1887

Chapter 33 : I Elements in Drosophila melanogaster

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

I Elements in Drosophila melanogaster, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap33-2.gif

Abstract:

At the beginning of the 1970s Picard and L’Héritier reported that crosses between particular strains of produce progeny exhibiting genetic abnormalities. In 1976 Picard reported that the factor responsible for IR hybrid dysgenesis is a transposable element, the first discovered in , and named it the I factor. The determination of its sequence showed that it belongs to the class of non-long terminal repeat retrotransposons (NLRs) also known as long interspersed nucleotidic elements (LINEs). The I factor is one of the models used to study the mechanism of transposition of NLRs because it can be mobilized at high frequency by dysgenic crosses, giving the opportunity to study the molecular mechanism of transposition in vivo. The species can be divided into two classes of strains according to the IR system of hybrid dysgenesis, inducer (or I) and reactive (or R). I strains contain several complete and functional I factors, R strains do not. The mechanism of transposition of the I factor is thought to be related to target-primed reverse transcription (TPRT) requiring a full-length RNA intermediate. The study of deletion derivatives indicates that the sequences comprised between nucleotides 41 and 100 might be involved in the inhibition of somatic expression. The study of deletion derivatives showed that more than one region of the protein is involved in DNA binding and that the cysteine-rich motifs are not essential for this, but are required for the formation of the high molecular weight structures.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33

Key Concept Ranking

Non-Long Terminal Repeat Retrotransposons
0.43448016
0.43448016
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Results of crosses between the two categories of strains involved in the IR system of hybrid dysgenesis.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure of the I factor and of its RNA. Boxes represent the two ORFs. C represents cysteine-rich motifs, and EN, RT, and RH represent the endonuclease, reverse transcriptase, and RNase H domains, respectively. Below is shown the RNA of the I factor starting at the first nucleotide of the element and ending after the UAA repeats at the 3′end (double line).

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Retrotransposition of the I factor generating repeats at the 3′end. The endonuclease encoded by the I factor makes staggered nicks in chromosomal DNA (A). The reverse transcriptase of the element associated with the transposition intermediate, which extends beyond the UAA repeats, binds the target site and uses the 3′-OH at the end of chromosomal DNA to initiate reverse transcription (B). After polymerization of a few nucleotides (C) the RNA may dissociate and reassociate to a short complementary sequence in the newly synthesized cDNA (D). Reverse transcriptase proceeds to the 5′end of the RNA template and switches to the target DNA (E). After degradation of the RNA by the I factor RNase H, synthesis of the second strand of the cDNA, and ligation, there is insertion of a full-length I element flanked by a target site duplication. The target site is shown in regular type, the RNA is shown in boldface (except for the extra nucleotides downstream of the UAA repeats, which are in italics []), and the cDNA is shown in bold italics. The duplication of the target sequence is underlined. Lowercase letters in panels E and F indicate newly synthesized DNA of the target site duplication.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Ability to repress I factor activity in "reconstructed" R stocks devoid of transposed I elements obtained in the progeny of RSF females. (A) Experimental scheme. RSF females were backcrossed to R males, and female and male progeny having the complete genotype of an R strain and devoid of transposed copies of the I factor were selected to establish the reconstructed R stocks. I factor activity was estimated by crossing at each generation females of the stocks to I males and determining the hatching percentages of the eggs laid by their daughters (SF females). I and R represent half genomes from an I or an R strain, respectively. (B) Ability over generations of the females of the reconstructed R stocks to repress I factor activity. This ability is high during the first generations (high fertility of their SF daughters) and decreases progressively generation after generation (low fertility of the SF daughters). The frequency of transposition of I factors is higher in more sterile SF females ( ). Data are from reference .

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Modifications of reactivity over generations induced by aging. A strongly reactive strain was maintained by producing each generation from either young-laying females (Y) or old-laying females (O). The reactivity level was determined at various generations by measuring the hatching percentages of the eggs laid by SF females obtained by crossing females of these stocks with I males. Reactivity remained strong in the Y stock but became progressively weaker generation after generation in the O stock. This change in reactivity is reversible as shown when young-laying females are used again (R1 and R2). The frequency of transposition of I factors is higher when SF females are derived from strongly reactive females than when derived from weakly reactive females ( ). Modified from reference with permission.

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Distribution of I elements in the eight species of the D. melanogaster subgroup. The phylogenetic relationships between the eight species of the subgroup are drawn according to reference 55. The number of plus signs indicates the intensity of the signals observed in Southern blot experiments (21).

Citation: Bucheton A, Busseau I, Teninges D. 2002. I Elements in Drosophila melanogaster, p 796-812. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap33
1. Abad, P.,, C. Vaury,, A. Pelisson,, M. C. Chaboissier,, I. Busseau,, and A. Bucheton. 1989. A long interspersed repetitive element-the I factor of Drosophila teissieri-is able to transpose in different Drosophila species. Proc. Natl. Acad. Sci. USA 86:88878891.
2. Adams, M. D.,, S. E. Celniker,, R. A. Holt,, C. A. Evans,, J. D. Gocayne,, P. G. Amanatides,, S. E. Scherer,, P. W. Li,, R. A. Hoskins,, R. F. Galle,, R. A. George,, S. E. Lewis,, S. Richards,, M. Ashburner,, S. N. Henderson,, G. G. Sutton,, J. R. Wortman,, M. D. Yandell,, Q. Zhang,, L. X. Chen,, R. C. Brandon,, Y. H. Rogers,, R. G. Blazej,, M. Champe,, B. D. Pfeiffer,, K. H. Wan,, C. Doyle,, E. G. Baxter,, G. Helt,, C. R. Nelson,, G. L. Gabor Miklos,, J. F. Abril,, A. Agbayani,, H. J. An,, C. Andrews- Pfannkoch,, D. Baldwin,, R. M. Ballew,, A. Basu,, J. Baxendale,, L. Bayraktaroglu,, E. M. Beasley,, K. Y. Beeson,, P. V. Benos,, B. P. Berman,, D. Bhandari,, S. Bolshakov,, D. Borkova,, M. R. Botchan,, J. Bouck,, P. Brokstein,, P. Brottier,, K. C. Burtis,, D. A. Busam,, H. Butler,, E. Cadieu,, A. Center,, I. Chandra,, J. M. Cherry,, S. Cawley,, C. Dahlke,, L. B. Davenport,, P. Davies,, B. de Pablos,, A. Delcher,, Z. Deng,, A. D. Mays,, I. Dew,, S. M. Dietz,, K. Dodson,, L. E. Doup,, M. Downes,, S. Dugan- Rocha,, B. C. Dunkov,, P. Dunn,, K. J. Durbin,, C. C. Evangelista,, C. Ferraz,, S. Ferriera,, W. Fleischmann,, C. Fosler,, A. E. Gabrielian,, N. S. Garg,, W. M. Gelbart,, K. Glasser,, A. Glodek,, F. Gong,, J. H. Gorrell,, Z. Gu,, P. Guan,, M. Harris,, N. L. Harris,, D. Harvey,, T. J. Heiman,, J. R. Hernandez,, J. Houck,, D. Hostin,, K. A. Houston,, T. J. Howland,, M. H. Wei,, C. Ibegwam,, M. Jalali,, F. Kalush,, G. H. Karpen,, Z. Ke,, J. A. Kennison,, K. A. Ketchum,, B. E. Kimmel,, C. D. Kodira,, C. Kraft,, S. Kravitz,, D. Kulp,, Z. Lai,, P. Lasko,, Y. Lei,, A. A. Levitsky,, J. Li,, Z. Li,, Y. Liang,, X. Lin,, X. Liu,, B. Mattei,, T. C. McIntosh,, M. P. McLeod,, D. McPherson,, G. Merkulov,, N. V. Milshina,, C. Mobarry,, J. Morris,, A. Moshrefi,, S. M. Mount,, M. Moy,, B. Murphy,, L. Murphy,, D. M. Muzny,, D. L. Nelson,, D. R. Nelson,, K. A. Nelson,, K. Nixon,, D. R. Nusskern,, J. M. Pacleb,, M. Palazzolo,, G. S. Pittman,, S. Pan,, J. Pollard,, V. Puri,, M. G. Reese,, K. Reinert,, K. Remington,, R. D. Saunders,, F. Scheeler,, H. Shen,, B. C. Shue,, I. Siden- Kiamos,, M. Simpson,, M. P. Skupski,, T. Smith,, E. Spier,, A. C. Spradling,, M. Stapleton,, R. Strong,, E. Sun,, R. Svirskas,, C. Tector,, R. Turner,, E. Venter,, A. H. Wang,, X. Wang,, Z. Y. Wang,, D. A. Wassarman,, G. M. Weinstock,, J. Weissenbach,, S. M. Williams,, T. Woodage,, K. C. Worley,, D. Wu,, S. Yang,, Q. A. Yao,, J. Ye,, R. F. Yeh,, J. S. Zaveri,, M. Zhan,, G. Zhang,, Q. Zhao,, L. Zheng,, X. H. Zheng,, F. N. Zhong,, W. Zhong,, X. Zhou,, S. Zhu,, X. Zhu,, H. O. Smith,, R. A. Gibbs,, E. W. Myers,, G. M. Rubin,, and J. C. Venter. 2000. The genome sequence of Drosophila melanogaster. Science 287: 21852195.
3. Arkhipova, I. R. 1995. Promoter elements in Drosophila melanogaster revealed by sequence analysis. Genetics 139: 13591369.
4. Arkhipova, I. R.,, and Y. V. Ilyin. 1991. Properties of promoter regions of mdg1 Drosophila retrotransposon indicate that it belongs to a specific class of promoters. EMBO J. 10: 11691177.
5. Bazin, C.,, B. Denis,, P. Capy,, E. Bonnivard,, and D. Higuet. 1999. Characterization of permissivity for hobo-mediated gonadal dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 261:480486.
6. Berg, J. M. 1990. Zinc fingers and other metal-binding domains. Elements for interactions between macromolecules. J. Biol. Chem. 265:65136516.
7. Besansky, N. J.,, J. A. Bedell,, and O. Mukabayire. 1994. Q: a new retrotransposon from the mosquito Anopheles gambiae. Insect Mol. Biol. 3:4956.
8. Biemont, C. 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393397.
9. Biessmann, H.,, K. Valgeirsdottir,, A. Lofsky,, C. Chin,, B. Ginther,, R. W. Levis,, and M. L. Pardue. 1992. HeT-A, a transposable element specifically involved in healing broken chromosome ends in Drosophila melanogaster. Mol. Cell. Biol. 12:39103918.
10. Birchler, J. A.,, M. Pal-Bhadra,, and U. Bhadra. 1999. Less from more: cosuppression of transposable elements. Nat. Genet. 21:148149.
11. Bouhidel, K.,, C. Terzian,, and H. Pinon. 1994. The full-length transcript of the I factor, a LINE element of Drosophila melanogaster, is a potential bicistronic RNA messenger. Nucleic Acids Res. 22:23702374.
12. Bregliano, J. C.,, A. Laurencon,, and F. Degroote. 1995. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. I. Induction by inhibitors of nucleotide synthesis and by gamma rays. Genetics 141:571578.
13. Bucheton, A. 1978. Non-mendelian female sterility in Drosophila melanogaster: influence of ageing and thermic treatments. I. Evidence for a partly inheritable effect of these two factors. Heredity 41:357369.
14. Bucheton, A. 1979. Non-mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. III. Cumulative effects induced by these factors. Genetics 93:131142.
15. Bucheton, A. 1979. Non-mendelian female sterility in Drosophila melanogaster: influence of aging and thermic treatments. II. Action of thermic treatments on the sterility of SF females and on the reactivity of reactive females. Biol. Cell. 34:4350.
16. Bucheton, A. 1990. I transposable elements and I-R hybrid dysgenesis in Drosophila. Trends Genet. 6:1621.
17. Bucheton, A.,, and J.-C. Bregliano. 1982. The I-R system of hybrid dysgenesis in Drosophila melanogaster: heredity of the reactive condition. Biol. Cell. 46:123132.
18. Bucheton, A.,, J. M. Lavige,, G. Picard,, and P. L’Heritier. 1976. Non-mendelian female sterility in Drosophila melanogaster: quantitative variations in the efficiency of inducer and reactive strains. Heredity 36:305314.
19. Bucheton, A.,, R. Paro,, H. M. Sang,, A. Pelisson,, and D. J. Finnegan. 1984. The molecular basis of I-R hybrid dysgenesis in Drosophila melanogaster: identification, cloning, and properties of the I factor. Cell. 38:153163.
20. Bucheton, A.,, and G. Picard. 1978. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of reactivity levels. Heredity 40:207223.
21. Bucheton, A.,, M. Simonelig,, C. Vaury,, and M. Crozatier. 1986. Sequences similar to the I transposable element involved in I-R hybrid dysgenesis in D. melanogaster occur in other Drosophila species. Nature 322:650652.
22. Bucheton, A.,, C. Vaury,, M.-C. Chaboissier,, P. Abad,, A. Pelisson,, and M. Simonelig. 1992. I elements and the Drosophila genome. Genetica 86:175190.
23. Busseau, I.,, M.-C. Chaboissier,, A. Pelisson,, and A. Bucheton. 1994. I factors in Drosophila melanogaster: transposition under control. Genetica 93:101116.
24. Busseau, I.,, S. Malinsky,, M. Balakireva,, M.-C. Chaboissier,, D. Teninges,, and A. Bucheton. 1998. A genetically marked I element in Drosophila melanogaster can be mobilized when ORF2 is provided in trans. Genetics 148:267275.
25. Busseau, I.,, A. Pelisson,, and A. Bucheton. 1989. Characterization of 5′ truncated transposed copies of the I factor in Drosophila melanogaster. Nucleic Acids Res. 17:69396945.
26. Busseau, I.,, A. Pelisson,, and A. Bucheton. 1989. I elements of Drosophila melanogaster generate specific chromosomal rearrangements during transposition. Mol. Gen. Genet. 218: 222228.
27. Cavalli, G.,, and R. Paro. 1998. The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505518.
28. Chaboissier, M.-C.,, C. Bornecque,, I. Busseau,, and A. Bucheton. 1995. A genetically tagged, defective I element can be complemented by actively transposing I factors in the germline of I-R dysgenic females in Drosophila melanogaster. Mol. Gen. Genet. 248:434438.
29. Chaboissier, M.-C.,, A. Bucheton,, and D. J. Finnegan. 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95:1178111785.
30. Chaboissier, M.-C.,, I. Busseau,, J. Prosser,, D. J. Finnegan,, and A. Bucheton. 1990. Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO J. 9:35573563.
31. Chaboissier, M.-C.,, D. J. Finnegan,, and A. Bucheton. 2000. Retrotransposition of the I factor, a non-long terminal repeat retrotransposon of Drosophila, generates tandem repeats at the 3′ end. Nucleic Acids Res. 28:24672472.
32. Crozatier, M.,, C. Vaury,, I. Busseau,, A. Pelisson,, and A. Bucheton. 1988. Structure and genomic organization of I elements involved in I-R hybrid dysgenesis in Drosophila melanogaster. Nucleic Acids Res. 16:91999213.
33. Dawson, A.,, E. Hartswood,, T. Paterson,, and D. J. Finnegan. 1997. A LINE-like transposable element in Drosophila, the I factor, encodes a protein with properties similar to those of retroviral nucleocapsids. EMBO J. 16:44484455.
34. Dimitri, P.,, B. Arca,, L. Berghella,, and E. Mei. 1997. High genetic instability of heterochromatin after transposition of the LINE-like I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94:80528057.
35. Dorer, D. R.,, and S. Henikoff. 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77:9931002.
36. Eickbush, D. G.,, D. D. Luan,, and T. H. Eickbush. 2000. Integration of Bombyx mori R2 sequences into the 28S ribosomal RNA genes of Drosophila melanogaster. Mol. Cell. Biol. 20:213223.
37. Evans, J. P.,, and R. D. Palmiter. 1991. Retrotransposition of a mouse L1 element. Proc. Natl. Acad. Sci. USA 88: 87928795.
38. Fawcett, D. H.,, C. K. Lister,, E. Kellett,, and D. J. Finnegan. 1986. Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell 47:10071015.
39. Felger, I.,, and J. A. Hunt. 1992. A non-LTR retrotransposon from the Hawaiian Drosophila: the LOA element. Genetica 85:119130.
40. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905916.
41. Ferrandon, D.,, L. Elphick,, C. Nusslein-Volhard,, and D. St Johnston. 1994. Staufen protein associates with the 3′UTR of bicoidmRNAto form particles that move in a microtubuledependent manner. Cell 79:12211232.
42. Finnegan, D. J., 1989. The I factor and I-R hybrid dysgenesis in Drosophila melanogaster, p. 503517. In D. E. Berg, and M. M. Howe, (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
43. Fire, A.,, S. Xu,, M. K. Montgomery,, S. A. Kostas,, S. E. Driver,, and C. C. Mello. 1998. Potent and specific genetic interference by double-strandedRNAin Caenorhabditis elegans. Nature 391:806811.
44. Hohjoh, H.,, and M. F. Singer. 1996. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15:630639.
45. Hohjoh, H.,, and M. F. Singer. 1997. Sequence-specific singlestrand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J. 16:60346043.
46. Jakubczak, J. L.,, W. D. Burke,, and T. H. Eickbush. 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. USA 88: 32953299.
47. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153:17671774.
48. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21:209212.
49. Jensen, S.,, and T. Heidmann. 1991. An indicator gene for detection of germline retrotransposition in transgenic Drosophila demonstrates RNA-mediated transposition of the LINE I element. EMBO J. 10:19271937.
50. Kennerdell, J. R.,, and R. W. Carthew. 1998. Use of dsRNAmediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:10171026.
51. Ketting, R. F.,, T. H. Haverkamp,, H. G. van Luenen,, and R. H. Plasterk. 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133141.
52. Kidwell, M. G. 1983. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 80:16551659.
53. Kinsey, J. A. 1993. Transnuclear retrotransposition of the Tad element of Neurospora. Proc. Natl. Acad. Sci. USA 90: 93849387.
54. Kozak, M. 1987. Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol. Cell. Biol. 7:34383445.
55. Lachaise, D.,, M.-L. Cariou,, J. R. David,, F. Lemenier,, L. Tsacas,, and M. Ashburner,. 1988. Historical biogeography of the Drosophila melanogaster species subgroup, p. 152225. In M. K. Hecht,, B. Wallace,, and G. T. Prance (ed.), Evolutionary Biology. Plenum Publishing Corporation, New York, N.Y.
56. Laurencon, A.,, and J. C. Bregliano. 1995. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. II. Differential sensitivity to gamma rays. Genetics 141:579585.
57. Laurencon, A.,, F. Gay,, J. Ducau,, and J. C. Bregliano. 1997. Evidence for an inducible repair-recombination system in the female germ line of Drosophila melanogaster. III. Correlation between reactivity levels, crossover frequency and repair efficiency. Genetics 146:13331344.
58. Lavige, J.-M. 1986. I-R system of hybrid dysgenesis in Drosophila melanogaster: further data on the arrest of development of the embryos from SF females. Biol. Cell. 56:207216.
59. Lavige, J.-M.,, and P. Lecher. 1982. Mitoses anormales dans les embryons àdéveloppement bloquédans le système I-R de dysgénésie hybride chez Drosophila melanogaster. Biol. Cell. 44:914.
60. Levis, R. W.,, R. Ganesan,, K. Houtchens,, L. A. Tolar,, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:10831093.
61. Luan, D. D.,, and T. H. Eickbush. 1995. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15: 38823891.
62. Luan, D. D.,, and T. H. Eickbush. 1996. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase. Mol. Cell. Biol. 16:47264734.
63. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595605.
64. Maestre, J.,, T. Tchenio,, O. Dhellin,, and T. Heidmann. 1995. mRNA retroposition in human cells: processed pseudogene formation. EMBO J. 14:63336338.
65. Malik, H. S.,, W. D. Burke,, and T. H. Eickbush. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16:793805.
65a.. Malinsky, S.,, A. Bucheton,, and I. Busseau. 2000. New insights on homology-dependent silencing of I factor activity by transgenes containing ORF1 in Drosophila melanogaster. Genetics 156:11471155.
66. Martin, F.,, C. Maranon,, M. Olivares,, C. Alonso,, and M. C. Lopez. 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzi: homology of the first ORF with the ape family of DNA repair enzyme. J. Mol. Biol. 247:4959.
67. Martin, S. L. 1991. Ribonucleoprotein particles with LINE- 1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11:48044807.
68. Martin, S. L.,, and D. Branciforte. 1993. Synchronous expression of LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 13:53835392.
69. McLean, C.,, A. Bucheton,, and D. J. Finnegan. 1993. The 5′untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol. Cell. Biol. 13:10421050.
70. McMillan, J. P.,, and M. F. Singer. 1993. Translation of the human LINE-1 element, L1Hs. Proc. Natl. Acad. Sci. USA 90:1153311537.
71. Minakami, R.,, K. Kurose,, K. Etoh,, Y. Furuhata,, M. Hattori,, and Y. Sakaki. 1992. Identification of an internal cis-element essential for the human L1 transcription and a nuclear factor( s) binding to the element. Nucleic Acids Res. 20: 31393145.
72. Minchiotti, G.,, C. Contursi,, and P. P. Di Nocera. 1997. Multiple downstream promoter modules regulate the transcription of the Drosophila melanogaster I, Doc and F elements. J. Mol. Biol. 267:3746.
73. Misquitta, L.,, and B. M. Paterson. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96:14511456.
74. Mizrokhi, L. J.,, S. G. Georgieva,, and Y. V. Ilyin. 1988. jockey, a mobile Drosophila element similar to mammalian LINEs, is transcribed from the internal promoter byRNApolymerase II. Cell 54:685691.
75. Montgomery, M. K.,, S. Xu,, and A. Fire. 1998. RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 95: 1550215507.
76. Moran, J. V.,, R. J. DeBerardinis,, and H. H. Kazazian, Jr. 1999. Exon shuffling by L1 retrotransposition. Science 283: 15301534.
77. Moran, J. V.,, S. E. Holmes,, T. P. Naas,, R. J. DeBerardinis,, J. D. Boeke,, and H. H. Kazazian, Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87: 917927.
78. Ogiwara, I.,, M. Miya,, K. Ohshima,, and N. Okada. 1999. Retropositional parasitism of SINEs on LINEs: identification of SINEs and LINEs in elasmobranchs. Mol. Biol. Evol. 16: 12381250.
79. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1997. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90:479490.
80. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1999. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99: 3546.
81. Pelisson, A. 1981. The I-R system of hybrid dysgenesis in Drosophila melanogaster: are I factor insertions responsible for the mutator effect of the I—R interaction? Mol. Gen. Genet. 183:123129.
82. Pelisson, A.,, and J.-C. Bregliano. 1981. The I-R system of hybrid dysgenesis in Drosophila melanogaster: construction and characterization of a non-inducer stock. Biol. Cell. 40: 159164.
83. Pelisson, A.,, and J.-C. Bregliano. 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207:306313.
84. Pelisson, A.,, D. J. Finnegan,, and A. Bucheton. 1991. Evidence for retrotransposition of the I factor, a LINE element of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 88: 49074910.
85. Pelisson, A.,, and G. Picard. 1979. Non mendelian female sterility in Drosophila melanogaster: I factor mapping on inducer chromosomes. Genetica 50:141148.
86. Picard, G. 1971. Un cas de stérilité femelle chez D. melanogaster, lieéaùn agent transmis maternellement. C. R. Acad. Sci. 272:24822487.
87. Picard, G. 1976. Non-mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83:107123.
88. Picard, G. 1978. Non mendelian female sterility in Drosophila melanogaster: further data on chromosomal contamination. Mol. Gen. Genet. 164:235247.
89. Picard, G. 1978. Non mendelian sterility in Drosophila melanogaster: sterility in stocks derived from the genetically inducer or reactive offspring of SF and RSF females. Biol. Cell. 31:245254.
90. Picard, G.,, J. C. Bregliano,, A. Bucheton,, J. M. Lavige,, A. Pelisson,, and M. G. Kidwell. 1978. Non-mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 32:275287.
91. Picard, G.,, and P. L’Heritier. 1971. A maternally inherited factor inducing sterility in Drosophila melanogaster. Drosophila Inf. Serv. 46:54.
92. Picard, G.,, J.-M. Lavige,, A. Bucheton,, and J.-C. Bregliano. 1977. Non mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo lethality. Biol. Cell. 29:8998.
93. Pickeral, O. K.,, W. Makalowski,, M. S. Boguski,, and J. D. Boeke. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10: 411415.
94. Prescott, J. C.,, and E. H. Blackburn. 1999. Telomerase: Dr Jekyll or Mr Hyde? Curr. Opin. Genet. Dev. 9:368373.
95.. Pritchard, M. A.,, J. M. Dura,, A. Pelisson,, A. Bucheton,, and D. J. Finnegan. 1988. A cloned I-factor is fully functional in Drosophila melanogaster. Mol. Gen. Genet. 214:533540.
96. Proust, J.,, C. Prudhommeau,, V. Ladeveze,, M. Gotteland,, and M. C. Fontyne-Branchard. 1992. I-R hybrid dysgenesis in Drosophila melanogaster. Use of in situ hybridization to show the association of I factor DNAwith induced sex-linked recessive lethals. Mutat. Res. 268:265285.
97. Prudhommeau, C.,, and J. Proust. 1990. I-R hybrid dysgenesis in Drosophila melanogaster; nature and site specificity of induced recessive lethals. Mutat. Res. 230:135157.
98. Roche, S. E.,, and D. C. Rio. 1998. Trans-silencing by P elements inserted in subtelomeric heterochromatin involves the Drosophila Polycomb group gene, Enhancer of zeste. Genetics 149:18391855.
99. Ronsseray, S.,, M. Lehmann,, D. Nouaud,, and D. Anxolabehere. 1996. The regulatory properties of autonomous subtelomeric P elements are sensitive to a Suppressor of variegation in Drosophila melanogaster. Genetics 143:16631674.
100. Ronsseray, S.,, L. Marin,, M. Lehmann,, and D. Anxolabehere. 1998. Repression of hybrid dysgenesis in Drosophila melanogaster by combinations of telomeric P-element reporters and naturally occurring P elements. Genetics 149:18571866.
101. Sang, H. M.,, A. Pelisson,, A. Bucheton,, and D. J. Finnegan. 1984. Molecular lesions associated with white gene mutations induced by I-R hybrid dysgenesis in Drosophila melanogaster. EMBO J. 3:30793085.
102. Segal-Bendirdjian, E.,, and T. Heidmann. 1991. Evidence for a reverse transcription intermediate for a marked line transposon in tumoral rat cells. Biochem. Biophys. Res. Commun. 181:863870.
103. Seleme, M.,, I. Busseau,, S. Malinsky,, A. Bucheton,, and D. Teninges. 1999. High-frequency retrotransposition of a marked I factor in Drosophila melanogaster correlates with a dynamic expression pattern of the ORF1 protein in the cytoplasm of oocytes. Genetics 151:761771.
104. Sezutsu, H.,, E. Nitasaka,, and T. Yamazaki. 1995. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. Mol. Gen. Genet. 249:168178.
105. Simonelig, M.,, C. Bazin,, A. Pelisson,, and A. Bucheton. 1988. Transposable and nontransposable elements similar to the I factor involved in inducer-reactive (IR) hybrid dysgenesis in Drosophila melanogaster coexist in various Drosophila species. Proc. Natl. Acad. Sci. USA 85:11411145.
106. Stacey, S. N.,, R. A. Lansman,, H. W. Brock,, and T. A. Grigliatti. 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3:522534.
107. Swergold, G. D. 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10:67186729.
108. Tatout, C.,, M. Docquier,, P. Lachaume,, M. Mesure,, P. Lecher,, and H. Pinon. 1994. Germ-line expression of a functional LINE from Drosophila melanogaster: fine characterization allows for potential investigations of trans-regulators. Int. J. Dev. Biol. 38:2733.
109. Tchenio, T.,, E. Segal-Bendirdjian,, and T. Heidmann. 1993. Generation of processed pseudogenes in murine cells. EMBO J. 12:14871497.
110. Tschiersch, B.,, A. Hofmann,, V. Krauss,, R. Dorn,, G. Korge,, and G. Reuter. 1994. The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J. 13:38223831.
111. Tuschl, T.,, P. D. Zamore,, R. Lehmann,, D. P. Bartel,, and P. A. Sharp. 1999. Targeted mRNA degradation by doublestranded RNA in vitro. Genes Dev. 13:31913197.
112. Vaury, C.,, P. Abad,, A. Pelisson,, A. Lenoir,, and A. Bucheton. 1990. Molecular characteristics of the heterochromatic I elements from a reactive strain of Drosophila melanogaster. J. Mol. Evol. 31:424431.
113. Vaury, C.,, A. Bucheton,, and A. Pelisson. 1989. The beta heterochromatic sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98: 215224.
114. Vaury, C.,, A. Pelisson,, P. Abad,, and A. Bucheton. 1993. Properties of transgenic strains of Drosophila melanogaster containing I transposable elements from Drosophila teissieri. Genet. Res. 61:8190.
115. Weiler, K. S.,, and B. T. Wakimoto. 1995. Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29: 577605.
116. Xiong, Y.,, and T. H. Eickbush. 1993. Dong, a non-long terminal repeat (non-LTR) retrotransposable element from Bombyx mori. Nucleic Acids Res. 21:1318.
117. Xiong, Y. E.,, and T. H. Eickbush. 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55:235246.
118. Zakian, V. A. 1995. Telomeres: beginning to understand the end. Science 270:16011607.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error