Chapter 24 : The and CACTA Superfamilies of Plant Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The and CACTA Superfamilies of Plant Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap24-2.gif


This chapter focuses primarily on what is known about the and superfamilies of plant mobile elements. It discusses features of their biology and their transposition mechanisms that have become known in the past decade. While sequences that structurally resemble these element families have been found in a variety of plant species, the authors deal only with those that are known to transpose. Control of transposition is complex, intimately tied to the developmental processes in the host maize plant, and has been the subject of genetically elegant and fascinating studies that date back half a century. was isolated as a 17-kb insertion in the highly unstable allele of . The genetic properties and molecular structure indicate that is an autonomous member of the CACTA superfamily. also shows some of the genetic characteristics of , most notably the ability to have both suppressor and mutator functions. Transposons have proven to be powerful mutagens that enable selection for disruptions of virtually any gene. Since their molecular isolation, plant transposons have been used extensively as probes to isolate genes mutagenized in exactly this manner. Two general approaches have been taken in plants: tagging with endogenous elements where they are available and well-characterized (primarily in maize, in petunia, and in Antirrhinum), and tagging with transposons from heterologous systems.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24

Key Concept Ranking

Cauliflower mosaic virus
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Autonomous plant elements. The diagram below shows the domains found within the TPase protein. b, basic regions; x, N-terminal fragment that can be removed without loss of TPase function; m, middle region where the reactive residues are likely to occur; N1, N2+3, nuclear localization signals; PQ, Pro-Glx repeat region essential for transposition; DNA, DNA binding domain; DIM, dimerization domain: hAT1, hAT2, hAT3, regions of strong sequence similarity among family TPase proteins, including those in animals and fungi. Introns are indicated by white bars within transcribed (hatched) region.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Mechanisms suggested for formation of defective elements. (A) Formation of internally deleted transposons in plants can occur following an excision event. (B) Synthesis-dependent strand annealing (SDSA). Once each new strand acquires a copy of sequence that can base pair with the other newly synthesized DNA, a new duplex is formed and the remaining “flaps” are removed by an exonuclease. (C) Similar to SDSA, except that one template being copied to repair the excision site is from an ectopic site. Resolution is again through sequences that can anneal; however, the new DNA is heteroduplex for an extensive region and this ectopic sequence can become incorporated into the transposon. (D) DNA synthesis errors such as slipped mispairing can create deletions. (E) These deletions can also be repaired using “filler DNA” sequences taken from a nearby sequence that is fortuitously similar to the sequence on both sides of the deletion breakpoint.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

dosage and excision frequency. A likely explanation for variations in transposition frequency in maize, as well as in other plants, is that the concentration of TPase must fall within an optimum range. Too little produces inefficient transposition and too much creates nonfunctional TPase complexes.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Hemimethylation and transposition. Following DNA replication, the TPase binding sites in each daughter element are hemimethylated differently, such that one daughter is more competent to transpose, in this case, the element shown on the left.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Aberrant transposition and /-induced chromosome breakage. The hemimethylation model in Fig. 4 has important implications for chromosome breakage and rearrangement. (A) Transposase attempting to utilize the transposition-competent left end and right end of the same element can result in element excision and transposition, with the excision site rejoined in a characteristic transposon footprint. (B) Transposase interacting with the transposition-competent left end of one element and the transposition-competent right end of a second element can lead to large-scale rearrangements. When the two elements involved are in opposite orientations, the two element ends in the aberrant transposition lie on opposite sister chromatids. Repair of the “excision site” forms a typical transposon footprint, but also produces a dicentric chromosome (centromere indicated by “C”). (C) Elements can be inserted one into the other, or can be nearby, but must be in opposite orientation with respect to one another. By the hemimethylation model, the transposition-competent daughter element for each of the two transposons would be on opposite sister chromatids.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

Excision and reinsertion models for elements. (A) Template-switching model based on / elements in maize. Black triangles indicate positions of TPase cleavage.Transposon ends are synapsedby interactionsamongboundTPase molecules, indicated by dashed lines. DNA repair synthesis of flanking DNA is indicated below the synapsed element as a solid line for the DNA at one end of the element and a hatched line for the other. Template switches are indicated among some of the available templates; however, synthesis is not known to read into the transposon itself. (B) The hairpin model. Positioning of the TPase cleavage events (black triangles) is based on transposon footprints for each case, the bases adjacent to the transposon for , as well as for / and other elements in plants. Hairpin formation in the host DNA is by the direct transesterification of one strand by the other following TPase cleavage. Prior to rejoining, the excision site may be exposed to exonuclease degradation, as shown. (C) element reinsertion. The free 3′ OH group at the ends of the transposon may perform a similar attack on the target site DNA as the trans-esterification proposed in hairpin formation. The TPase molecules bound to the transposon could space the 3′ OH groups at a distance that causes them to attack a target on opposite sugar-phosphate backbones at positions separated by 8 bp, as indicated. The 8-bp gaps created are then filled in to create the target-site duplication.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

CACTA elements. Elements from this family are arranged to maximize the similarities within their coding regions (see text). Terminal-inverted repeats are represented as closed triangles and subterminal repeat regions are stippled. The most consistent similarity is in the crosshatched region corresponding to the gene for the putative TPase in /.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8.
Figure 8.

Subterminal repeat regions for CACTA elements. Each end of the indicated transposon is shown as a thick arrow representing the TIR and two thin lines. Subterminal repeats are shown as black arrowheads where they match the consensus sequence exactly or where they are mismatched at only one position. Hatched arrowheads indicate sites degenerate by two or more bases. Other shapes represent potential protein binding at the invariant nucleotides within each repeat. The filled shape in front of the arrowhead represents a protein on the face of the helix facing the reader, and the arrowhead in front of the shape represents contact would occur on the opposite face of the helix. Potential interactions between proteins are indicated by filled arcs, and possible interactions with proteins bound to more degenerate sites are indicated by open arcs. The sequences diagrammed are from sequencing results only; no evidence for their movement has been reported.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9.
Figure 9.

Model for the / transposome complex. TIRs indicated by large filled triangles. Subterminal repeats that make up TNPA binding sites are indicated by smaller filled triangles ( ) and stippled triangles ( ). TNPA molecules are represented as striped ovals, and TNPD molecules are represented as crosshatched boxes bound near the ends of the element.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10.
Figure 10.

Screening plant populations for insertion mutants by PCR. (A) Primer x within the gene of interest is tested against a primer y specific for the transposon. In theory, only in those samples where a transposon has inserted in or near the gene of interest should a product be possible. (B) Identification of potential candidates involves the use of large pools of samples from randomly transposon-mutagenized populations. By creating a three-dimensional grid of individual samples, pools can be created that will allow the screening of many samples quickly. If a positive result is obtained from pools II, 3, and d in the sample shown, only one plant is common to all three.

Citation: Kunze R, Weil C. 2002. The and CACTA Superfamilies of Plant Transposons, p 565-610. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aarts, M. G.,, W. G. Dirkse,, W. J. Stiekema,, and A. Pereira. 1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature 363:715717.
2. Aarts, M. G. M.,, P. Corzaan,, W. J. Stiekema,, and A. Pereira. 1995. A two-element Enhancer-inhibitor transposon system in Arabidopsis thaliana. Mol. Gen. Genet. 247:555564.
3. Agrawal, A.,, Q. Eastman,, and D. Schatz. 1998. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394:744751.
4. Aida, M.,, T. Ishida,, H. Fukaki,, H. Fujisawa,, and M. Tasaka. 1997. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841857.
5. Alleman, M.,, and J. L. Kermicle. 1993. Somatic variegation and germinal mutability reflect the position of transposable element Dissociation within the maize R gene. Genetics 135:189203.
6. Altmann, T.,, R. Schmidt,, and L. Willmitzer. 1992. Establishment of a gene tagging system in Arabidopsis thaliana based on the maize transposable element Ac. Theor. Appl. Genet. 84:371383.
7. Antequera, F.,, and A. Bird. 1988. Unmethylated CpG islands associated with genes in higher plant DNA. EMBO J. 7:22952299.
8. Athma, P.,, E. Grotewold,, and T. Peterson. 1992. Insertional mutagenesis of the maize P gene by intragenic transposition of Ac. Genetics 131:199209.
9. Athma, P.,, and T. Peterson. 1991. Ac induces homologous recombination at the maize P locus. Genetics 128:163173.
10. Atkinson, P. W.,, W. D. Warren,, and D. A. O’Brochta. 1993. The hobo transposable element of Drosophila can be cross-mobilized in houseflies and excises like the Ac element of maize. Proc. Natl. Acad. Sci. USA 90:96939697.
11. Azpiroz-Leehan, R.,, and K. A. Feldmann. 1997. T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet. 13:152156.
12. Baker, B.,, J. Schell,, H. Lorz,, and N. Fedoroff. 1986. Transposition of the maize controlling element Activator in tobacco. Proc. Natl. Acad. Sci. USA 83:48444848.
13. Balcells, L.,, and G. Coupland. 1994. The presence of enhancers adjacent to the Ac promoter increases the abundance of transposase mRNA and alters the timing of Ds excision in Arabidopsis. Plant Mol. Biol. 24:789798.
14. Bancroft, I.,, A. M. Bhatt,, C. Sjodin,, S. Scofield,, J. D. Jones,, and C. Dean. 1992. Development of an efficient two-element transposon tagging system in Arabidopsis thaliana. Mol. Gen. Genet. 233:449461.
15. Bancroft, I.,, and C. Dean. 1993. Factors affecting the excision frequency of the maize transposable element Ds in Arabidopsis thaliana. Mol. Gen. Genet. 240:6572.
16. Bancroft, I.,, and C. Dean. 1993. Transposition pattern of the maize element Ds in Arabidopsis thaliana. Genetics 134:12211229.
17. Banks, J. A.,, and N. Fedoroff. 1989. Patterns of developmental and heritable change in methylation of the Suppressor-mutator transposable element. Dev. Genet. 10:425437.
18. Banks, J. A.,, P. Masson,, and N. Fedoroff. 1988. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable element. Genes Dev. 2:13641380.
19. Baran, G.,, C. Echt,, T. Bureau,, and S. Wessler. 1992. Molecular analysis of the maize wx-B3 allele indicates that precise excision of the transposable Ac element is rare. Genetics 130:377384.
20. Beall, E.,, and D. Rio. 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 10:921933.
21. Becker, D.,, R. Lütticke,, M.-G. Li,, and P. Starlinger. 1992. Control of excision frequency of maize transposable element Ds in Petunia protoplasts. Proc. Natl. Acad. Sci. USA 89:55525556.
22. Becker, H. A.,, and R. Kunze. 1996. Binding sites for maize nuclear proteins in the subterminal regions of the transposable element Activator. Mol. Gen. Genet. 251:428435.
23. Becker, H. A.,, and R. Kunze. 1997. Maize Activator transposase has a bipartite DNA binding domain that recognizes subterminal sequences and the terminal inverted repeats. Mol. Gen. Genet. 254:219230.
24. Belzile, F.,, and J. I. Yoder. 1992. Pattern of somatic transposition in a high copy Ac tomato line. Plant J. 2:173179.
25. Bennetzen, J. L.,, K. Schrick,, P. S. Springer,, W. E. Brown,, and P. Sanmiguel. 1994. Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565576.
26. Bhasin, A.,, I. Y. Goryshin,, and W. S. Reznikoff. 1999. Hairpin formation in Tn5 transposition. J. Biol. Chem. 274:3702137029.
27. Bhatt, A. M.,, C. Lister,, N. Crawford,, and C. Dean. 1998. The transposition frequency of Tag1 elements is increased in transgenic Arabidopsis lines. Plant Cell 10:427434.
28. Bhattacharyya, M. K.,, A. M. Smith,, T. H. N. Ellis,, C. Hedley,, and C. Martin. 1990. The Wrinkled-Seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115122.
29. Bingham, P. M.,, R. Levis,, and G. M. Rubin. 1981. Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25:693704.
30. Boehm, U.,, M. Heinlein,, U. Behrens,, and R. Kunze. 1995. One of three nuclear localization signals of maize Activator (Ac) transposase overlaps the DNA-binding domain. Plant J. 7:441451.
31. Bolland, S.,, and N. Kleckner. 1995. The two single-strand cleavages at each end of Tn10 occur in a specific order during transposition. Proc. Natl. Acad. Sci. USA 92:78147818.
32. Bonas, U.,, H. Sommer,, and H. Saedler. 1984. The 17-kb Tam1 element of Antirrhinum majus induces a 3-bp duplication upon integration into the chalcone synthase gene.EMBO J. 5:10151020.
33. Braam, L.,, I. Goryshin,, and W. Reznikoff. 1999. A mechanism for Tn5 inhibition: carboxyl-terminal dimerization. J. Biol. Chem. 274:8692.
34. Bradley, D.,, R. Carpenter,, H. Sommer,, N. Hartly,, and E. Coen. 1993. Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum. Cell 72:8595.
35. Bravo-Angel, A. M.,, H. A. Becker,, R. Kunze,, B. Hohn,, and W. H. Shen. 1995. The binding motifs for Ac transposase are absolutely required for excision of Ds1 in maize. Mol. Gen. Genet. 248:527534.
36. Brettell, R. I.,, and E. S. Dennis. 1991. Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol. Gen. Genet. 229:365372.
37. Brown, J. J.,, M. G. Mattes,, C. O’Reilly,, and N. S. Shepherd. 1989. Molecular characterization of rDt, a maize transposon of the “Dotted” controlling element system. Mol. Gen. Genet. 215:239244.
38. Brutnell, T. P.,, and S. L. Dellaporta. 1994. Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138:213225.
39. Brutnell, T. P.,, B. P. May,, and S. L. Dellaporta. 1997. The Ac-st2 element of maize exhibits a positive dosage effect and epigenetic regulation. Genetics 147:823834.
40. Caldwell, E. E.,, and P. A. Peterson. 1992. The Ac and Uq transposable element systems in maize: interactions among components. Genetics 131:723731.
41. Calvi, B. R.,, T. J. Hong,, S. D. Findley,, and W. M. Gelbart. 1991. Evidence for a common evolutionary origin of inverted repeat transposons in Drosophila and plants: hobo, Activator, and Tam3. Cell 66:465471.
42. Campisi, L.,, Y. Yang,, Y. Yi,, E. Heilig,, B. Herman,, A. J. Cassista,, D. W. Allen,, H. Xiang,, and T. Jack. 1999. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17:699707.
43. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1991. Transposition of En/Spm in transgenic tobacco. Maydica 36:305308.
44. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1993. Definition and characterization of an artificial En/Spm-based transposon tagging system in transgenic tobacco. Plant Mol. Biol. 23:157178.
45. Cardon, G. H.,, M. Frey,, H. Saedler,, and A. Gierl. 1993. Mobility of the maize transposable element En/Spm in Arabidopsis thaliana. Plant J. 3:773784.
46. Carpenter, R.,, C. Martin,, and E. S. Coen. 1987. Comparison of genetic behavior of the transposable element Tam3 at two unlinked pigment loci in Antirrhinum majus. Mol. Gen. Genet. 207:8289.
47. Casacuberta, E.,, J. Casacuberta,, P. Puigdomenech,, and A. Monfort. 1998. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J. 16:7985.
48. Chandlee, J. M.,, and L. O. Vodkin. 1989. Unstable expression of a soybean gene during seed coat development. Theor. Appl. Genet. 77:587594.
49. Charng, Y. C.,, C. Ma,, J. Tu,, and T. T. Kuo. 1997. A 200-bp constructed inducible PR-1a promoter fusion to the Ac transposase gene drives higher transposition of a Ds element than the native PR-1a promoter fusion drives. Plant Sci. 130:7386.
50. Chatterjee, M.,, and C. Martin. 1997. Tam3 produces a suppressible allele of the DAG locus of Antirrhinum majus similar to Mu-suppressible alleles of maize. Plant J. 11:759771.
51. Chatterjee, S.,, and P. Starlinger. 1995. The role of subterminal sites of transposable element Ds of Zea mays in excision. Mol. Gen. Genet. 249:281288.
52. Chen, C.-H.,, M. Freeling,, and A. Merckelbach. 1986. Enzymatic and morphological consequences of Ds excision from maize Adh1. Maydica 31:93108.
53. Chen, J.,, I. M. Greenblatt,, and S. L. Dellaporta. 1987. Transposition of Ac from the P locus of maize into unreplicated chromosomal sites. Genetics 117:109116.
54. Chen, J.,, I. M. Greenblatt,, and S. L. Dellaporta. 1992. Molecular analysis of Ac transposition and DNA replication. Genetics 130:665676.
55. Chin, H. G.,, M. S. Choe,, S. H. Lee,, S. H. Park,, J. C. Koo,, N. Y. Kim,, J. J. Lee,, B. G. Oh,, G. H. Yi,, S. C. Kim,, H. C. Choi,, M. J. Cho,, and C. D. Han. 1999. Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J. 19:615623.
56. Chomet, P. S.,, S. Wessler,, and S. L. Dellaporta. 1987. Inactivation of the maize transposable element Activator (Ac) is associated with its DNA modification. EMBO J. 6:295302.
57. Chopra, S.,, V. Brendel,, J. Zhang,, J. D. Axtell,, and T. Peterson. 1999. Molecular characterization of a mutable pigmentation phenotype and isolation of the first active transposable element from Sorghum bicolor. Proc. Natl. Acad. Sci. USA 96:1533015335.
58. Coen, E. S.,, and R. Carpenter. 1988. A semi-dominant allele, niv-525, acts in trans to inhibit expression of its wild-type homologue in Antirrhinum majus. EMBO J. 7:877883.
59. Coen, E. S.,, R. Carpenter,, and C. Martin. 1986. Transposable elements generate novel spatial patterns of gene expression in Antirrhinum majus. Cell 47:285296.
60. Coen, E. S.,, T. P. Robbins,, J. Almeida,, A. Hudson,, and R. Carpenter,. 1989. Consequences and mechanism of transposition in Antirrhinum majus, p. 413436. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
61. Colot, V.,, V. Haedens,, and J. L. Rossignol. 1998. Extensive, nonrandom diversity of excision footprints generated by Dslike transposon Ascot-1 suggests new parallels with V(D)J recombination. Mol. Cell Biol. 18:43374346.
62. Cooley, M. B.,, A. P. Goldsbrough,, D. W. Still,, and J. I. Yoder. 1996. Site-selected insertional mutagenesis of tomato with maize Ac and Ds elements. Mol. Gen. Genet. 252:184194.
63. Coupland, G.,, B. Baker,, J. Schell,, and P. Starlinger. 1988. Characterization of the maize transposable element Ac by internal deletions. EMBO J. 7:36533659.
64. Coupland, G.,, C. Plum,, S. Chatterjee,, A. Post,, and P. Starlinger. 1989. Sequences near the termini are required for transposition of the maize transposon Ac in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 86:93859388.
65. Cuypers, H.,, S. Dash,, P. A. Peterson,, H. Saedler,, and A. Gierl. 1988. The defective En-I102 element encodes a product reducing the mutability of the En/Spm transposable element system in Zea mays. EMBO J. 7:29532960.
66. Dash, S.,, and P. A. Peterson. 1994. Frequent loss of the En transposable element after excision and its relation to chromosome replication in maize (Zea mays L.). Genetics 136:653671.
67. Dean, C.,, C. Sjodin,, T. Page,, J. Jones,, and C. Lister. 1992. Behavior of the maize transposable element Ac in Arabidopsis thaliana. Plant J. 2:6981.
68. DeGreef, B.,, and M. Jacobs. 1996. Evidence for Tam3 activity in transgenic Arabidopsis thaliana. In Vitro Cell Dev. Biol. 32:241248.
69. Dellaporta, S. L.,, P. S. Chomet,, J. P. Mottinger,, J. A. Wood,, S.-M. Yu,, and J. B. Hicks. 1984. Endogenous transposable elements associated with virus infection in maize. Cold Spring Harbor Symp. Quant. Biol. 49:321328.
70. Dennis, E. S.,, W. L. Gerlach,, and W. J. Peacock. 1986. Excision of the Ds controlling element from the Adh1 gene of maize. Maydica 31:4757.
71. Dennis, E. S.,, M. M. Sachs,, W. Gerlach,, I. Beach,, and W. J. Peacock. 1988. The Ds1 transposable element acts as an intron in the mutant allele Adh1-Fm335 and is spliced from the message. Nucleic Acids Res. 16:33153328.
72. Dooner, H. K.,, and A. Belachew. 1989. Transposition pattern of the maize element Ac from the bz-m2(Ac) allele. Genetics 122:447457.
73. Dooner, H. K.,, and A. Belachew. 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129:855862.
74. Dooner, H. K.,, J. English,, and E. J. Ralston. 1988. The frequency of transposition of the maize element Activator is not affected by an adjacent deletion. Mol. Gen. Genet. 211:485491.
75. Dooner, H. K.,, J. English,, E. J. Ralston,, and E. Weck. 1986. A single genetic unit specifies two transposition functions in the maize element Activator. Science 234:210211.
76. Dooner, H. K.,, J. Keller,, E. Harper,, and E. Ralston. 1991. Variable patterns of transposition of the maize element Activator in tobacco. Plant Cell 3:473482.
77. Dooner, H. K.,, and I. M. Martinez-Ferez. 1997. Germinal excisions of the maize transposon Activator do not stimulate meiotic recombination or homology-dependent repair at the bz locus. Genetics 147:19231932.
78. Dowe, M. F., Jr.,, G. W. Roman,, and A. S. Klein. 1990. Excision and transposition of two Ds transposons from the bronze mutable 4 Derivative 6856 allele of Zea mays L. Mol. Gen. Genet. 221:475485.
79. Dubois, P.,, S. Cutler,, and F. J. Belzile. 1998. Regional insertional mutagenesis on chromosome III of Arabidopsis thaliana using the maize Ac element. Plant J. 13:141151.
80. Eisses, J. F.,, D. Lafoe,, L. A. Scott,, and C. F. Weil. 1997. Novel, developmentally specific control of Ds transposition in maize. Mol. Gen. Genet. 256:158168.
81. Engels, W. R., 1996. P elements in Drosophila., p. 103123. In H. Saedler, and A. Gierl (ed.), Transposable Elements. Springer, Heidelberg, Germany.
82. Engels, W. R.,, D. M. Johnson-Schlitz,, W. B. Eggleston,, and J. Sved. 1990. High-frequency P-element loss in Drosophila is homolog dependent. Cell 62:515525.
83. English, J.,, K. Harrison,, and J. D. G. Jones. 1993. A genetic analysis ofDNAsequence requirements for Dissociation state Iactivity in tobacco. Plant Cell 5:501514.
84. English, J. J.,, K. Harrison,, and J. D. G. Jones. 1995. Aberrant transpositions of maize double Ds-like elements usually involves Ds ends on sister chromatids. Plant Cell 7:12351247.
85. Enoki, H.,, T. Izawa,, M. Kawahara,, M. Komatsu,, S. Koh,, J. Kyozuka,, and K. Shimamoto. 1999. Ac as a tool for the functional genomics of rice. Plant J. 19:605613.
86. Essers, L.,, R. Adolphs,, and R. Kunze. 2000. A highly conserved domain of the maize Activator transposase is involved in dimerization. Plant Cell 12:211224.
87. Fedoroff, N. 1989. The heritable activation of cryptic Suppressor-mutator elements by an active element. Genetics 121:591608.
88. Fedoroff, N.,, M. Schlappi,, and R. Raina. 1995. Epigenetic regulation of the maize Spm transposon. Bioessays 17:291297.
89. Fedoroff, N. V. 1995. DNA methylation and activity of the maize Spm transposable element. Curr. Top. Microbiol. Immunol. 197:143164.
90. Fedoroff, N. V. 1999. The Suppressor-mutator element and the evolutionary riddle of transposons. Genes Cells 4:1119.
91. Fedoroff, N. V.,, and J. A. Banks. 1988. Is the Suppressor-mutator element controlled by a basic developmental regulatory mechanism? Genetics 120:559577.
92. Fedoroff, N. V.,, D. B. Furtek,, and O. E. Nelson. 1984. Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable element Activator. Proc. Natl. Acad. Sci. USA 81:38253829.
93. Fedoroff, N. V.,, P. Masson,, J. A. Banks,, and J. Kingsbury,. 1988. Positive and negative regulation of the Suppressor-mutator element, p. 116. In O. E. Nelson, Jr. (ed.), Plant Transposable Elements. Plenum Press Corp., New York, N.Y..
94. Fedoroff, N. V.,, and D. L. Smith. 1993. A versatile system for detecting transposition in Arabidopsis. Plant J. 3:273289.
95. Feldmar, S.,, and R. Kunze. 1991. The ORFa protein, the putative transposase of maize transposable element Ac, has a basic DNA binding domain. EMBO J. 10:40034010.
96. Ferris, P. J. 1989. Characterization of a Chlamydomonas transposon, Gulliver, resembling those in higher plants. Genetics 122:363377.
97. Feschotte, C.,, and C. Mouches. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17:730737.
98. Finnegan, E. J.,, G. J. Lawrence,, E. S. Dennis,, and J. G. Ellis. 1993. Behavior of modified Ac elements in flax callus and regenerated plants. Plant Mol. Biol. 22:625633.
99. Finnegan, E. J.,, B. H. Taylor,, E. S. Dennis,, and W. J. Peacock. 1988. Transcription of the maize transposable element Ac in maize seedlings and in transgenic tobacco. Mol. Gen. Genet. 212:505509.
100. Fitzmaurice, W. P.,, L. V. Nguyen,, E. A. Wernsman,, W. F. Thompson,, and M. A. Conkling. 1999. Transposon tagging of the sulfur gene of tobacco using engineered maize Ac/Ds elements. Genetics 153:19191928.
101. Fladung, M.,, and M. R. Ahuja. 1997. Excision of the maize transposable element Ac in periclinal chimeric leaves of 35SAc- rolC transgenic aspen-Populus. Plant Mol. Biol. 33:10971103.
102. Frank, M. J.,, D. Liu,, Y. F. Tsay,, C. Ustach,, and N. M. Crawford. 1997. Tag1 is an autonomous transposable element that shows somatic excision in both Arabidopsis and tobacco. Plant Cell 9:17451756.
103. Frank, M. J.,, D. Preuss,, A. Mack,, T. C. Kuhlmann,, and N. M. Crawford. 1998. The Arabidopsis transposable element Tag1 is widely distributed among Arabidopsis ecotypes. Mol. Gen. Genet. 257:478484.
104. Frey, M.,, J. Reinecke,, S. Grant,, H. Saedler,, and A. Gierl. 1990. Excision of the En/Spm transposable element of Zea mays requires two element-encoded proteins. EMBO J. 9:40374044.
105. Frey, M.,, S. M. Tavantzis,, and H. Saedler. 1989. The maize En-1/Spm element transposes in potato. Mol. Gen. Genet. 217:172177.
106. Fridlender, M.,, K. Harrison,, J. D. G. Jones,, and A. A. Levy. 1996. Repression of the Ac-transposase gene promoter by Ac transposase. Plant J. 9:911917.
107. Fridlender, M.,, Y. Sitrit,, O. Shaul,, O. Gileadi,, and A. A. Levy. 1998. Analysis of the Ac promoter: structure and regulation. Mol. Gen. Genet. 258:306314.
108. Fugmann, S. D.,, I. J. Villey,, L. M. Ptaszek,, and D. G. Schatz. 2000. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Mol. Cell 5:97107.
109. Fusswinkel, H.,, S. Schein,, U. Courage,, P. Starlinger,, and R. Kunze. 1991. Detection and abundance of mRNA and protein encoded by transposable element Activator (Ac) in maize. Mol. Gen. Genet. 225:186192.
110. Gallego, M. E.,, P. Sirand-Pugnet,, and C. I. White. 1999. Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Mol. Biol. 39:8393.
111. Gerats, A. G. M.,, M. Beld,, H. Huits,, and A. Prescott. 1989. Gene tagging in Petunia hybrida using homologous and heterologous transposable elements. Dev. Genet. 10:561568.
112. Gerats, A. G. M.,, H. Huits,, E. Vrijlandt,, C. Marana,, E. Souer,, and M. Beld. 1990. Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:11211128.
113. Gerlach, W. L.,, E. S. Dennis,, W. J. Peacock,, and M. T. Clegg. 1987. The Ds1 controlling element family in maize and Tripsacum. J. Mol. Evol. 26:329334.
114. Giedt, C.,, and C. Weil. 2000. The maize LAG1-0 mutant suggests reproductive cell lineages show unique gene expression patterns early in vegetative development. Plant J. 24:815824.
115. Gierl, A. 1996. The En/Spm transposable element of maize. Curr. Top. Microbiol. Immunol. 204:145159.
116. Gierl, A.,, H. Cuypers,, S. Lutticke,, A. Pereira,, Z. Schwarz-Sommer,, S. Dash,, P. A. Peterson,, and S. Saedler,. 1989. Structure and function of the En/Spm transposable element system of Zea mays: identification of the suppressor component of En, p. 115120. In O. E. Nelson, Jr. (ed.), Plant Transposable Elements. Plenum Press Corp., New York, N.Y..
117. Gierl, A.,, S. Lutticke,, and H. Saedler. 1988. TnpA product encoded by the transposable element En-1 of Zea mays is a DNA binding protein. EMBO J. 7:40454053.
118. Gierl, A.,, Z. Schwarz-Sommer,, and H. Saedler. 1985. Molecular interactions between the components of the En-I transposable system of Zea mays. EMBO J. 4:579583.
119. Girke, T.,, H. Schmidt,, U. Zahringer,, R. Reski,, and E. Heinz. 1998. Identification of a novel Delta 6-acyl-group desaturase by targeted gene disruption in Physcomitrella patens. Plant J. 15:3948.
120. Giroux, M. J.,, M. Clancy,, J. Baier,, L. Ingham,, D. Mccarty,, and L. C. Hannah. 1994. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl. Acad. Sci. USA 91:1215012154.
121. Gloor, G.,, J. Moretti,, J. Mouyal,, and K. Keeler. 2000. Distinct P-element excision products in somatic and germline cells of Drosophila melanogaster. Genetics 155:18211830.
122. Gorbunova, V.,, and A. A. Levy. 1997. Circularized Ac/Ds transposons: formation, structure and fate. Genetics 145:11611169.
123. Gorbunova, V.,, and A. A. Levy. 2000. Analysis of extrachromosomal Ac/Ds transposable elements. Genetics 155:349359.
124. Gorbunova, V.,, C. Ramos,, B. Hohn,, and A. A. Levy. 2000. A nuclear protein that binds specifically to several maize transposons is not essential for Ds1 excision. Mol. Gen. Genet. 263:492497.
125. Grandbastien, M.-A.,, A. Spielmann,, and M. Caboche. 1989. Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature. 337:376380.
126. Grant, S. R.,, A. Gierl,, and H. Saedler. 1990. En/Spm encoded TnpA protein requires a specific target sequence for suppression. EMBO J. 9:20292035.
127. Grant, S. R.,, S. Hardenack,, S. Trentmann,, and H. Saedler. 1993. Functional cis-element sequence requirements for suppression of gene expression by the TnpA protein of the Zea mays transposon En/Spm. Mol. Gen. Genet. 241:153160.
128. Grappin, P.,, C. Audeon,, M. C. Chupeau,, and M. A. Grandbastien. 1996. Molecular and functional characterization of Slide, an Ac-like autonomous transposable element from tobacco. Mol. Gen. Genet. 252:386397.
129. Greenblatt, I. M. 1968. The mechanism of Modulator transposition in maize. Genetics 58:585597.
130. Greenblatt, I. M. 1974. Movement of Modulator in maize: a test of an hypothesis. Genetics 77:671678.
131. Greenblatt, I. M. 1984. A chromosomal replication pattern deduced from pericarp phenotypes resulting from movements of transposable element. Modulator, in maize. Genetics 108:471485.
132. Greenblatt, I. M.,, and R. A. Brink. 1962. Twin mutations in medium variegated pericarp maize. Genetics 47:489501.
133. Grevelding, C.,, D. Becker,, R. Kunze,, A. von Menges,, V. Fantes,, J. Schell,, and R. Masterson. 1992. High rates of Ac/ Ds germinal transposition in Arabidopsis suitable for gene isolation by insertional mutagenesis. Proc. Natl. Acad. Sci. USA 89:60856089.
134. Groose, R. W.,, H. D. Weigelt,, and R. G. Palmer. 1988. Somatic analysis of an unstable mutation for anthocyanin pigmentation in soybean. J. Hered. 79:263267.
135. Handler, A. M.,, and S. P. Gomez. 1997. A new hobo, Ac, Tam3 transposable element, hopper, from Bactrocera dorsalis is distantly related to hobo and Ac. Gene 185:133135.
136. Haring, M. A.,, J. Gao,, T. Volbeda,, C. M. Rommens,, H. J. Nijkamp,, and J. Hille. 1989. A comparative study of Tam3 and Ac transposition in transgenic tobacco and petunia plants. Plant Mol. Biol. 13:189201.
137. Haring, M. A.,, S. Scofield,, M. J. Teeuwendevroomen,, G. S. Leuring,, H. J. J. Nijkamp,, and J. Hille. 1991. Novel DNA structures resulting from dTam3 excision in tobacco. Plant Mol. Biol. 17:9951004.
138. Haring, M. A.,, M. J. Teeuwendevroomen,, H. J. J. Nijkamp,, and J. Hille. 1991. Transactivation of an artificial dTam3 transposable element in transgenic tobacco plants. Plant Mol. Biol. 16:3947.
139. Harrison, B. J.,, and J. R. S. Fincham. 1964. Instability at the Pal locus in Antirrhinum majus. 1. Effects of environment on frequencies of somatic and germinal mutation. Heredity 19:237258.
140. Harrison, B. J.,, and J. R. S. Fincham. 1968. Instability at the Pal locus in Antirrhinum majus. 3. A gene controlling mutation frequency. Heredity 23:6772.
141. Hartings, H.,, N. Lazzaroni,, V. Rossi,, and M. Motto. 1996. Distribution of sequences related to the Bg transposable element of maize in Zea and related genera. Theor. Appl. Genet. 92:696701.
142. Hartings, H.,, V. Rossi,, N. Lazzaroni,, R. D. Thompson,, F. Salamini,, and M. Motto. 1991. Nucleotide sequence of the Bg transposable element of Zea mays L. Maydica 36:355359.
143. Hartings, H.,, C. Spilmont,, N. Lazzaroni,, V. Rossi,, F. Salamini,, R. D. Thompson,, and M. Motto. 1991. Molecular analysis of the Bg-rbg transposable element system of Zea mays L. Mol. Gen. Genet. 227:9196.
144. Hehl, R.,, and B. Baker. 1989. Induced transposition of Ds by a stable Ac in crosses of transgenic tobacco plants. Mol. Gen. Genet. 217:5359.
145. Hehl, R.,, and B. Baker. 1990. Properties of the maize transposable element Activator in transgenic tobacco plants: a versatile inter-species genetic tool. Plant Cell 2:709721.
146. Hehl, R.,, W. K. Nacken,, A. Krause,, H. Saedler,, and H. Sommer. 1991. Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize. Plant Mol. Biol. 16:369371.
147. Hehl, R.,, H. Sommer,, and H. Saedler. 1987. Interaction between the Tam1 and Tam2 transposable elements of Antirrhinum majus. Mol. Gen. Genet. 207:4753.
148. Heinlein, M. 1995. Variegation patterns caused by excision of the maize transposable element Dissociation (Ds) are autonomously regulated by allele-specific Activator (Ac) elements and are not due to trans-acting modifier genes. Mol. Gen. Genet. 246:19.
149. Heinlein, M. 1996. Excision patterns of Activator (Ac) and Dissociation (Ds) elements in Zea mays L.: implications for the regulation of transposition. Genetics 144:18511869.
150. Heinlein, M.,, T. Brattig,, and R. Kunze. 1994. In vivo aggregation of maize Activator (Ac) transposase in nuclei of maize endosperm and petunia protoplasts. Plant J. 5:705714.
151. Heinlein, M.,, and P. Starlinger. 1991. Variegation patterns caused by transposable element Ac. Maydica 36:309316.
152. Henk, A. D.,, R. F. Warren,, and R. W. Innes. 1999. A new Aclike transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. Genetics 151:15811589.
153. Herrmann, A.,, W. Schulz,, and K. Hahlbrook. 1988. Two alleles of the single-copy chalcone synthase gene in parsley differ by a transposon-like element. Mol. Gen. Genet. 212:9398.
154. Hiom, K.,, and M. Gellert. 1998. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell 1:10111019.
155. Hofmann, A. H.,, A. C. Codon,, C. Ivascu,, V. E. Russo,, C. Knight,, D. Cove,, D. G. Schaefer,, M. Chakhparonian,, and J. P. Zryd. 1999. A specific member of the Cab multigene family can be efficiently targeted and disrupted in the moss Physcomitrella patens. Mol. Gen. Genet. 261:9299.
156. Honma, M. A.,, B. J. Baker,, and C. S. Waddell. 1993. High-frequency germinal transposition of DsALS in Arabidopsis. Proc. Natl. Acad. Sci. USA 90:62426246.
157. Hori, H.,, M. Suzuki,, H. Inagaki,, T. Oshima,, and A. Koga. 1998. An active Ac-like transposable element in teleost fish. J. Mar. Biotechnol. 6:206207.
158. Hoshino, A.,, Y. Abe,, N. Saito,, Y. Inagaki,, and S. Iida. 1997. The gene encoding flavanone 3-hydroxylase is expressed normally in the pale yellow flowers of the Japanese morning glory carrying the speckled mutation which produce neither flavonol nor anthocyanin but accumulate chalcone, aurone and flavanone. Plant Cell Physiol. 38:970974.
159. Hoshino, A.,, Y. Inagaki,, and S. Iida. 1995. Structural analysis of Tpn1, a transposable element isolated from japanese morning glory bearing variegated flowers. Mol. Gen. Genet. 247:114117.
160. Houba-Herin, N.,, D. Becker,, A. Post,, Y. Larondelle,, and P. Starlinger. 1990. Excision of a Ds-like maize transposable element (Ac-delta) in a transient assay in petunia is enhanced by a truncated coding region of the transposable element Ac. Mol. Gen. Genet. 224:1723.
161. Houba-Herin, N.,, M. Domin,, and A. S. Leprince. 1994. Some features about transposition of the maize element Dissociation in Nicotiana plumbaginifolia. Genetica 93:4148.
162. Houba-Herin, N.,, M. Domin,, and J. Pedron. 1994. Transposition of a Ds element from a plasmid into the plant genome in Nicotiana plumbaginifolia protoplast-derived cells. Plant J. 6:5566.
163. Hu, J.,, V. Reddy,, and S. Wessler. 2000. The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements. Plant Mol. Biol. 42:667678.
164. Hudson, A.,, R. Carpenter,, and E. S. Coen. 1987. De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207:5459.
165. Hudson, A. D.,, R. Carpenter,, and E. S. Coen. 1990. Phenotypic effects of short-range and aberrant transposition in Antirrhinum majus. Plant Mol. Biol. 14:835844.
166. Huits, H. S. M.,, H. J. W. Wijsman,, R. E. Koes,, and A. G. M. Gerats. 1995. Genetic characterisation of act1, the activator of a non-autonomous transposable element from Petunia hybrida. Theor. Appl. Genet. 91:110117.
167. Iida, S.,, A. Hoshino,, Y. Johzuka-Hisatomi,, Y. Habu,, and Y. Inagaki. 1999. Floricultural traits and transposable elements in the Japanese and common morning glories. Ann. N. Y. Acad. Sci. 870:265274.
168. Inagaki, Y.,, Y. Hisatomi,, T. Suzuki,, K. Kasahara,, and S. Iida. 1994. Isolation of a Suppressor-mutator/Enhancer-like transposable element, Tpn1, from Japanese morning glory bearing variegated flowers. Plant Cell 6:375383.
169. Ito, T.,, M. Seki,, N. Hayashida,, D. Shibata,, and K. Shinozaki. 1999. Regional insertional mutagenesis of genes on Arabidopsis thaliana chromosome V using the Ac/Ds transposon in combination with a cDNA scanning method. Plant J. 17:433444.
170. Izawa, T.,, T. Ohnishi,, T. Nakano,, N. Ishida,, H. Enoki,, H. Hashimoto,, K. Itoh,, R. Terada,, C. Wu,, C. Miyazaki,, T. Endo,, S. Iida,, and K. Shimamoto. 1997. Transposon tagging in rice. Plant Mol. Biol. 35:219229.
171. Jarvis, P.,, F. Belzile,, and C. Dean. 1997. Inefficient and incorrect processing of the Ac transposase transcript in iae1 and wild-type Arabidopsis thaliana. Plant J. 11:921931.
172. Jarvis, P.,, F. Belzile,, T. Page,, and C. Dean. 1997. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition. Plant J. 11:907919.
173. Jones, J. D.,, F. Carland,, E. Lim,, E. Ralston,, and H. K. Dooner. 1990. Preferential transposition of the maize element Activator to linked chromosomal locations in tobacco. Plant Cell 2:701707.
174. Jones, J. D. G.,, L. Harper,, F. M. Carland,, E. J. Ralston,, and H. K. Dooner. 1991. Reversion and altered variegation of an SPT:Ac allele in tobacco. Maydica 36:329335.
175. Kaiser, K.,, and S. F. Goodwin. 1990. “Site-selected” transposon mutagenesis of Drosophila. Proc. Natl. Acad. Sci. USA 87:16861690.
176. Keller, J.,, J. D. Jones,, E. Harper,, E. Lim,, F. Carland,, E. J. Ralston,, and H. K. Dooner. 1993. Effects of gene dosage and sequence modification on the frequency and timing of transposition of the maize element Activator (Ac) in tobacco. Plant Mol. Biol. 21:157170.
177. Keller, J.,, E. Lim,, and H. K. Dooner. 1993. Preferential transposition of Ac to linked sites in Arabidopsis. Theor. Appl. Genet. 86:585588.
178. Keller, J.,, E. Lim,, D. W. James, Jr.,, and H. K. Dooner. 1992. Germinal and somatic activity of the maize element Activator (Ac) in Arabidopsis. Genetics 131:449459.
179. Kempken, F.,, and U. Kuck. 1996. Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol. Cell. Biol. 16:65636572.
180. Kennedy, A. K.,, A. Guhathakurta,, N. Kleckner,, and D. B. Haniford. 1998. Tn10 transposition via a DNA hairpin intermediate. Cell 95:125134.
181. Kim, D. R.,, Y. Dai,, C. L. Mundy,, W. Yang,, and M. A. Oettinger. 1999. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Genes Dev. 13:30703080.
182. Kim, H. Y.,, J. W. Schiefelbein,, V. Raboy,, D. Furtek,, and O. Nelson. 1987. RNA splicing permits expression of a maize gene with a defective Suppressor-mutator transposable element insertion in an exon. Proc. Natl. Acad. Sci. USA 84:58635867.
183. Kishima, Y.,, S. Yamashita,, C. Martin,, and T. Mikami. 1999. Structural conservation of the transposon Tam3 family in Antirrhinum majus and estimation of the number of copies able to transpose. Plant Mol. Biol. 39:299308.
184. Kishima, Y.,, S. Yamashita,, and T. Mikami. 1997. Immobilized copies with a nearly intact structure of the transposon Tam3 in Antirrhinum majus: implications for the cis-element related to the transposition. Theor. Appl. Genet. 95:12461251.
185. Kleckner, N. 1990. Regulating Tn10 and IS10 transposition. Genetics 124:449454.
186. Knapp, S.,, G. Coupland,, H. Uhrig,, P. Starlinger,, and F. Salamini. 1988. Transposition of the maize transposable element Ac in Solanum tuberosum. Mol. Gen. Genet. 213:285290.
187. Knapp, S.,, Y. Larondelle,, M. Rossberg,, D. Furtek,, and K. Theres. 1994. Transgenic tomato lines containing Ds elements at defined genomic positions as tools for targeted transposon tagging. Mol. Gen. Genet. 243:666673.
188. Koes, R.,, E. Souer,, A. Vanhouwelingen,, L. Mur,, C. Spelt,, F. Quattrocchio,, J. Wing,, B. Oppedijk,, S. Ahmed,, T. Maes,, T. Gerats,, P. Hoogeveen,, M. Meesters,, D. Kloos,, and J. N. M. Mol. 1995. Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc. Natl. Acad. Sci. USA 92:81498153.
189. Kohli, A.,, S. Griffiths,, N. Palacios,, R. M. Twyman,, P. Vain,, D. A. Laurie,, and P. Christou. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17:591601.
190. Koster-Topfer, M.,, W. B. Frommer,, M. Rochasosa,, and L. Willmitzer. 1990. Presence of a transposon-like element in the promoter region of an inactive patatin gene in Solanum tuberosum L. Plant Mol. Biol. 14:239247.
191. Kovalchuk, O.,, A. Arkhipov,, I. Barylyak,, I. Karachov,, V. Titov,, B. Hohn,, and I. Kovalchuk. 2000. Plants experiencing chronic internal exposure to ionizing radiation exhibit higher frequency of homologous recombination than acutely irradiated plants. Mutat. Res. 449:4756.
192. Krebbers, E.,, R. Hehl,, R. Piotorwiak,, W.-E. Lonnig,, H. Sommer,, and H. Saedler. 1987. Molecular analysis of paramutant plants of Antirrhinum majus and the involvement of transposable elements. Mol. Gen. Genet. 209:499507.
193. Kroon, J.,, E. Souer,, A. Degraaff,, Y. B. Xue,, J. Mol,, and R. Koes. 1994. Cloning and structural analysis of the anthocyanin pigmentation locus rt of Petunia hybrida—characterization of insertion sequences in two mutant alleles. Plant J. 5:6980.
194. Krysan, P.,, J. Young,, and M. Sussman. 1999. T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:22832290.
195. Kunze, R. 1996. The maize transposable element Activator (Ac). Curr. Top. Microbiol. Immunol. 204:161194.
196. Kunze, R.,, U. Behrens,, U. Courage-Franzkowiak,, S. Feldmar,, S. Kuhn,, and R. Lutticke. 1993. Dominant transposition-deficient mutants of maize Activator (Ac) transposase. Proc. Natl. Acad. Sci. USA 90:70947098.
197. Kunze, R.,, G. Coupland,, H. FuBwinkle,, S. Feldmar,, U. Courage,, S. Schein,, H.-A. Becker,, S. Chatterjee,, M.-G. Li,, and P. Starlinger. 1991. Structure and function of the maize transposable element Activator (Ac). NATO ASI Ser. Ser. A 212:285298.
198. Kunze, R.,, S. Kuhn,, J. D. G. Jones,, and S. R. Scofield. 1995. Somatic and germinal activities of maize Activator (Ac) transposase mutants in transgenic tobacco. Plant J. 8:4554.
199. Kunze, R.,, H. Saedler,, and W. E. Lonnig. 1997. Plant transposable elements. Adv. Bot. Res. 27:470.
200. Kunze, R.,, and P. Starlinger. 1989. The putative transposase of transposable element Ac from Zea mays L. interacts with subterminal sequences of Ac. EMBO J. 8:31773185.
201. Kunze, R.,, P. Starlinger,, and D. Schwartz. 1988. DNA methylation of the maize transposable element Ac interferes with its transcription. Mol. Gen. Genet. 214:325327.
202. Kunze, R.,, U. Stochaj,, J. Laufs,, and P. Starlinger. 1987. Transcription of transposable element Activator (Ac) of Zea mays L. EMBO J. 6:15551563.
203. Lal, K. S.,, and C. L. Hannah. 1999. Maize transposable element Ds is differentially spliced from primary transcripts in endosperm and suspension cells. Biochem. Biophys. Res. Commun. 261:798801.
204. Landree, M. A.,, J. A. Wibbenmeyer,, and D. B. Roth. 1999. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Genes Dev. 13:30593069.
205. Laufs, J.,, U. Wirtz,, M. Kammann,, V. Matzeit,, S. Schaefer,, J. Schell,, A. P. Czernilofsky,, B. Baker,, and B. Gronenborn. 1990. Wheat dwarf virus Ac/Ds vectors: expression and excision of transposable elements introduced into various cereals by a viral replicon. Proc. Natl. Acad. Sci. USA 87:77527756.
206. Lawson, E. J.,, S. R. Scofield,, C. Sjodin,, J. D. Jones,, and C. Dean. 1994. Modification of the 5′ untranslated leader region of the maize Activator element leads to increased activity in Arabidopsis. Mol. Gen. Genet. 245:608615.
207. Levy, A. A.,, M. Fridlender,, U. H. Rubin,, and Y. Sitrit. 1996. Binding of Nicotiana nuclear proteins to the subterminal regions of the Ac transposable element. Mol. Gen. Genet. 251:436441.
208. Levy, A. A.,, and V. Walbot. 1990. Regulation of the timing of transposable element excision during maize development. Science 248:15341537.
209. Li, M. G.,, and P. Starlinger. 1990. Mutational analysis of the N terminus of the protein of maize transposable element Ac. Proc. Natl. Acad. Sci. USA 87:60446048.
210. Lister, C.,, D. Jackson,, and C. Martin. 1993. Transposoninduced inversion in Antirrhinum modifies nivea gene expression to give a novel flower color pattern under the control of cycloidea (radialis). Plant Cell 5:15411553.
211. Liu, D.,, and N. M. Crawford. 1998. Characterization of the germinal and somatic activity of the Arabidopsis transposable element Tag1. Genetics 148:445456.
212. Liu, D.,, and N. M. Crawford. 1998. Characterization of the putative transposase mRNA of Tag1, which is ubiquitously expressed in arabidopsis and can be induced by Agrobacterium-mediated transformation with dTag1 DNA. Genetics 149:693701.
213. Liu, D.,, S. Zhang,, C. Fauquet,, and N. M. Crawford. 1999. The Arabidopsis transposon Tag1 is active in rice, undergoing germinal transposition and restricted, late somatic excision. Mol. Gen. Genet. 262:413420.
214. Lohe, A. R.,, and D. L. Hartl. 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13:549555.
215. Long, D.,, and G. Coupland,. 1998. Transposon tagging with Ac/Ds in Arabidopsis, p. 315328. In J. M. Martinez-Zapater, and J. Salinas (ed.), Arabidopsis Protocols, vol. 82. Humana Press, Totowa, N.J..
216. Long, D.,, J. Goodrich,, K. Wilson,, E. Sundberg,, M. Martin,, P. Puangsomlee,, and G. Coupland. 1997. Ds elements on all five Arabidopsis chromosomes and assessment of their utility for transposon tagging. Plant J. 11:145148.
217. Luck, J. E.,, G. J. Lawrence,, E. J. Finnegan,, D. A. Jones,, and J. G. Ellis. 1998. A flax transposon identified in two spontaneous mutant alleles of the L6 rust resistance gene. Plant J. 16:365369.
218. Luo, D.,, E. S. Coen,, S. Doyle,, and R. Carpenter. 1991. Pigmentation mutants produced by transposon mutagenesis in Antirrhinum majus. Plant J. 1:5969.