1887

Chapter 30 : Genome-Wide Rearrangements of DNA in Ciliates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genome-Wide Rearrangements of DNA in Ciliates, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap30-2.gif

Abstract:

This chapter provides an update of the molecular analysis in DNA rearrangements. Sufficient progress has been made to provide good insights into their regulatory mechanisms and allow meaningful speculations on their relationships to other DNA rearrangement processes. The chapter focuses on the studies of the two processes (chromosome fragmentation and internal DNA deletion), which also occur, but separately, in nematodes (chromosome fragmentation) and crustaceans (DNA deletion). These processes are described briefly to complete the picture of DNA rearrangements in ciliates. The chapter discusses the unusual epigenetic effects on chromosome breakage and DNA deletion, and is concluded by offering the authors' views on the possible functions of these processes. The degree of fragmentation in the oligohymenophorans such as , , and is nearly two orders of magnitude lower than in the hypotrichous ciliates. The differences in the chromosome fragmentation process are quite extensive among the ciliates studied. Even in and , for which sequences controlling breakage have been identified, there is little evidence that they share a common mechanism of fragmentation. Site-specific deletion of DNA sequences, like chromosome fragmentation, occurs in all ciliates examined, but its extent varies greatly among species. In , the study of internal eliminated sequences (IESs) started much later than in other ciliates, but a few dozen IESs have already been sequenced in this organism.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30

Key Concept Ranking

Chromosomal DNA
0.45797914
Spacer DNA
0.45508996
0.45797914
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Ciliate species frequently used in the study of DNA rearrangements and their taxonomic grouping.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Nuclear dualism of This image of a living cell was taken using Nomarski optics.DNA is stained with DAPI to enhance visualization of the micronucleus (Mi) and the macronucleus (Ma). CV, contractile vacuole. Scale bar = 10 μm.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Chromosome fragmentation and internal DNA deletion. This diagram represents sections of ciliate chromosomes undergoing the two major types of DNA rearrangements. Open bars represent chromosome segments retained in the macronucleus, and the solid bar represents the segment eliminated from the macronucleus. Bars with vertical stripes are telomeric DNAs added to the broken ends.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Conservation of the Cbs of (A) The 15-bp Cbs is conserved both within and among related species. The sequences of the nine characterized breakage sites of are shown. The Cbs at eight of these are identical; the ninth differs by a single T to A change at position 13 ( ). The Cbs from the breakage sites at the 3′ end of the rDNA from several related species is also shown ( ). The sequence differences from the predominant Cbs are given. Dashes denote the conserved nucleotide positions. (B) Mutational analysis of the Cbs. Single nucleotide substitutions were introduced into a copy of Cbs and tested for activity using an rDNA-based transformation assay ( ). The observed activity of each altered Cbs is given to the right of each sequence:+, full activity; p, partial activity;-, no detectable activity.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

A model for chromosome breakage in At the top are the micronuclear (mic) and macronuclear (mac) sequences of an actual chromosome breakage site found in clone Tt 701 ( ). The sequences that are retained in the macronucleus are underlined; telomeric repeats are shown. The 15-bp Cbs is denoted by the gray box. In this model, the Cbs is recognized in the developing nucleus by a protein complex consisting of a recognition domain (hatched oval) and two endonuclease subunits (black symbols). These could be encoded in a single or multiple genes. This Cbs recognition complex also recruits the multiprotein telomerase complex (gray ovals). Cleavage occurs on each side of the Cbs, resulting in its removal from the chromosome. Limited exonuclease digestion of the broken ends on each side occurs, probably by telomerase itself, creating a favorable substrate for end healing. Addition of GGGGTT repeats then ensues to produce the mature macronuclear chromosomes.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

A model for fragmentation/telomere addition in A segment of micronuclear DNA with an E-Cbs core is shown at the top. The E-Cbs directs a double-strand break in the DNA to generate fragmentation intermediates with 6-bp, 3′ overhangs. Telomerase then adds GGGGTTTT telomeric repeats to the 3′ ends, and a DNA polymerase synthesizes the complementary CCCCAAAA strand. In the situation shown, both products of fragmentation become the ends of the macronuclear DNA molecules. In other cases, either the right or left segment would be developmentally eliminated spacer DNA. Reprinted from with permission of the publisher ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Organization of some internal eliminated sequences in various ciliates. Brackets define the excision boundaries of the DNA deleted elements that are indicated as rectangles. Thick arrows indicate inverted repeats. (1) IESs, with XY denoting the 1-to 8-bp terminal direct repeats that vary for different IESs. The black boxes indicate the macronuclear flanking sequences that have been shown in some cases to be required for IES excision. (2) and IESs, with XYZ denoting the 2-to 7-bp terminal direct repeats that vary for different IESs. Arrows below the TBE1 transposon-like element denote three conserved open reading frames. (3) and IESs, with TA terminal direct repeats. Arrows below the Tec1 transposon-like element again denote three major open reading frames. Modified from with permission of the publisher ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Comparisons of the deduced consensus sequences of ( ) and IESs ( ) with the termini of the Tec1 and Tec2 transposon-like elements ( ) and the terminal consensus sequence for the Tc1-related transposons ( ). The derived consensus sequence of IESs is TAYAGYNRand of TATrGCR. (Subscripts indicate the percentage of IES ends conforming the consensus.) In each case the first two bases (TA) represent the terminal direct repeat. Identical bases are highlighted with a black background, and similar positions are highlighted with a gray background. R = G or A, Y = C or T, K = G or T, S = C or G, N = any base. Reprinted from with permission of the publisher ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Model for IES excision in A germ line IES is shown at the top of the figure as a rectangle. An initiating cleavage event occurs at one end of the IES. Cleavage occurs at specific sites (arrows) and generates two DNA ends with 4-bp 5′ overhangs and 3′ A residues. The 3′-hydroxyl group of theA residue on the macronucleus-destined end serves as a nucleophile in a transesterification reaction with a corresponding site on the opposite side of the IES. This creates a macronuclear junction on one strand. Additional processing steps are required to join covalently the opposite strand of the macronuclear DNA. Modified from the with permission of the publisher ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

. Formation of the palindromic rDNA of the macronucleus. During macronuclear development, the single micronuclear rDNA is transformed into a large palindromic structure. Chromosome breakage occurs at the 3′ Cbs and at one of the three 5′ Cbs. At the 3′ breakage site, telomeric repeats are added to the end. Located at the 5′ end are a pair of 42-bp inverted repeats separated by a 28-bp spacer. Breakage next to these repeats is usually healed by creation of a head-to-head palindromic molecule with the spacer at the center.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

The scrambled and unscrambled actin I gene of The scrambled micronuclear version of the actin I gene is at the top, and the unscrambled macronuclear version is at the bottom. MDSs are shown as open boxes, and the IESs are shown as solid lines. The size of each MDS is given. The number above each MDS corresponds to the order of segments in the unscrambled gene. Removal of the IESs during macronuclear development reorders the MDS to create the intact coding sequence of the actin gene ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Maternal inheritance of an alternative fragmentation site in In the wild-type (wt) strain, macronuclear (mac) telomeres (gray boxes) are added in three locations downstream of the gene (arrows). In strain d48, the micronuclear (mic) genome is wild type, and macronuclear telomeres are added in a single region upstream of the coding sequence. In conjugation between the wild type and d48, this alternative fragmentation site is maternally inherited.

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

Maternal regulation of IES excision. Transformation of the wild-type macronucleus (mac) with a plasmid containing an IES (black rectangle) specifically inhibits the excision of the homologous germ-line IES (black rectangle) in the next sexual generation but does not affect the excision of other germ-line IESs (gray rectangle). Reprinted from with permission of the publisher ( ).

Citation: Yao M, Duharcourt S, Chalker D. 2002. Genome-Wide Rearrangements of DNA in Ciliates, p 730-758. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap30
1. Abraham, J.,, K. A. Nasmyth,, J. N. Strathern,, A. J. S. Klar,, and J. B. Hicks. 1984. Regulation of mating type information in yeast. J. Mol. Biol. 176:307331.
2. Al-Kaff, N. S.,, S. N. Covey,, M. M. Kreike,, A. M. Page,, R. Pinder,, and P. J. Dale. 1998. Transcriptional and posttranscriptional plant gene silencing in response to a pathogen. Science 279:21132115.
3. Altschuler, M. I.,, and M. C. Yao. 1985. Macronuclear DNA of Tetrahymena thermophila exists as defined subchromosomal- sized molecules. Nucleic Acids Res. 13:58175831.
4. Amar, L. 1994. Chromosome end formation and internal sequence elimination as alternative genomic rearrangements in the ciliate Paramecium. J. Mol. Biol. 236:421426.
5. Ammermann, D. 1970. The micronucleus of the ciliate Stylonychia mytilus; its nucleic acid synthesis and its function. Exp. Cell Res. 61:612.
6. Ammermann, D.,, G. Steinbruck,, L. v. Berger,, and W. Hennig. 1974. The development of the macronucleus in the ciliated protozoan Stylonychia mytilus. Chromosoma 45:401429.
7. Austerberry, C. F.,, C. D. Allis,, and M. C. Yao. 1984. Specific DNA rearrangements in synchronously developing nuclei of Tetrahymena. Proc. Natl. Acad. Sci. USA 81:73837387.
8. Austerberry, C. F.,, R. O. Snyder,, and M. C. Yao. 1989. Sequence microheterogeneity is generated at junctions of programmed DNA deletions in Tetrahymena thermophila. Nucleic Acids Res. 17:72637272.
9. Austerberry, C. F.,, and M. C. Yao. 1987. Nucleotide sequence structure and consistency of a developmentally regulated DNA deletion in Tetrahymena thermophila. Mol. Cell. Biol. 7:435443.
10. Austerberry, C. F.,, and M. C. Yao. 1988. Sequence structures of two developmentally regulated, alternative DNA deletion junctions in Tetrahymena thermophila. Mol. Cell. Biol. 8: 39473950.
11. Baird, S. E.,, G. M. Fino,, S. L. Tausta,, and L. A. Klobutcher. 1989. Micronuclear genome organization in Euplotes crassus: a transposonlike element is removed during macronuclear development. Mol. Cell. Biol. 9:37933807.
12. Baird, S. E.,, and L. A. Klobutcher. 1989. Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus. Genes Dev. 3:37933807.
13. Baroin, A.,, A. Prat,, and F. Caron. 1987. Telomeric site position heterogeneity in macronuclear DNA of Paramecium primaurelia. Nucleic Acids Res. 15:17171728.
14. Baroin-Tourancheau, A.,, P. Delgado,, R. Perasso,, and A. Adoutte. 1992. A broad molecular phylogeny of ciliates: identification of major evolutionary trends and radiations within the phylum. Proc. Natl. Acad. Sci. USA 89:97649768.
15. Beerman, S. 1984. Circular and linear structures in chromatin diminution of Cyclops. Chromosoma 89:321328.
16. Beerman, S. 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60:297344.
17. Betermier, M.,, S. Duharcourt,, H. Seitz,, and E. Meyer. 2000. Timing of developmentally programmed excision and circulation of Paramecium internal eliminated sequences. Mol. Cell. Biol. 20:15531561.
18. Bierbaum, P.,, T. Donhoff,, and A. Klein. 1991. Macronuclear and micronuclear configurations of a gene encoding the protein synthesis elongation factor EF 1 alpha in Stylonychia lemnae. Mol. Microbiol. 5:15671575.
19. Bird, A. 1997. Does DNA methylation control transposition of selfish elements in the germline? Trends Genet. 13: 469472.
20. Blackburn, E. H.,, and J. G. Gall. 1978. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120:3335.
21. Blasco, M. A.,, S. M. Gasser,, and J. Lingner. 1999. Telomeres and telomerase. Genes Dev. 13:23532359.
22. Boswell, R. E.,, L. A. Klobutcher,, and D. M. Prescott. 1982. Inverted terminal repeats are added to genes during macronuclear development in Oxytricha nova. Proc. Natl. Acad. Sci. USA 79:32553259.
23. Boveri, T. 1887. Uber Differenzierung der Zellkerne wahrend der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2:688693.
24. Breuer, M.,, G. Schulte,, K. Schwegmann,, and H. Schmidt. 1996. Molecular characterization of the D surface protein gene subfamily in Paramecium tetraurelia. J. Eukaryot. Microbiol. 43:314322.
25. Brygoo, Y.,, and A.-M. Keller. 1981. A mutation with pleitropic effects on macronuclearly differentiated functions in Paramecium tetraurelia. Dev. Genet. 2:2334.
26. Butler, D. K.,, L. E. Yasuda,, and M.-C. Yao. 1995. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila. Mol. Cell Biol. 15:71177126.
27. Callahan, R. C.,, G. Shalke,, and M. A. Gorovsky. 1984. Developmental rearrangements associated with a single type of expressed alpha-tubulin gene in Tetrahymena. Cell 36: 441445.
28. Caron, F. 1992. A high degree of macronuclear chromosome polymorphism is generated by variable DNA rearrangements in Paramecium primaurelia during macronuclear differentiation. J. Mol. Biol. 225:661678.
29. Cartinour, S.,, and G. Herrick. 1984. Three different macronuclear DNAs on Oxytricha fallax share a common sequence block. Mol. Cell. Biol. 4:931938.
30. Catalanotto, C.,, G. Azzalin,, G. Macino,, and C. Cogoni. 2000. Gene silencing in worms and fungi. Nature 404:245.
31. Chalker, D.,, A. La Terza,, A. Wilson,, C. Kroenke,, and M. Yao. 1999. Flanking regulatory sequences of the Tetrahymena R deletion element determine the boundaries of DNA rearrangement. Mol. Cell. Biol. 19:56315641.
32. Chalker, D. L.,, and M.-C. Yao. 1996. Non-Mendelian, heritable blocks to DNA rearrangement are induced by loading the somatic nucleus of Tetrahymena thermophila with germ line limited DNA. Mol. Cell. Biol. 16:36583667.
33. Chau, M.-F.,, and E. Orias. 1996. Developmentally programmed DNA rearrangement in Tetrahymena thermophila: isolation and sequence characterization of three new alternative deletion systems. Biol. Cell. 86:111120.
34. Cherry, J. M.,, and E. H. Blackburn. 1985. The internally located telomeric sequences in the germline chromosomes of Tetrahymena are at the conserved ends of transposon-like elements. Cell 43:747758.
35. Chilcoat, N.,, and A. Turkewitz. 1997. In vivo analysis of the major exocytosis-sensitive phosphoprotein in Tetrahymena. J. Cell Biol. 139:11971207.
36. Cogoni, C.,, and G. Macino. 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166169.
37. Cogoni, C.,, and G. Macino. 1999. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286:23422344.
38. Cole, E. S. 1991. Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue I. broadened cortical domains (bcd). Dev. Biol. 148:403419.
39. Cole, E. S.,, D. Cassidy-Hanley,, J. Hemish,, J. Tuan,, and P. J. Bruns. 1997. A mutational analysis of conjugation in Tetrahymena thermophila 1. Phenotypes affecting early development: meiosis to nuclear selection. Dev. Biol. 189:215232.
40. Cole, E. S.,, and J. Frankel. 1991. Conjugal blocks in Tetrahymena pattern mutants and their cytoplasmic rescue II. janus A. Dev. Biol. 148:420428.
41. Cole, E. S.,, and T. A. Soelter. 1997. A mutational analysis of conjugation in Tetrahymena thermophila 2. Phenotypes affecting middle and late development: third prezygotic nuclear division, pronuclear exchange, pronuclear fusion, and postzygotic development. Dev. Biol. 189:233245.
42. Collins, J.,, E. Forbes,, and P. Anderson. 1989. The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics 121:4755.
43. Collins, K.,, and C. W. Greider. 1993. Tetrahymena telomerase catalyzes nucleolytic cleavage and nonprocessive elongation. Genes Dev. 7:13641376.
44. Conover, R. K.,, and C. F. Brunk. 1986. Macronuclear DNA molecules of Tetrahymena thermophila. Mol. Cell. Biol. 6: 900905.
45. Coyne, R.,, M. Nikiforov,, J. Smothers,, C. Allis,, and M. Yao. 1999. Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. Mol. Cell 4:865872.
46. Coyne, R. S.,, D. L. Chalker,, and M.-C. Yao. 1996. Genome downsizing during ciliate development: nuclear division of labor through chromosome restructing. Annu. Rev. Genet. 30:557578.
47. Coyne, R. S.,, and M.-C. Yao. 1996. Evolutionary conservation of sequences directing chromosome breakage and rDNA palindrome formation in Tetrahymenine ciliates. Genetics 144:14791487.
48. Craig, N. L. 1995. Unity of transposition reactions. Science 270:253254.
49. Doak, T.,, D. Witherspoon,, F. Doerder,, K. Williams,, and G. Herrick. 1997. Conserved features of TBE1 transposons in ciliated protozoa. Genetica 101:7586.
50. Doak, T. G.,, F. P. Doerder,, C. L. Jahn,, and G. Herrick. 1994. A proposed superfamily of transposase genes: transposonlike elements in ciliated protozoa and a common ‘‘D35E’’ motif. Proc. Natl. Acad. Sci. USA 91:942946.
51. Dreyfus, D. 1992. Evidence suggesting an evolutionary relationship between transposable elements and immune system recombination sequences. Mol. Immunol. 29:807810.
52. DuBois, M.,, and D. M. Prescott. 1995. Scrambling of the actin I gene in two Oxytricha species. Proc. Natl. Acad. Sci. USA 92:38883892.
53. Dubrana, K.,, A. LeMouël,, and L. Amar. 1997. Deletion endpoint allele-specificity in the developmentally regulated elimination of an internal sequence (IES) in Paramecium. Nucleic Acids Res. 25:24482454.
54. Duharcourt, S.,, A. Butler,, and E. Meyer. 1995. Epigenetic self-regulation of developmental excision of an internal eliminated sequence in Paramecium tetraurelia . Genes Dev. 9:20652077.
55. Duharcourt, S.,, A. Keller,, and E. Meyer. 1998. Homologydependent maternal inhibition of developmental excision of internal eliminated sequences in Paramecium tetraurelia. Mol. Cell. Biol. 18:70757085.
56. Dyda, F.,, A. B. Hickman,, T. M. Jenkins,, A. Engelman,, R. Craigie,, and D. R. Davies. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:19811986.
57. Eder, C.,, C. Maercker,, J. Meyer,, and H. Lipps. 1993. The processing of macronuclear DNA sequences during macronuclear development of the hypotrichous ciliate Stylonychia lemnae. Int. J. Dev. Biol. 37:473477.
58. Engberg, J.,, P. Andersson,, V. Leick,, and J. Collins. 1976. Free ribosomal DNA molecules from Tetrahymena pyriformis GL are giant palindromes. J. Mol. Biol. 104:455470.
59. Epstein, L. M.,, and J. D. Forney. 1984. Mendelian and non- Mendelian mutations affecting surface antigen expression in Paramecium tetraurelia. Mol. Cell. Biol. 4:15831590.
60. Fan, Q.,, and M.-C. Yao. 2000. A long stringent sequence for programmed chromosome breakage in Tetrahymena thermophila. Nucleic Acids Res. 28:895900.
61. Fan, Q.,, and M.-C. Yao. 1996. New telomere formation coupled with site-specific chromosome breakage in Tetrahymena thermophila. Mol. Cell. Biol. 16:12671274.
62. Faugeron, G. 2000. Diversity of homology-dependent gene silencing strategies in fungi. Curr. Opin. Microbiol. 3: 144148.
63. Findly, R. C.,, and J. G. Gall. 1978. Free ribosomalRNAgenes in Paramecium are tandemly repeated. Proc. Natl. Acad. Sci. USA 75:33123316.
64. Findly, R. C.,, and J. G. Gall. 1980. Organization of ribosomal genes in Paramecium tetraurelia. J. Cell Biol. 84:547559.
65. Forney, J. D.,, and E. H. Blackburn. 1988. Developmentally controlled telomere addition in wild-type and mutant Paramecia. Mol. Cell. Biol. 8:251258.
66. Forney, J. D.,, F. Yantiri,, and K. Mikami. 1996. Developmentally controlled rearrangement of surface protein genes in Paramecium tetraurelia. J. Eukaryot. Microbiol. 43: 462467.
67. Frels, J. S.,, and C. L. Jahn. 1995. DNA rearrangements in Euplotes crassus coincide with discrete periods of DNA replication during the polytene chromosome stage of macronuclear development. Mol. Cell. Biol. 15:64886495.
68. Frels, J. S.,, C. M. Tebeau,, S. Z. Doktor,, and C. L. Jahn. 1996. Differential replication and DNA elimination in the polytene chromosomes of Euplotes crassus. Mol. Biol. Cell 7: 755768.
69. Gall, J. G. 1974. Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc. Natl. Acad. Sci. USA 71: 30783081.
70. Gasser, S.,, and U. Laemmli. 1987. A glimpse of chromosomal order. Trends Genet. 3:1621.
71. Gershan, J. A.,, and K. M. Karrer. 2000. A family of developmentally excised DNA elements in Tetrahymena is under selective pressure to maintain an open reading frame encoding an integrase-like protein. Nucleic Acids Res. 28:41054112.
72. Ghosh, S.,, and L. A. Klobutcher. 2000. A developmentalspecific histone H3 localizes to the developing macronucleus of Euplotes. Genesis 26:179188.
73. Gilley, D.,, J. J. Preer,, K. J. Aufderheide,, and B. Polisky. 1988. Autonomous replication and addition of telomerelike sequences to DNA microinjected into Paramecium tetraurelia macronuclei. Mol. Cell Biol. 8:47654772.
74. Godiska, R.,, C. James,, and M. C. Yao. 1993. A distant 10- bp sequence specifies the boundaries of a programmed DNA deletion in Tetrahymena. Genes Dev. 7:23572365.
75. Godiska, R.,, and M. C. Yao. 1990. A programmed site-specific DNA rearrangement in Tetrahymena thermophila requires flanking polypurine tracts. Cell 61:12371246.
76. Gotta, M.,, T. Laroche,, A. Formenton,, L. Maillet,, H. Scherthan,, and S. M. Gasser. 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wildtype Saccharomyces cerevisiae. J. Cell Biol. 134:13491363.
77. Greider, C. W.,, and E. H. Blackburn. 1985. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405413.
78. Greslin, A. F.,, D. M. Prescott,, Y. Oka,, S. H. Loukin,, and J. C. Chappell. 1989. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. Proc. Natl. Acad. Sci. USA 86:62646268.
79. Hale, C.,, M. Jacobs,, H. Estes,, S. Ghosh,, and L. Klobutcher. 1996. Micronuclear and macronuclear sequences of a Euplotes crassus gene encoding a putative nuclear protein kinase. J. Eukaryot. Microbiol. 43:389392.
80. Hammerschmidt, B.,, M. Schlegel,, D. H. Lynn,, D. D. Leipe,, M. L. Sogin,, and I. B. Raikov. 1996. Insights into the evolution of nuclear dualism in the ciliates revealed by phylogenetic analysis of rRNA sequences. J. Eukaryot. Microbiol. 43: 225230.
81. Harper, D. S.,, K. Song,, and C. L. Jahn. 1991. Overamplification of macronuclear linearDNAmolecules during prolonged vegetative growth of Oxytricha nova. Gene 99:5561.
82. Harumoto, T. 1986. Induced change in a non-Mendelian determinant by transplantation of macronucleoplasm in Paramecium tetraurelia. Mol. Cell. Biol. 6:34983501.
83. Heinonen, T. Y.,, and R. E. Pearlman. 1994. A germ linespecific sequence element in an intron in Tetrahymena thermophila. J. Biol. Chem. 269:1742817433.
84. Henikoff, S. 1992. Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 4:382388.
85. Herrick, G. 1994. Germline-soma relationships in ciliated protozoa: the inception and evolution of nuclear dimorphism in one-celled animals. Semin. Dev. Biol. 5:312.
86. Herrick, G.,, S. Cartinhour,, D. Dawson,, D. Ang,, R. Sheets,, A. Lee,, and K. Williams. 1985. Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax. Cell 43: 759768.
87. Herrick, G.,, S. W. Cartinhour,, K. R. Williams,, and K. P. Kotter. 1987. Multiple sequence versions of the Oxytricha fallax 81-MAC alternate processing family. J. Protozool. 34: 429434.
88. Herrick, G.,, D. Hunter,, K. Williams,, and K. Kotter. 1987. Alternative processing during development of a macronuclear chromosome family in Oxytricha fallax. Genes Dev. 1: 10471058.
89. Hoffman, D. C.,, and D. M. Prescott. 1997. Evolution of internal eliminated segments and scrambling in the micronuclear gene encoding DNA polymerase α in two Oxytricha species. Nucleic Acids Res. 25:18831889.
90. Hoffman, D. C.,, and D. M. Prescott. 1996. The germline gene encoding DNA polymerase α in the hypotrichous ciliate Oxytricha nova is extremely scrambled. Nucleic Acids Res. 24:33373340.
91. Hunter, D. J.,, K. Williams,, S. Cartinhour,, and G. Herrick. 1989. Precise excision of telomere-bearing transposons during Oxytricha fallax macronuclear development. Genes Dev. 3:21012112.
92. Huvos, P.,, M. Wu,, and M. Gorovsky. 1998. A developmentally eliminated sequence in the flanking region of the histone H1 gene in Tetrahymena thermophila contains short repeats. J. Eukaryot. Microbiol. 45:189197.
93. Irelan, J. T.,, and E. U. Selker. 1997. Cytosine methylation associated with repeat-induced point mutation causes epigenetic gene silencing in Neurospora crassa. Genetics 146: 509523.
94. Jacobs, M. E.,, and L. A. Klobutcher. 1996. The long and the short of developmental DNA deletion in Euplotes crassus. J. Eukaryot. Microbiol. 43:442452.
95. Jahn, C. L. 1999. Differentiation of chromatin during DNA elimination in Euplotes crassus. Mol. Biol. Cell 10: 42174230.
96. Jahn, C. L.,, S. Z. Doktor,, J. S. Frels,, J. W. Jaraczewski,, and M. F. Krikau. 1993. Structures of the Euplotes crassus Tec1 and Tec2 elements: identification of putative transposase coding regions. Gene 133:7178.
97. Jahn, C. L.,, M. F. Krikau,, and S. Shyman. 1989. Developmentally coordinated en masse excision of a highly repetitive element in Euplotes crassus. Cell 59:10091018.
98. Jahn, C. L.,, Z. Ling,, C. M. Tebeau,, and L. A. Klobutcher. 1997. An unusual histone H3 specific for early macronuclear development in Euplotes crassus. Proc. Natl. Acad. Sci. USA 94:13321337.
99. Jahn, C. L.,, L. A. Nilles,, and M. F. Krikau. 1988. Organization of the Euplotes crassus micronuclear genome. J. Protozool. 35:590601.
100. Jaraczewski, J. W.,, J. S. Frels,, and C. L. Jahn. 1994. Developmentally regulated, low abundance Tec element transcripts in Euplotes crassus—implications for DNA elimination and transposition. Nucleic Acids Res. 22:45354542.
101. Jaraczewski, J. W.,, and C. L. Jahn. 1993. Elimination of Tec elements involves a novel excision process. Genes Dev. 7: 95105.
102. Jessop-Murray, H.,, L. D. Martin,, D. Gilley,, J. R. Preer,, and B. Polisky. 1991. Permanent rescue of a non-Mendelian mutation of Paramecium by microinjection of specific DNA sequences. Genetics 129:727734.
103. Jones, D. O.,, I. G. Cowell,, and P. B. Singh. 2000. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays 22:124137.
104. Jonsson, F.,, J. P. Wen,, C. P. Fetzer,, and H. J. Lipps. 1999. A subtelomericDNA sequence is required for correct processing of the macronuclearDNAsequences during macronuclear development in the hypotrichous ciliate Stylonychia lemnae. Nucleic Acids Res. 27:28322841.
105. Karrer, K. M.,, and J. G. Gall. 1976. The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J. Mol. Biol. 104:421453.
106. Katoh, M.,, M. Hirono,, T. Takemasa,, M. Kimura,, and Y. Watanabe. 1993. A micronucleus-specific sequence exists in the 5′-upstream region of calmodulin gene in Tetrahymena thermophila. Nucleic Acids Res. 21:24092414.
107. Katzen, A. L.,, G. M. Cann,, and E. H. Blackburn. 1981. Se quence-specific fragmentation of macronuclear DNA in a holotrichous ciliate. Cell 24:313320.
108. Keeney, S.,, C. N. Giroux,, and N. Kleckner. 1997. Meiosisspecific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88: 375384.
109. Kim, C. S.,, J. R. Preer,, and B. Polisky. 1994. Identification of DNA segments capable of rescuing a non-Mendelian mutant in Paramecium. Genetics 136:13251328.
110. King, B. O.,, and M. C. Yao. 1982. Tandemly repeated hexanucleotide at Tetrahymena rDNA free end is generated from a single copy during development. Cell 31:177182.
111. Kirk, K. E.,, and E. H. Blackburn. 1995. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila. Genes Dev. 9:5971.
112. Kiss, G. B.,, A. A. Amin,, and R. E. Pearlman. 1981. Two separate regions of the extrachromosomal ribosomal deoxyribonucleic acid of Tetrahymena thermophila enable autonomous replication of plasmids in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:535543.
113. Klobutcher, L. A. 1999. Characterization of in vivo developmental chromosome fragmentation intermediates in E. crassus. Mol. Cell 4:695704.
114. Klobutcher, L. A. 1995. Developmentally excised DNA sequences in Euplotes crassus capable of forming G quartets. Proc. Natl. Acad. Sci. USA 92:19791983.
115. Klobutcher, L. A. 1987. Micronuclear organization of macronuclear genes in the hypotrichous ciliate Oxytricha nova. J. Protozool. 34:424428.
116. Klobutcher, L. A.,, S. E. Gygax,, J. D. Podoloff,, J. R. Vermeesch,, C. M. Price,, C. M. Tebeau,, and C. L. Jahn. 1998. Conserved DNA sequences adjacent to chromosome fragmentation and telomere addition sites in Euplotes crassus. Nucleic Acids Res. 26:42304240.
117. Klobutcher, L. A.,, and G. Herrick. 1995. Consensus inverted terminal repeat sequence of Paramecium IESs: resemblance to termini of Tc1-related and Euplotes Tec transposons. Nucleic Acids Res. 23:20062013.
118. Klobutcher, L. A.,, and G. Herrick. 1997. Developmental genome reorganization in ciliated protozoa: the transposon link. Prog. Nucleic Acid Res. Mol. Biol. 56:162.
119. Klobutcher, L. A.,, M. E. Huff,, and G. E. Gonye. 1988. Alternative use of chromosome fragmentation sites in the ciliated protozoan Oxytricha nova. Nucleic Acids Res. 16:251264.
120. Klobutcher, L. A.,, C. L. Jahn,, and D. M. Prescott. 1984. Internal sequences are eliminated from genes during macronuclear development in the ciliated protozoan Oxytricha nova. Cell 36:10451055.
121. Klobutcher, L. A.,, M. T. Swanton,, P. Donini,, and D. M. Prescott. 1981. All gene-sized molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc. Natl. Acad. Sci. USA 78:30153019.
122. Klobutcher, L. A.,, L. R. Turner,, and J. LaPlante. 1993. Circular forms of developmentally excised DNA in Euplotes crassus have a heteroduplex junction. Genes Dev. 7:8494.
123. Kobayashi, S.,, and S. Koizumi. 1990. Characterization of non-Mendelian and Mendelian mutant strains by micronuclear transplantation in Paramecium tetraurelia. J. Protozool. 37:489492.
124. Koizumi, S.,, and S. Kobayashi. 1989. Microinjection of plasmid DNA encoding the A surface antigen of Paramecium tetraurelia restores the ability to regenerate a wild-type macronucleus. Mol. Cell. Biol. 9:43984401.
125. Koonin, E. V.,, S. Zhou,, and J. C. Lucchesi. 1995. The chromo superfamily: new members, duplication of the chromo domain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res. 23:42294233.
126. Koshland, D. E.,, and V. Guacci. 2000. Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell Biol. 12:297301.
127. Krikau, M. F.,, and C. L. Jahn. 1991. Tec2, a second transposon- like element demonstrating developmentally programmed excision in Euplotes crassus. Mol. Cell. Biol. 11: 47514759.
128. Landweber, L. F.,, T.-C. Kuo,, and E. A. Curtis. 2000. Evolution and assembly of an extremely scrambled gene. Proc. Natl. Acad. Sci. USA 97:32983303.
129. Lauth, M. R.,, B. B. Spear,, J. Heumann,, and D. M. Prescott. 1976. DNA of ciliated protozoa: DNA sequence diminution during macronuclear development of Oxytricha. Cell 7: 6774.
130. Lawn, R. M.,, J. M. Heumann,, G. Herrick,, and D. M. Prescott. 1978. The gene-size DNA molecules in Oxytricha. Cold Spring Harbor Symp. Quant. Biol. 43:483492.
131. Li, J.,, and R. E. Pearlman. 1996. Programmed DNA rearrangement from an intron during nuclear development in Tetrahymena thermophila: molecular analysis and identification of potential cis-acting sequences. Nucleic Acids Res. 24:19431949.
132. Ling, K.-Y.,, B. Vaillant,, W. J. Haynes,, Y. Saimi,, and C. Kung. 1998. A comparison of internal eliminated sequences in the genes that encode two K+-channel isoforms in Paramecium tetraurelia. J. Eukaryot. Microbiol. 45:459465.
133. Lipps, H. J.,, and G. Steinbruck. 1978. Free genes for rRNAs in the macronuclear genome of the ciliate Stylonychia mytilus. Chromosoma 69:2126.
134. Madireddi, M. T.,, R. S. Coyne,, J. F. Smothers,, K. M. Mickey,, M.-C. Yao,, and C. D. Allis. 1996. Pdd1p, a novel chromodomain- containing protein, links heterochromatin assembly and DNA elimination in Tetrahymena. Cell 87:7584.
135. Madireddi, M. T.,, M. Davis,, and D. Allis. 1994. Identification of a novel polypeptide involved in the formation of DNAcontaining vesicles during macronuclear development in Tetrahymena. Dev. Biol. 165:418431.
136. Maercker, C.,, and H. J. Lipps. 1993. Analysis of the subtelomeric regions of macronuclear gene-sized DNA molecules of the hypotrichous ciliate Stylonychia lemnae: implications for the DNA fragmentation process during macronuclear development? Dev. Genet. 14:378384.
137. Maillet, L.,, C. Boscheron,, M. Gotta,, S. Marcand,, E. Gilson,, and S. M. Gasser. 1996. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10:17961811.
138. Mayer, K.,, and J. Forney. 1999.A mutation in the flanking 5′- TA-3′ dinucleotide prevents excision of an internal eliminated sequence from the Paramecium tetraurelia genome. Genetics 151:597604.
139. Mayer, K. M.,, K. Mikami,, and J. D. Forney. 1998. A mutation in Paramecium tetraurelia reveals functional and structural features of developmentally excised DNA elements. Genetics 148:139149.
140. Megee, P. C.,, C. Mistrot,, V. Guacci,, and D. Koshland. 1999. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4:445450.
141. Merriam, E. V.,, and P. J. Bruns. 1988. Phenotypic assortment in Tetrahymena thermophila: assortment kinetics of antibiotic- resistance markers, tsA, death, and the highly amplified rDNA locus. Genetics 120:389395.
142. Meyer, E. 1992. Induction of specific macronuclear developmental mutations by microinjection of a cloned telomeric gene in Paramecium primaurelia. Genes Dev. 6:211222.
143. Meyer, E.,, A. Butler,, K. Dubrana,, S. Duharcourt,, and F. Caron. 1997. Sequence-specific epigenetic effects of the maternal somatic genome on developmental rearrangements of the zygotic genome in Paramecium primaurelia. Mol. Cell. Biol. 17:35893599.
144. Meyer, E.,, and S. Duharcourt. 1996. Epigenetic programming of developmental genome rearrangements in ciliates. Cell 87:912.
145. Meyer, E.,, and S. Duharcourt. 1996. Epigenetic regulation of programmed genomic rearrangements in Paramecium aurelia. J. Eukaryot. Microbiol. 43:453461.
146. Meyer, E.,, and A.-M. Keller. 1996. A Mendelian mutation affecting mating-type determination also affects developmental genomic rearrangements in Paramecium tetraurelia. Genetics 143:191202.
147. Mirkovitch, J.,, S. M. Gasser,, and U. K. Laemmli. 1988. Scaffold attachment of DNA loops in metaphase chromosomes. J. Mol. Biol. 200:101109.
148. Mitcham, J. L.,, A. J. Lynn,, and D. M. Prescott. 1992. Analysis of a scrambled gene: the gene encoding alpha-telomere-binding protein in Oxytricha nova. Genes Dev. 6:788800.
149. Nakai, Y.,, S. Kubota,, and S. Kohno. 1991. Chromatin diminution and chromosome elimination in four japanese hagfish species. Cytogenet. Cell Genet. 65:196198.
150. Nanney, D. L. 1957. Mating-type inheritance at conjugation in variety 4 of Paramecium aurelia. J. Protozool. 4:8995.
151. Nikiforov, M.,, M. Gorovsky,, and C. Allis. 2000. A novel chromodomain protein, Pdd3p, associates with internal eliminated sequences during macronuclear development in Tetrahymena thermophila. Mol. Cell. Biol. 20:41284134.
152. Nikiforov, M.,, J. Smothers,, M. Gorovsky,, and C. Allis. 1999. Excision of micronuclear-specific DNA requires parental expression of Pdd2p and occurs independently from DNA replication in Tetrahymena thermophila. Genes Dev. 13: 28522862.
153. Oka, Y.,, and T. Honjo. 1983. Common terminal repeats of the macronuclear DNA are absent from the micronuclear DNA in hypotrichous ciliate, Stylonychia pustulata. Nucleic Acids Res. 11:43254333.
154. Oka, Y.,, S. Shiota,, S. Nakai,, Y. Nishida,, and S. Okubo. 1980. Inverted terminal repeat sequence in the macronuclear DNA of Stylonychia pustulata. Gene 10:301306.
155. Orias, E., 1986. Ciliate conjugation, p. 4584. In J. G. Gall (ed.), The Molecular Biology of Ciliated Protozoa. Academic Press, Orlando, Fla..
156. Orias, E. 1991. Evolution of amitosis of the ciliate macronucleus: gain of the capacity to divide. J. Protozool. 38: 217221.
157. Orias, E. 1981. Probable somatic DNA rearrangements in mating type determination in Tetrahymena thermophila: a review and a model. Dev. Genet. 2:185202.
158. Paro, R.,, and D. S. Hogness. 1991. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. Proc. Natl. Acad. Sci. USA 88: 263267.
159. Patil, N.,, and K. Karrer. 2000. A developmentally regulated deletion element with long terminal repeats has cis-acting sequences in the flanking DNA. Nucleic Acids Res. 28: 14651472.
160. Patil, N. S.,, P. M. Hempen,, R. A. Udani,, and K. M. Karrer. 1997. Alternate junctions and microheterogeneity of Tlr1, a developmentally regulated DNA rearrangement in Tetrahymena thermophila. J. Eukaryot. Microbiol. 44:518522.
161. Plasterk, R. H. A. 1991. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 10:19191925.
162. Preer, J. R., Jr.,, and L. B. Preer. 1979. The size of macronuclear DNA and its relationship to models for maintaining genic balance. J. Protozool. 26:1418.
163. Preer, L. B.,, G. Hamilton,, and J. R. Preer. 1992. Micronuclear DNA from Paramecium tetraurelia: serotype 51A gene has internally eliminated sequences. J. Protozool. 39:678682.
164. Preer, L. B.,, B. Rudman,, S. Pollack,, and J. R. J. Preer. 1999. Does ribosomal DNA get out of the micronuclear chromosome in Paramecium tetraurelia by means of a rolling circle? Mol. Cell. Biol. 19:77927800.
165. Prescott, D. M. 1999. The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucleic Acids Res. 27:12431250.
166. Prescott, D. M.,, K. G. Murti,, and C. J. Bostock. 1973. Genetic apparatus of Stylonychia sp. Nature 242:597600.
167. Radice, A.,, B. Bugaj,, D. Fitch,, and S. Emmons. 1994. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol. Gen. Genet. 244: 606612.
168. Ribas-Aparicio, R. M.,, J. J. Sparkowski,, A. E. Proulx,, J. D. Mitchell,, and L. A. Klobutcher. 1987. Nucleic acid splicing events occur frequently during macronuclear development in the protozoan Oxytricha nova and involve the elimination of unique DNA. Genes Dev. 1:323336.
169. Roth, M. R.,, and D. M. Prescott. 1985. DNA intermediates and telomere addition during genome reorganization in Euplotes crassus. Cell 41:411417.
170. Ruiz, F.,, L. Vayssié,, C. Klotz,, L. Sperling,, and L. Madeddu. 1998. Homology-dependent gene silencing in Paramecium. Mol. Biol. Cell 9:931943.
171. Saveliev, S. V.,, and M. M. Cox. 1996. Developmentally programmed DNA deletion in Tetrahymena thermophila by a transposition-like reaction pathway. EMBO J. 15: 28582869.
172. Saveliev, S. V.,, and M. M. Cox. 1994. The fate of deleted DNA produced during programmed genomic deletion events in Tetrahymena thermophila. Nucleic Acids Res. 22: 56955701.
173. Saveliev, S. V.,, and M. M. Cox. 1995. Transient DNA breaks associated with programmed genomic deletion events in conjugating cells of Tetrahymena thermophila. Genes Dev. 9: 248255.
174. Scott, J. M.,, C. L. Leeck,, and J. D. Forney. 1994. Analysis of the micronuclear B type surface protein gene in Paramecium tetraurelia. Nucleic Acids Res. 22:50795084.
175. Scott, J. M.,, K. Mikami,, C. L. Leeck,, and J. D. Forney. 1994. Non-Mendelian inheritance of macronuclear mutations is gene specific in Paramecium tetraurelia. Mol. Cell. Biol. 14: 24792484.
176. Seegmiller, A.,, K. Williams,, R. Hammersmith,, T. Doak,, D. Witherspoon,, T. Messick,, L. Storjohann,, and G. Herrick. 1996. Internal eliminated sequences interrupting the Oxytricha 81 locus: allelic divergence, conservation, conversions, and possible transposon origins. Mol. Biol. Evol. 13: 13511362.
177. Seegmiller, A.,, K. Williams,, and G. Herrick. 1997. Two twogene macronuclear chromosomes of the hypotrichous ciliates Oxytricha fallax and O. trifallax generated by alternative processing of the 81 locus. Dev. Genet. 20:348357.
178. Selker, E. U. 1997. Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet. 13:296301.
179. Smothers, J. F.,, C. A. Mizzen,, M. M. Tubbert,, R. G. Cook,, and C. D. Allis. 1997. Pdd1p associates with germline-restricted chromatin and a second novel anlagen-enriched pro tein in developmentally programmed DNA elimination structures. Development 124:45374545.
180. Sonneborn, T. M. 1977. Genetics of cellular differentiation: stable nuclear differentiation in eukaryotic unicells. Annu. Rev. Genet. 11:349367.
181. Sonneborn, T. M.,, and M. V. Schneller. 1979. A genetic system for alternative stable characteristics in genomically identical homozygous clones. Dev. Genet. 1:2146.
182. Steele, C. J.,, G. A. Barkocy-Gallagher,, L. B. Preer,, and J. R. Preer, Jr. 1994. Developmentally excised sequences in micronuclear DNA of Paramecium. Proc. Natl. Acad. Sci. USA 91:22552259.
183. Steinbruck, G. 1983. Over-amplification of genes in macronuclei of hypotrichous ciliates. Chromosoma 88: 156163.
184. Steinbruck, G.,, I. Haas,, K. H. Hellmer,, and D. Ammermann. 1981. Characterization of macronuclear DNA in five species of ciliates. Chromosoma 83:199208.
185. Strunnikov, A. V.,, E. Hogan,, and D. Koshland. 1995. SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev. 9:587599.
186. Strunnikov, A. V.,, V. L. Larionov,, and D. Koshland. 1993. SMC1: an essential yeast gene encoding a putative head-rodtail protein is required for nuclear division and defines a new ubiquitous protein family. J. Cell Biol. 23:16351648.
187. Swanton, M. T.,, J. M. Heumann,, and D. M. Prescott. 1980. Gene-sized DNA molecules of the macronuclei in three species of hypotrichs: size distributions and absence of nicks. DNA of ciliated protozoa. VIII. Chromosoma 77:217227.
188. Tausta, S. L.,, L. R. Turner,, L. K. Buckley,, and L. A. Klobutcher. 1991. High fidelity developmental excision of Tec1 transposons and internal eliminated sequences in Euplotes crassus. Nucleic Acids Res. 19:32293236.
189. Tobler, H.,, A. Eiter,, and F. Muller. 1992. Chromatin diminution in nematode development. Trends Genet. 8:427432.
190. Tondravi, M. M. 1988.DNArearrangements associated with the H3 surface antigen gene of Tetrahymena thermophila that occur during macronuclear development. Curr. Genet. 14: 617626.
191. Vayssié, L.,, L. Sperling,, and L. Madeddu. 1997. Characterization of multigene families in the micronuclear genome of Paramecium tetraurelia reveals a germline specific sequence in an intron of a centrin gene. Nucleic Acids Res. 25: 10361041.
192. Wells, J. M.,, J. L. Ellingson,, D. M. Catt,, P. J. Berger,, and K. M. Karrer. 1994. A small family of elements with long inverted repeats is located near sites of developmentally regulatedDNArearrangement in Tetrahymena thermophila. Mol. Cell. Biol. 14:59395949.
193. Wen, J.,, C. Maercker,, and H. J. Lipps. 1996. Sequential excision of internal eliminated DNA sequences in the differentiating macronucleus of the hypotrichous ciliate Stylonychia lemnae. Nucleic Acids Res. 24:44154419.
194. Wen, J.-P.,, C. Eder,, and H. J. Lipps. 1995. The processing of macronuclear-destined DNA sequences microinjected into the macronuclear anlagen of the hypotrichous ciliate Stylonychia lemnae. Nucleic Acids Res. 23:17041709.
195. White, T. C.,, and S. L. Allen. 1986. Alternative processing of sequences during macronuclear development in Tetrahymena thermophila. J. Protozool. 33:3038.
196. Williams, K.,, T. G. Doak,, and G. Herrick. 1993. Developmental precise excision of Oxytricha trifallax telomere-bearing elements and formation of circles closed by a copy of the flanking target duplication. EMBO J. 12:45934601.
197. Wyman, C.,, and E. H. Blackburn. 1991. Tel-1 transposonlike elements of Tetrahymena thermophila are associated with micronuclear genome rearrangements. Genetics 129: 5767.
198. Yao, M.-C. 1996. Programmed DNA deletions in Tetrahymena: mechanisms and implications. Trends Genet. 12: 2630.
199. Yao, M.-C.,, C.-H. Yao,, and B. Monks. 1990. The controlling sequence for site-specific chromosome breakage in Tetrahymena. Cell 63:763772.
200. Yao, M. C. 1981. Ribosomal RNA gene amplification in Tetrahymena may be associated with chromosome breakage and DNA elimination. Cell 24:765774.
201. Yao, M. C.,, J. Choi,, S. Yokoyama,, C. F. Austerberry,, and C. H. Yao. 1984. DNA elimination in Tetrahymena: a developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell 36:433440.
202. Yao, M. C.,, and J. G. Gall. 1979. Alteration of the Tetrahymena genome during nuclear differentiation. J. Protozool. 26:1013.
203. Yao, M. C.,, and J. G. Gall. 1977. A single integrated gene for ribosomal RNA in a eucaryote, Tetrahymena pyriformis. Cell 12:121132.
204. Yao, M. C.,, and M. A. Gorovsky. 1974. Comparison of the sequences of macro-and micronuclear DNA of Tetrahymena pyriformis. Chromosoma 48:118.
205. Yao, M. C.,, A. R. Kimmel,, and M. A. Gorovsky. 1974. A small number of cistrons for ribosomal RNA in the germinal nucleus of a eukaryote, Tetrahymena pyriformis. Proc. Natl. Acad. Sci. USA 71:30823086.
206. Yao, M. C.,, and C. H. Yao. 1989. Accurate processing and amplification of cloned germ line copies of ribosomal DNA injected into developing nuclei of Tetrahymena thermophila. Mol. Cell. Biol. 9:10921099.
207. Yao, M. C.,, and C. H. Yao. 1994. Detection of circular excised DNA deletion elements in Tetrahymena thermophila during development. Nucleic Acids Res. 22:57025708.
208. Yao, M. C.,, and C. H. Yao. 1981. Repeated hexanucleotide C-C-C-C-A-A is present near free ends of macronuclear DNA of Tetrahymena. Proc. Natl. Acad. Sci. USA 78:74367439.
209. Yao, M. C.,, K. Zheng,, and C. H. Yao. 1987. A conserved nucleotide sequence at the sites of developmentally regulated chromosomal breakage in Tetrahymena. Cell 48:779788.
210. Yao, M. C.,, S. G. Zhu,, and C. H. Yao. 1985. Gene amplification in Tetrahymena thermophila: formation of extrachromosomal palindromic genes coding for rRNA. Mol. Cell. Biol. 5:12601267.
211. Yasuda, L. F.,, and M. C. Yao. 1991. Short inverted repeats at a free end signal large palindromic DNA formation in Tetrahymena. Cell 67:505516.
212. Yoder, J. A.,, C. P. Walsh,, and T. H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335340.
213. Yokoyama, R.,, and M. C. Yao. 1986. Sequence characterization of Tetrahymena macronuclear DNA ends. Nucleic Acids Res. 14:21092122.
214. You, Y.,, K. Aufderheide,, J. Morand,, K. Rodkey,, and J. Forney. 1991. Macronuclear transformation with specific DNA fragments controls the content of the new macronuclear genome in Paramecium tetraurelia. Mol. Cell. Biol. 11: 11331137.
215. You, Y.,, J. Scott,, and J. Forney. 1994. The role of macronuclear DNA sequences in the permanent rescue of a non- Mendelian mutation in Paramecium tetraurelia. Genetics 136:13191324.
216. Yu, G. L.,, and E. H. Blackburn. 1991. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67:823832.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error