1887

Chapter 25 : Retroviral DNA Integration

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Retroviral DNA Integration, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap25-2.gif

Abstract:

This chapter provides an overview of the current understanding of the molecular mechanism of retroviral DNA integration and points to some of the issues that are not yet well understood. The mechanism of retroviral DNA integration is closely related to the mechanism by which many transposons and retrotransposons move from one location to another in the genome of the host cell. Retroviral integrase is encoded by the 3' part of the gene and is assembled into virus particles as the Gag-Pol polyprotein precursor. Retroviral integrases share a common domain structure, and the biochemical activities of integrase proteins from different retroviruses are fundamentally similar. Integrase has a nonspecific nuclease activity that is most easily monitored by observing nicking of closed circular DNA. Indeed, this nonspecific nuclease activity was the first biochemical activity detected for a retroviral integrase. This activity may reflect an inefficient 3' processing reaction acting on an aberrant DNA substrate. Complementation experiments demonstrate that HIV-1 integrase functions as a multimer. Individual proteins lacking either the N-terminal or the C-terminal domain are inactive both for 3' end processing and DNA strand transfer. Mu-mediated PCR footprinting has been used to probe the nucleoprotein organization within preintegration complexes (PICs). Several cellular proteins have been implicated to play a role in retroviral DNA integration. Further studies of retroviral DNA integration will be needed to address these and other questions for which there are only partial answers at this time.

Citation: Craigie R. 2002. Retroviral DNA Integration, p 613-630. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch25

Key Concept Ranking

Mobile Genetic Elements
0.5169527
HIV Reverse Transcriptase
0.50284094
0.5169527
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

DNA cutting and joining steps in retroviral integration. (A) The viral DNA (thick lines) made by reverse transcription is linear and blunt ended. (B) In the first step of the integration process, 3′end processing, two or three nucleotides are cleaved from each 3′end of the viral DNA. (C) In the next step, DNA strand transfer, the hydroxyl groups at the 3′ends of the processed viral DNA attack a pair of phosphodiester bonds in the target DNA (thin lines). The spacing between the sites of attack on each target DNA strand is fixed and characteristic for each retrovirus. (D) The resulting integration intermediate is redrawn to clarify the connections between viral and target DNA. Integrase is responsible for both the 3processing and DNA strand transfer reactions that give rise to the integration intermediate. Completion of DNA integration requires removal of the two unpaired nucleotides at the 5′ends of the viral DNA, filling in the single-strand gaps between host and viral DNA by a DNA polymerase, and finally ligation. These steps are likely to be performed by cellular enzymes (8, 154).

Citation: Craigie R. 2002. Retroviral DNA Integration, p 613-630. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Domain structure of retroviral integrases. Retroviral integrases are composed of three structural domains. The central core domain contains the D,D-35-E motif, the triad of acidic residues that play a key role in catalysis. This domain is structurally highly conserved among many mobile genetic elements, including some prokaryotic transposons. The N-terminal (N-term) domain includes the HHCC motif that binds zinc. This domain is conserved among retroviruses and retrotransposons, but a related domain has not been seen in nonretroviral elements. The primary amino acid sequence of the C-terminal (C-term) domain is the most variable among retroviral integrases. The isolated C-terminal domain of HIV-1 integrase has a nonspecific DNA-binding activity.

Citation: Craigie R. 2002. Retroviral DNA Integration, p 613-630. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Activities of retroviral integrases. (A) 3′end processing. In the presence of a divalent metal ion integrase cleaves the two terminal nucleotides from the 3′ends of a DNA substrate that mimics a viral DNA end. (B) DNA strand transfer. Integrase also inserts a processed 3′end into another DNA molecule by a one-step transesterification reaction. (C) Disintegration. Integrase can also "resolve" a DNA substrate that mimics the strand transfer product into its component viral and target DNA segments. Viral DNA substrate is shown as thick lines, and target DNA substrate is shown as thin lines.

Citation: Craigie R. 2002. Retroviral DNA Integration, p 613-630. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Chirality of the scissile phosphorothioate is inverted during both DNA strand transfer and 3′end processing. (A) DNA strand transfer. Phosphorothioate of one chirality (Rp) is incorporated into target DNA. In the product of DNA strand transfer its chirality is inverted to the Sp form. (B and C) 3′end processing. Rp form phosphorothioate is substituted for the scissile phosphate at the end of the viral DNA substrate. When the attacking nucleophile is from water (B), the product is a simple dinucleotide and chirality is lost. However, in an alternative 3′processing pathway (C), the nucleophile is the 3′-hydroxyl at the end of the viral DNA. The cleavage product is therefore a cyclic dinucleotide. The chirality of the phosphorothioate in this cyclic dinucleotide is inverted to the Sp form.

Citation: Craigie R. 2002. Retroviral DNA Integration, p 613-630. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap25
1. Adzuma, K.,, and K. Mizuuchi. 1989. Interaction of proteins located at a distance along DNA: mechanism of target immunity in the Mu DNA strand-transfer reaction. Cell 57: 41 47.
2. Aiyar, A.,, P. Hindmarsh,, A. M. Skalka,, and J. Leis. 1996. Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: dependence on both long terminal repeat termini. J. Virol. 70: 3571 3580.
3. Asante-Appiah, E.,, S. H. Seeholzer,, and A. M. Skalka. 1998. Structural determinants of metal-induced conformational changes in HIV-1 integrase. J. Biol. Chem. 273: 35078 35087.
4. Asante-Appiah, E.,, and A. M. Skalka. 1997. A metal-induced conformational change and activation of HIV-1 integrase. J. Biol. Chem. 272: 16196 16205.
5. Asante-Appiah, E.,, and A. M. Skalka. 1997. Molecular mechanisms in retrovirus DNA integration. Antivir. Res. 36: 139 156.
6. Beese, L. S.,, and T. A. Steitz. 1991. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 10: 25 33.
7. Bowerman, B.,, P. O. Brown,, J. M. Bishop,, and H. E. Varmus. 1989. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 3: 469 478.
8. Brin, E.,, J. Z. Yi,, A. M. Skalka,, and J. Leis. 2000. Modeling the late steps in HIV-1 retroviral integrase-catalyzed DNA integration. J. Biol. Chem. 275: 39287 39295.
9. Brown, P. O., 1997. Integration, p. 161 203. In J. M. Coffin,, S. H. Hughes,, and H. E. Varmus (ed.), Retroviruses. Cold Spring Harbor Laboratory Press, Plainview, N.Y..
10. Brown, P. O.,, B. Bowerman,, H. E. Varmus,, and J. M. Bishop. 1987. Correct integration of retroviral DNA in vitro. Cell 49: 347 356.
11. Brown, P. O.,, B. Bowerman,, H. E. Varmus,, and J. M. Bishop. 1989. Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc. Natl. Acad. Sci. USA 86: 2525 2529.
12. Bujacz, G.,, M. Jaskolski,, J. Alexandratos,, A. Wlodawer,, G. Merkel,, R. A. Katz,, and A. M. Skalka. 1996. The catalytic domain of avian sarcoma virus integrase: conformation of the active-site residues in the presence of divalent cations. Structure 4: 89 96.
13. Bujacz, G.,, M. Jaskolski,, J. Alexandratos,, A. Wlodawer,, G. Merkel,, R. A. Katz,, and A. M. Skalka. 1995. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253: 333 346.
14. Bukrinsky, M. I.,, N. Sharova,, M. P. Dempsey,, T. L. Stanwick,, A. G. Bukrinskaya,, S. Haggerty,, and M. Stevenson. 1992. Active nuclear import of human immunodeficiency virus type 1 preintegration complexes. Proc. Natl. Acad. Sci. USA 89: 6580 6584.
15. Bukrinsky, M. I.,, N. Sharova,, T. L. McDonald,, T. Pushkarskaya,, W. G. Tarpley,, and M. Stevenson. 1993. Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc. Natl. Acad. Sci. USA 90: 6125 6129.
16. Burke, C. J.,, G. Sanyal,, M. W. Bruner,, J. A. Ryan,, R. L. LaFemina,, H. L. Robbins,, A. S. Zeft,, C. R. Middaugh,, and M. G. Cordingley. 1992. Structural implications of spectroscopic characterization of a putative zinc finger peptide from HIV-1 integrase. J. Biol. Chem. 267: 9639 9644.
17. Bushman, F. D.,, and R. Craigie. 1991. Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA. Proc. Natl. Acad. Sci. USA 88: 1339 1343.
18. Bushman, F. D.,, and R. Craigie. 1990. Sequence requirements for integration of Moloney murine leukemia virus DNA in vitro. J. Virol. 64: 5645 5648.
19. Bushman, F. D.,, A. Engelman,, I. Palmer,, P. Wingfield,, and R. Craigie. 1993. Domains of the integrase protein of human immunodeficiency virus type 1 responsible for polynucleotidyl transfer and zinc binding. Proc. Natl. Acad. Sci. USA 90: 3428 3432.
20. Bushman, F. D.,, T. Fujiwara,, and R. Craigie. 1990. Retroviral DNA integration directed by HIV integration protein in vitro. Science 249: 1555 1558.
21. Bushman, F. D.,, and B. Wang. 1994. Rous sarcoma virus integrase protein: mapping functions for catalysis and substrate binding. J. Virol. 68: 2215 2223.
22. Cai, M.,, Y. Huang,, R. Zheng,, S. Q. Wei,, R. Ghirlando,, M. S. Lee,, R. Craigie,, A. M. Gronenborn,, and G. M. Clore. 1998. Solution structure of the cellular factor BAF responsible for protecting retroviral DNA from autointegration. Nat. Struct. Biol. 5: 903 909.
23. Cai, M.,, R. Zheng,, M. Caffrey,, R. Craigie,, G. M. Clore,, and A. M. Gronenborn. 1997. Solution structure of the Nterminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. 4: 567 577.
24. Carson, M. 1987. Ribbon models of macromolecules. J. Mol. Graph. 5: 103 106.
25. Carteau, S.,, R. J. Gorelick,, and F. D. Bushman. 1999. Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: stimulation by the viral nucleocapsid protein. J. Virol. 73: 6670 6679.
26. Chen, H. M.,, and A. Engelman. 1998. The barrier-to-autointegration protein is a host factor for HIV type 1 integration. Proc. Natl. Acad. Sci. USA 95: 15270 15274.
27. Chen, H. M.,, S. Q. Wei,, and A. Engelman. 1999. Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome. J. Biol. Chem. 274: 17358 17364.
28. Chen, J. C. H.,, J. Krucinski,, L. J. W. Miercke,, J. S. Finer- Moore,, A. H. Tang,, A. D. Leavitt,, and R. M. Stroud. 2000. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl. Acad. Sci. USA 97: 8233 8238.
29. Chen, Z. G.,, Y. W. Yan,, S. Munshi,, Y. Li,, J. Zugay-Murphy,, B. Xu,, M. Witmer,, P. Felock,, A. Wolfe,, V. Sardana,, E. A. Emini,, D. Hazuda,, and L. C. Kuo. 2000. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293): an initial glance of the viral DNA binding platform. J. Mol. Biol. 296: 521 533.
30. Chiu, R.,, and D. P. Grandgenett. 2000. Avian retrovirus DNA internal attachment site requirements for full-site integration in vitro. J. Virol. 74: 8292 8298.
31. Chow, S. A.,, K. A. Vincent,, V. Ellison,, and P. O. Brown. 1992. Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255: 723 726.
32. Coffin, J. M.,, S. H. Hughes,, and H. E. Varmus. 1997. Retroviruses. Cold Spring Harbor Laboratory Press, New York, N.Y..
33. Coleman, J.,, S. Eaton,, G. Merkel,, A. M. Skalka,, and T. Laue. 1999. Characterization of the self association of avian sarcoma virus integrase by analytical ultracentrifugation. J. Biol. Chem. 274: 32842 32846.
34.. Craigie, R. 1995. Resolving a resolvase. Nat. Struct. Biol. 2: 607 609.
35. Craigie, R.,, T. Fujiwara,, and F. Bushman. 1990. The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62: 829 837.
36. Craigie, R.,, K. Mizuuchi,, F. D. Bushman,, and A. Engelman. 1991. A rapid in vitro assay for HIV DNA integration. Nucleic Acids Res. 19: 2729 2734.
37. Davies, D. R.,, I. Y. Goryshin,, W. S. Reznikoff,, and I. Rayment. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77 85.
38. Deprez, E.,, P. Tauc,, H. Leh,, J. F. Mouscadet,, C. Auclair,, and J. C. Brochon. 2000. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39: 9275 9284.
39. Donehower, L. A.,, and H. E. Varmus. 1984. Amutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc. Natl. Acad. Sci. USA 81: 6461 6465.
40. Dyda, F.,, A. B. Hickman,, T. M. Jenkins,, A. Engelman,, R. Craigie,, and D. R. Davies. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981 1986.
41. Eijkelenboom, A. P.,, R. A. Lutzke,, R. Boelens,, R. H. Plasterk,, R. Kaptein,, and K. Hard. 1995. The DNA-binding domain of HIV-1 integrase has an SH3-like fold. Nat. Struct. Biol. 2: 807 810.
42. Eijkelenboom, A. P.,, F. M. van den Ent,, A. Vos,, J. F. Doreleijers,, K. Hard,, T. D. Tullius,, R. H. Plasterk,, R. Kaptein,, and R. Boelens. 1997. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr. Biol. 7: 739 746.
43. Ellison, V.,, H. Abrams,, T. Roe,, J. Lifson,, and P. Brown. 1990. Human immunodeficiency virus integration in a cellfree system. J. Virol. 64: 2711 2715.
44. Ellison, V.,, and P. O. Brown. 1994. Astable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro. Proc. Natl. Acad. Sci. USA 91: 7316 7320.
45. Ellison, V.,, J. Gerton,, K. A. Vincent,, and P. O. Brown. 1995. An essential interaction between distinct domains of HIV-1 integrase mediates assembly of the active multimer. J. Biol. Chem. 270: 3320 3326.
46. Engelman, A.,, F. D. Bushman,, and R. Craigie. 1993. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex. EMBO J. 12: 3269 3275.
47. Engelman, A.,, and R. Craigie. 1992. Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J. Virol. 66: 6361 6369.
48. Engelman, A.,, A. B. Hickman,, and R. Craigie. 1994. The core and carboxyl-terminal domains of the integrase protein of human immunodeficiency virus type 1 each contribute to nonspecific DNA binding. J. Virol. 68: 5911 5917.
49. Engelman, A.,, K. Mizuuchi,, and R. Craigie. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67: 1211 1221.
50. Espeseth, A. S.,, P. Felock,, A. Wolfe,, M. Witmer,, J. Grobler,, N. Anthony,, M. Egbertson,, J. Y. Melamed,, S. Young,, T. Hamill,, J. L. Cole,, and D. J. Hazuda. 2000. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl. Acad. Sci. USA 97: 11244 11249.
51. Esposito, D.,, and R. Craigie. 1998. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. EMBO J. 17: 5832 5843.
52. Farnet, C. M.,, and F. D. Bushman. 1997. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88: 483 492.
53. Farnet, C. M.,, and W. A. Haseltine. 1991. Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J. Virol. 65: 1910 1915.
54. Farnet, C. M.,, and W. A. Haseltine. 1990. Integration of human immunodeficiency virus type 1 DNA in vitro. Proc. Natl. Acad. Sci. USA 87: 4164 4168.
55. Farnet, C. M.,, B. B. Wang,, J. R. Lipford,, and F. D. Bushman. 1996. Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. Proc. Natl. Acad. Sci. USA 93: 9742 9747.
56. Fitzgerald, M. L.,, A. C. Vora,, W. G. Zeh,, and D. P. Grandgenett. 1992. Concerted integration of viral DNA termini by purified avian myeloblastosis virus integrase. J. Virol. 66: 6257 6263.
57. Fouchier, R. A. M.,, B. E. Meyer,, J. H. M. Simon,, U. Fischer,, A. V. Albright,, F. Gonzalez-Scarano,, and M. H. Malim. 1998. Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J. Virol. 72: 6004 6013.
58. Freemont, P. S.,, J. M. Friedman,, L. S. Beese,, M. R. Sanderson,, and T. A. Steitz. 1988. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. USA 85: 8924 8928.
59. Fritsch, E.,, and H. M. Temin. 1977. Formation and structure of infectious DNA of spleen necrosis virus. J. Virol. 91: 119 130.
60. Fujiwara, T.,, and R. Craigie. 1989. Integration of mini-retroviral DNA: a cell-free reaction for biochemical analysis of retroviral integration. Proc. Natl. Acad. Sci. USA 86: 3065 3069.
61. Fujiwara, T.,, and K. Mizuuchi. 1988. Retroviral DNA integration: structure of an integration intermediate. Cell 54: 497 504.
62. Gallay, P.,, T. Hope,, D. Chin,, and D. Trono. 1997. HIV- 1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proc. Natl. Acad. Sci. USA 94: 9825 9830.
63. Gallay, P.,, S. Swingler,, J. P. Song,, F. Bushman,, and D. Trono. 1995. HIV nuclear import is governed by the phosphotyrosine- mediated binding of matrix to the core domain of integrase. Cell 83: 569 576.
64. Gianni, A. M.,, D. Smotkin,, and R. A. Weinberg. 1975. Murine leukemia virus: detection of unintegrated doublestranded DNA forms of the provirus. Proc. Natl. Acad. Sci. USA 72: 447 451.
65. Goldgur, Y.,, R. Craigie,, G. H. Cohen,, T. Fujiwara,, T. Yoshinaga,, T. Fujishita,, H. Sugimoto,, T. Endo,, H. Murai,, and D. R. Davies. 1999. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc. Natl. Acad. Sci. USA 96: 13040 13043.
66. Goldgur, Y.,, F. Dyda,, A. B. Hickman,, T. M. Jenkins,, R. Craigie,, and D. R. Davies. 1998. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl. Acad. Sci. USA 95: 9150 9154.
67. Grandgenett, D. P.,, A. C. Vora,, and R. D. Schiff. 1978. A 32,000-dalton nucleic acid-binding protein from avian retrovirus cores possesses DNA endonuclease activity. Virology 89: 119 132.
68. Greenwald, J.,, V. Le,, S. L. Butler,, F. D. Bushman,, and S. Choe. 1999. The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry 38: 8892 8898.
69. Guntataka, R. V.,, O. C. Richards,, P. R. Shank,, H. Kung,, N. Davidson,, E. Fritsch,, J. M. Bishop,, and H. E. Varmus. 1976. Covalently closed circular DNA of avian sarcoma virus: purification from the nuclei of quail tumor cells and measurement by electron microscopy and gel electrophoresis. J. Mol. Biol. 106: 337 357.
70. Hajihosseini, M.,, L. Iavachev,, and J. Price. 1993. Evidence that retroviruses integrate into postreplication host DNA. EMBO J. 12: 4969 4974.
71. Hansen, M. S. T.,, G. J. Smith,, T. Kafri,, V. Molteni,, J. S. Siegel,, and F. D. Bushman. 1999. Integration complexes derived from HIV vectors for rapid assays in vitro. Nat. Biotechnol. 17: 578 582.
72. Hazuda, D. J.,, P. Felock,, M. Witmer,, A. Wolfe,, K. Stillmock,, J. A. Grobler,, A. Espeseth,, L. Gabryelski,, W. Schleif,, C. Blau,, and M. D. Miller. 2000. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287: 646 650.
73. Hazuda, D. J.,, J. C. Hastings,, A. L. Wolfe,, and E. A. Emini. 1994. A novel assay for the DNA strand-transfer reaction of HIV-1 integrase. Nucleic Acids Res. 22: 1121 1122.
74. Heinzinger, N. K.,, M. I. Bukrinsky,, S. A. Haggerty,, A. M. Ragland,, V. Kewalramani,, M. A. Lee,, H. E. Gendelman,, L. Ratner,, M. Stevenson,, and M. Emerman. 1994. The Vpr protein of human-immunodeficiency-virus type-1 influences nuclear- localization of viral nucleic-acids in nondividing hostcells. Proc. Natl. Acad. Sci. USA 91: 7311 7315.
75. Heuer, T. S.,, and P. O. Brown. 1997. Mapping features of HIV-1 integrase near selected sites on viral and target DNA molecules in an active enzyme-DNA complex by photo-crosslinking. Biochemistry 36: 10655 10665.
76. Heuer, T. S.,, and P. O. Brown. 1998. Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase-DNA complex. Biochemistry 37: 6667 6678.
77. Hindmarsh, P.,, and J. Leis. 1999. Reconstitution of concerted DNA integration with purified components. Adv. Virus Res. 52: 397 410.
78. Hindmarsh, P.,, and J. Leis. 1999. Retroviral DNA integration. Microbiol. Mol. Biol. Rev. 63: 836 843.
79. Hindmarsh, P.,, T. Ridky,, R. Reeves,, M. Andrake,, A. M. Skalka,, and J. Leis. 1999. HMG protein family members stimulate human immunodeficiency virus type 1 and avian sarcoma virus concerted DNA integration in vitro. J. Virol. 73: 2994 3003.
80. Jenkins, T. M.,, A. Engelman,, R. Ghirlando,, and R. Craigie. 1996. A soluble active mutant of HIV-1 integrase: involvement of both the core and carboxyl-terminal domains in multimerization. J. Biol. Chem. 271: 7712 7718.
81. Jenkins, T. M.,, D. Esposito,, A. Engelman,, and R. Craigie. 1997. Critical contacts between HIV-1 integrase and viral DNA identified by structure-based analysis and photo-crosslinking. EMBO J. 16: 6849 6859.
82. Jones, K. S.,, J. Coleman,, G. W. Merkel,, T. M. Laue,, and A. M. Skalka. 1992. Retroviral integrase functions as a multimer and can turn over catalytically. J. Biol. Chem. 267: 16037 16040.
83. Jonsson, C. B.,, G. A. Donzella,, and M. J. Roth. 1993. Characterization of the forward and reverse integration reactions of the Moloney murine leukemia virus integrase protein purified from Escherichia coli. J. Biol. Chem. 268: 1462 1469.
84. Ju, G.,, and A. M. Skalka. 1980. Nucleotide sequence analysis of the long terminal repeat (LTR) of avian retroviruses: structural similarities with transposable elements. Cell 22: 379 386.
85. Kahn, E.,, J. P. G. Mack,, R. A. Katz,, J. Kulkosky,, and A. M. Skalka. 1991. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19: 851 860.
86. Kalpana, G. V.,, S. Marmon,, W. Wang,, G. R. Crabtree,, and S. P. Goff. 1994. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science 266: 2002 2006.
87. Katz, R. A.,, G. Merkel,, J. Kulkosky,, J. Leis,, and A. M. Skalka. 1990. The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63: 87 95.
88. Katzman, M.,, R. A. Katz,, A. M. Skalka,, and J. Leis. 1989. The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J. Virol. 63: 5319 5327.
89. Katzman, M.,, and M. Sudol. 1995. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases. J. Virol. 69: 5687 5696.
90. Katzman, M.,, and M. Sudol. 1996. Nonspecific alcoholysis, a novel endonuclease activity of human immunodeficiency virus type 1 and other retroviral integrases. J. Virol. 70: 2598 2604.
91. Kitamura, Y.,, Y. M. Lee,, and J. M. Coffin. 1992. Nonrandom integration of retroviral DNA in vitro: effect of CpG methylation. Proc. Natl. Acad. Sci. USA 89: 5532 5536.
92. Kulkosky, J.,, K. S. Jones,, R. A. Katz,, J. P. Mack,, and A. M. Skalka. 1992. Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol. Cell. Biol. 12: 2331 2338.
93. Kulkosky, J.,, R. A. Katz,, G. Merkel,, and A. M. Skalka. 1995. Activities and substrate specificity of the evolutionarily conserved central domain of retroviral integrase. Virology 206: 448 456.
94. LaFemina, R. L.,, P. L. Callahan,, and M. G. Cordingley. 1991. Substrate specificity of recombinant human immunodeficiency virus integrase protein. J. Virol. 65: 5624 5630.
95. Leavitt, A. D.,, R. B. Rose,, and H. E. Varmus. 1992. Both substrate and target oligonucleotide sequences affect in vitro integration mediated by human immunodeficiency virus type 1 integrase protein produced in Saccharomyces cerevisiae. J. Virol. 66: 2359 2368.
96. Leavitt, A. D.,, L. Shiue,, and H. E. Varmus. 1993. Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J. Biol. Chem. 268: 2113 2119.
97. Lee, M. S.,, and R. Craigie. 1998. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl. Acad. Sci. USA 95: 1528 1533.
98. Lee, M. S.,, and R. Craigie. 1994. Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc. Natl. Acad. Sci. USA 91: 9823 9827.
99. Lee, S. P.,, and M. K. Han. 1996. Zinc stimulatesMg 2+-dependent 3′-processing activity of human immunodeficiency virus type 1 integrase in vitro. Biochemistry 35: 3837 3844.
100. Lee, S. P.,, J. M. Xiao,, J. R. Knutson,, M. S. Lewis,, and M. K. Han. 1997. Zn 2+ promotes the self-association of human immunodeficiency virus type-1 integrase in vitro. Biochemistry 36: 173 180.
101. Lee, Y. M.,, and J. M. Coffin. 1990. Efficient autointegration of avian retrovirus DNA in vitro. J. Virol. 64: 5958 5965.
102. Levchenko, I.,, L. Luo,, and T. A. Baker. 1995. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Genes Dev. 9: 2399 2408.
103. Lewis, P. F.,, and M. Emerman. 1994. Passage through mitosis is required for oncoretroviruses but not for the human-immunodeficiency- virus. J. Virol. 68: 510 516.
104. Liu, H. M.,, X. Y. Wu,, H. L. Xiao,, and J. C. Kappes. 1999. Targeting human immunodeficiency virus (HIV) type 2 integrase protein into HIV type 1. J. Virol. 73: 8831 8836.
105. Lodi, P. J.,, J. A. Ernst,, J. Kuszewski,, A. B. Hickman,, A. Engelman,, R. Craigie,, G. M. Clore,, and A. M. Gronenborn. 1995. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34: 9826 9833.
106. Miller, M. D.,, C. M. Farnet,, and F. D. Bushman. 1997. Human immunodeficiency virus type 1 preintegration complexes: Studies of organization and composition. J. Virol. 71: 5382 5390.
107. Mizuuchi, K.,, and K. Adzuma. 1991. Inversion of the phosphate chirality at the target site of Mu- DNA strand transfer: evidence for a one-step transesterification mechanism. Cell 66: 129 140.
108. Mumm, S. R.,, and D. P. Grandgenett. 1991. Defining nucleic acid-binding properties of avian retrovirus integrase by deletion analysis. J. Virol. 65: 1160 1167.
109. Murphy, J. E.,, and S. P. Goff. 1992. A mutation at one end of Moloney murine leukemia virus DNA blocks cleavage of both ends by the viral integrase in vivo. J. Virol. 66: 5092 5095.
110. Panganiban, A. T.,, and H. M. Temin. 1984. The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proc. Natl. Acad. Sci. USA 81: 7885 7889.
111. Pluymers, W.,, P. Cherepanov,, D. Schols,, E. De Clercq,, and Z. Debyser. 1999. Nuclear localization of human immunodeficiency virus type 1 integrase expressed as a fusion protein with green fluorescent protein. Virology 258: 327 332.
112. Polard, P.,, and M. Chandler. 1995. Bacterial transposases and retroviral integrases. Mol. Microbiol. 15: 13 23.
113. Pryciak, P. M.,, A. Sil,, and H. E. Varmus. 1992. Retroviral integration into minichromosomes in vitro. EMBO J. 11: 291 303.
114. Pryciak, P. M.,, and H. E. Varmus. 1992. Nucleosomes, DNAbinding proteins, and DNA sequence modulate retroviral integration target site selection. Cell 69: 769 780.
115. Puras-Lutzke, R. A.,, and R. H. A. Plasterk. 1998. Structure- Based Mutational Analysis of the C-Terminal DNA Binding Domain of HIV-1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding. Thesis dissertation. Netherlands Cancer Institute.
116. Puras-Lutzke, R. A.,, C. Vink,, and R. H. Plasterk. 1994. Characterization of the minimal DNA-binding domain of the HIV integrase protein. Nucleic Acids Res. 22: 4125 4131.
117. Quinn, T. P.,, and D. P. Grandgenett. 1988. Genetic evidence that the avian retrovirus DNA endonuclease domain of pol is necessary for viral integration. J. Virol. 62: 2307 2312.
118. Rice, P.,, R. Craigie,, and D. R. Davies. 1996. Retroviral integrases and their cousins. Curr. Opin. Struct. Biol. 6: 76 83.
119. Rice, P.,, and K. Mizuuchi. 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209 220.
120. Roe, T.,, S. A. Chow,, and P. O. Brown. 1997. 3′-end process ing and kinetics of 5′-end joining during retroviral integration in vivo. J. Virol. 71: 1334 1340.
121. Roe, T.,, T. C. Reynolds,, G. Yu,, and P. O. Brown. 1993. Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12: 2099 2108.
122. Roth, M. J.,, P. L. Schwartzberg,, and S. P. Goff. 1989. Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58: 47 54.
123. Rowland, S. J.,, and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4: 961 975.
124. Schwartzberg, P.,, J. Colicelli,, M. L. Gordon,, and S. P. Goff. 1984. Mutations in the gag gene of Moloney murine leukemia virus: effects on production of virions and reverse transcriptase. J. Virol. 49: 918 924.
125. Scottoline, B. P.,, S. Chow,, V. Ellison,, and P. O. Brown. 1997. Disruption of the terminal base pairs of retroviral DNA during integration. Genes Dev. 11: 371 382.
126. Shank, P. R.,, and H. E. Varmus. 1978. Virus-specific DNA in the cytoplasm of avian sarcoma virus-infected cells is a precursor to covalently closed circular viral DNA in the nucleus. J. Virol. 25: 104 114.
127. Sherman, P. A.,, M. L. Dickson,, and J. A. Fyfe. 1992. Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions. J. Virol. 66: 3593 3601.
128. Sherman, P. A.,, and J. A. Fyfe. 1990. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity. Proc. Natl. Acad. Sci. USA 87: 5119 5123.
129. Shibagaki, Y.,, and S. A. Chow. 1997. Central core domain of retroviral integrase is responsible for target site selection. J. Biol. Chem. 272: 8361 8369.
130. Shoemaker, C.,, S. Goff,, E. Gilboa,, M. Paskind,, S. W. Mitra,, and D. Baltimore. 1980. Structure of a cloned circular moloney murine leukemia-virus DNA molecule containing an inverted segment: implications for retrovirus integration. Proc. Natl. Acad. Sci. USA 77: 3932 3936.
131. Shoemaker, C.,, J. Hoffman,, S. P. Goff,, and D. Baltimore. 1981. Intramolecular integration within Moloney murine leukemia virus DNA. J. Virol. 40: 164 172.
132. Steitz, T. A.,, and J. A. Steitz. 1993. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90: 6498 6502.
133. Swanstrom, R.,, W. J. Delorbe,, J. M. Bishop,, and H. E. Varmus. 1981. Nucleotide-sequence of cloned unintegrated avian-sarcoma virus- DNA-viral-DNA contains direct and inverted repeats similar to those in transposable elements. Proc. Natl. Acad. Sci. USA 78: 124 128.
134. Taylor, J. D.,, I. G. Badcoe,, A. R. Clarke,, and S. E. Halford. 1991. EcoRV restriction endonuclease binds all DNA-sequences with equal affinity. Biochemistry 30: 8743 8753.
135. Umland, T. C.,, S. Q. Wei,, R. Craigie,, and D. R. Davies. 2000. Structural basis of DNA bridging by barrier-to-autointegration factor. Biochemistry 39: 9130 9138.
136. van Gent, D. C.,, Y. Elgersma,, M. W. Bolk,, C. Vink,, and R. H. Plasterk. 1991. DNA binding properties of the integrase proteins of human immunodeficiency viruses types 1 and 2. Nucleic Acids Res. 19: 3821 3827.
137. van Gent, D. C.,, A. A. Groeneger,, and R. H. Plasterk. 1992. Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc. Natl. Acad. Sci. USA 89: 9598 9602.
138. van Gent, D. C.,, C. Vink,, A. A. Groeneger,, and R. H. Plasterk. 1993. Complementation between HIV integrase proteins mutated in different domains. EMBO J. 12: 3261 3267.
139. Vincent, K. A.,, V. Ellison,, S. A. Chow,, and P. O. Brown. 1993. Characterization of human immunodeficiency virus type 1 integrase expressed in Escherichia coli and analysis of variants with amino-terminal mutations. J. Virol. 67: 425 437.
140. Vink, C.,, M. Banks,, R. Bethell,, and R. H. Plasterk. 1994. A high-throughput, nonradioactive microtiter plate assay for activity of the human immunodeficiency virus integrase protein. Nucleic Acids Res. 22: 2176 2177.
141. Vink, C.,, A. M. Oude Groeneger,, and R. H. Plasterk. 1993. Identification of the catalytic and DNA-binding region of the human immunodeficiency virus type I integrase protein. Nucleic Acids Res. 21: 1419 1425.
142. Vink, C.,, D. C. van Gent,, Y. Elgersma,, and R. H. Plasterk. 1991. Human immunodeficiency virus integrase protein requires a subterminal position of its viral DNA recognition sequence for efficient cleavage. J. Virol. 65: 4636 4644.
143. Vink, C.,, E. Yeheskiely,, G. A. van der Marel,, J. H. van Boom,, and R. H. Plasterk. 1991. Site-specific hydrolysis and alcoholysis of human immunodeficiency virus DNA termini mediated by the viral integrase protein. Nucleic Acids Res. 19: 6691 6698.
144. Vodicka, M. A.,, D. M. Koepp,, P. A. Silver,, and M. Emerman. 1998. HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage infection. Genes Dev. 12: 175 185.
145. Vora, A. C.,, and D. P. Grandgenett. 1995. Assembly and catalytic properties of retrovirus integrase-DNA complexes capable of efficiently performing concerted integration. J. Virol. 69: 7483 7488.
146. Vora, A. C.,, M. McCord,, M. L. Fitzgerald,, R. B. Inman,, and D. P. Grandgenett. 1994. Efficient concerted integration of retrovirus-like DNA in vitro by avian myeloblastosis virus integrase. Nucleic Acids Res. 22: 4454 4461.
147. Wei, S. Q.,, K. Mizuuchi,, and R. Craigie. 1998. Footprints on the viral DNA ends in Moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc. Natl. Acad. Sci. USA 95: 10535 10540.
148. Wei, S. Q.,, K. Mizuuchi,, and R. Craigie. 1997. Alarge nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration. EMBO J. 16: 7511 7520.
149. Withers-Ward, E. S.,, Y. Kitamura,, J. P. Barnes,, and J. M. Coffin. 1994. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8: 1473 1487.
150. Woerner, A. M.,, and C. J. Marcus-Sekura. 1993. Characterization of a DNA binding domain in the C-terminus of HIV- 1 integrase by deletion mutagenesis. Nucleic Acids Res. 21: 3507 3511.
151. Yang, W.,, and T. A. Steitz. 1995. Recombining the structures of HIV integrase, RuvC and RNase H. Structure 3: 131 134.
152. Yang, W. K.,, J. O. Kiggans,, D. M. Yang,, C. Ou,, R. W. Tennant,, A. Brown,, and R. H. Bassin. 1980. Synthesis and circularization of N-tropic and B-tropic retroviral DNA in Fv-1 permissive and restrictive mouse cells. Proc. Natl. Acad. Sci. USA 77: 2994 2998.
153. Yang, Z. N.,, T. C. Mueser,, F. D. Bushman,, and C. C. Hyde. 2000. Crystal structure of an active two-domain derivative of rous sarcoma virus integrase. J. Mol. Biol. 296: 535 548.
154. Yoder, K. E.,, and F. D. Bushman. 2000. Repair of gaps in retroviral DNA integration intermediates. J. Virol. 74: 11191 11200.
155. Yoshimura, F. K.,, and R. A. Weinberg. 1979. Restriction endonuclease cleavage of linear and closed circular murine leukemia virus DNAs: discovery of a smaller circular form. Cell 16: 323 332.
156. Zennou, V.,, C. Petit,, D. Guetard,, U. Nerhbass,, L. Montagnier,, and P. Charneau. 2000. HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101: 173 185.
157. Zheng, R.,, T. M. Jenkins,, and R. Craigie. 1996. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc. Natl. Acad. Sci. USA 93: 13659 13664.
158. Zheng, R. L.,, R. Ghirlando,, M. S. Lee,, K. Mizuuchi,, M. Krause,, and R. Craigie. 2000. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc. Natl. Acad. Sci. USA 97: 8997 9002.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error