. P. Czernilofsky,, B. Baker,, and B. Gronenborn. 1990. Wheat dwarf virus Ac/ Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc. Natl. Acad. Sci. USA 87: 7752 7756.
206. Lawson, E. J.,, S. R. Scofield,, C. Sjodin,, J. D. Jones,, and C. Dean. 1994. Modification of the 5′ untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol. Gen. Genet. 245: 608 615.
207. Levy, A. A.,, M. Fridlender,, U. H. Rubin,, and Y. Sitrit. 1996. Binding of Nicotiana nuclear proteins to the subterminal regions of the Ac transposable element. Mol. Gen. Genet. 251: 436 441.
208. Levy, A. A.,, and V. Walbot. 1990. Regulation of the timing of transposable element excision during maize development. Science 248: 1534 1537.
209. Li, M. G.,, and P. Starlinger. 1990. Mutational analysis of the N terminus of the protein of maize transposable element Ac. Proc. Natl. Acad. Sci. USA 87: 6044 6048.
210. Lister, C.,, D. Jackson,, and C. Martin. 1993. Transposoninduced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidea (radialis). Plant Cell 5: 1541 1553.
211. Liu, D.,, and N. M. Crawford. 1998. Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1. Genetics 148: 445 456.
212. Liu, D.,, and N. M. Crawford. 1998. Characterization of the putative transposase mRNA of Tag1, which is ubiquitously expressed in arabidopsis and can be induced by Agrobacterium-mediated transformation with dTag1 DNA. Genetics 149: 693 701.
213. Liu, D.,, S. Zhang,, C. Fauquet,, and N. M. Crawford. 1999. The Arabidopsis transposon Tag1 is active in rice, undergoing germinal transposition and restricted, late somatic excision. Mol. Gen. Genet. 262: 413 420.
214. Lohe, A. R.,, and D. L. Hartl. 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13: 549 555.
215. Long, D.,, and G. Coupland,. 1998. Transposon tagging with Ac/ Ds in Arabidopsis, p. 315 328. In J. M. Martinez-Zapater, and J. Salinas (ed.), Arabidopsis Protocols, vol. 82. Humana Press, Totowa, N.J..
216. Long, D.,, J. Goodrich,, K. Wilson,, E. Sundberg,, M. Martin,, P. Puangsomlee,, and G. Coupland. 1997. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11: 145 148.
217. Luck, J. E.,, G. J. Lawrence,, E. J. Finnegan,, D. A. Jones,, and J. G. Ellis. 1998. A flax transposon identified in two spontaneous mutant alleles of the L6 rust resistance gene. Plant J. 16: 365 369.
218. Luo, D.,, E. S. Coen,, S. Doyle,, and R. Carpenter. 1991. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus. Plant J. 1: 59 69.
219. Machida, C.,, H. Onouchi,, J. Koizumi,, S. Hamada,, E. Semiarti,, S. Torikai,, and Y. Machida. 1997. Characterization of the transposition pattern of the Ac element in Arabidopsis thaliana using endonuclease I-Scel. Proc. Natl. Acad. Sci. USA 94: 8675 8680.
220. Maes, T.,, P. De Keukeleire,, and T. Gerats. 1999. Plant tagnology. Trends Plant Sci. 4: 90 96.
221. Marion-Poll, A.,, E. Marin,, N. Bonnefoy,, and V. Pautot. 1993. Transposition of the maize autonomous element Activator in transgenic Nicotiana plumbaginifolia plants. Mol. Gen. Genet. 238: 209 217.
222. Martienssen, R. A. 1998. Functional genomics: probing plant gene function and expression with transposons. Proc. Natl. Acad. Sci. USA 95: 2021 2026.
223. Martin, C.,, and C. Lister. 1989. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus. Dev. Genet. 10: 438 451.
224. Martin, C.,, A. Prescott,, C. Lister,, and S. MacKay. 1989. Activity of the transposon Tam3 in Antirrhinum and tobacco:possible role of DNA methylation. EMBO J. 8: 997 1004.
225. Martin, D. J.,, S. Firek,, E. Moreau,, and J. Draper. 1997. Alternative processing of the maize Ac transcript in Arabidopsis. Plant J. 11: 933 943.
226. Martin, G. B. 1998. Gene discovery for crop improvement. Curr. Opin. Biotechnol. 9: 220 226.
227. Martinez-Ferez, I. M.,, and H. K. Dooner. 1997. Sesqui-Ds, the chromosome-breaking insertion at bz-m1, links double Ds to the original Ds element. Mol. Gen. Genet. 255: 580 586.
228. Mason-Gamer, R.,, C. F. Weil,, and E. A. Kellogg. 1998. The waxy gene as a phylogenetic tool: structure/function and evolution. Mol. Biol. Evol. 15: 1658 1673.
229. Masson, P.,, and N. V. Fedoroff. 1989. Mobility of the maize Suppressor-mutator element in transgenic tobacco cells. Proc. Natl. Acad. Sci. USA 86: 2219 2223.
230. Masson, P.,, G. Rutherford,, J. A. Banks,, and N. Fedoroff. 1989. Essential large transcripts of the maize Spm transposable element are generated by alternative splicing. Cell 58: 755 765.
231. Masson, P.,, M. Strem,, and N. Fedoroff. 1991. The tnpA and tnpD gene products of the Spm element are required for transposition in tobacco. Plant Cell 3: 73 85.
232. Masson, P.,, R. Surosky,, J. A. Kingsbury,, and N. V. Fedoroff. 1987. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 177: 117 137.
233. Masterson, R. V.,, D. B. Furtek,, C. Grevelding,, and J. Schell. 1989. A maize Ds transposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol. Gen. Genet. 219: 461 466.
234. McBlane, J. F.,, D. C. van Gent,, D. A. Ramsden,, C. Romeo,, C. A. Cuomo,, M. Gellert,, and M. A. Oettinger. 1995. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell 83: 387 395.
235. McClintock, B. 1948. Mutable loci in maize. Carnegie Inst. Wash. Year Book 47: 155 169.
236. McClintock, B. 1951. Chromosome organization and genic expression. Cold SpringHarbor Symp. Quant. Biol. 16: 13 47.
237. McClintock, B. 1951. Mutable loci in maize. Carnegie Inst. Wash. Year Book 50: 174 181.
238. McClintock, B. 1954. Mutations in maize and chromosomal aberrations in Neurospora. Carnegie Inst. Wash. Year Book 53: 254 260.
239. McClintock, B. 1957. Genetic and cytological studies of maize. Carnegie Inst. Wash. Year Book 56: 393 401.
240. McClintock, B. 1958. The Suppressor-mutator system of control of gene action in maize. Carnegie Inst. Wash. Year Book 57: 415 429.
241. McClintock, B. 1959. Genetic and cytological studies of maize. Carnegie Inst. Wash. Year Book 58: 452 456.
242. McClintock, B. 1961. Further studies on the suppressor-mutator system of control of gene action in maize. Carnegie Inst. Wash. Year Book 60: 469 476.
243. McClintock, B. 1962. Topographical relations between elements of control systems in maize. Carnegie Inst. Wash. Year Book 61: 448 461.
244. McClintock, B. 1964. Aspects of gene regulation in maize. Carnegie Inst. Wash. Year Book 63: 592 602.
245. McClintock, B. 1965. Components of action of the regulators Spm and Ac. Carnegie Inst. Wash. Year Book 64: 527 534.
246. McClintock, B. 1971. The contribution of one component of a control system to versatility of gene expression. Carnegie Inst. Wash. Year Book 70: 5 17.
247. McClintock, B. 1984. The significance of responses of the genome to challenge. Science 226: 792 802.
248. McElroy, D.,, J. D. Louwerse,, S. M. McElroy,, and P. G. Lemaux. 1997. Development of a simple transient assay for Ac/ Ds activity in cells of intact barley tissue. Plant J. 11: 157 165.
249. Mengiste, T.,, and J. Paszkowski. 1999. Prospects for the precise engineering of plant genomes by homologous recombination. Biol. Chem. 380: 749 758.
250.</