1887

Chapter 39 : Switching of Mating-Type Genes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Switching of Mating-Type Genes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap39-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap39-2.gif

Abstract:

Homothallic switching of the budding yeast mating-type (MAT) genes has provided one of the most intensively studied examples of a programmed genetic rearrangement. A site-specific double-strand break (DSB) at the locus, induced by HO endonuclease, provokes the replacement of mating-type specific sequences through homologous recombination. Homothallic organisms have the capacity to self-diploidize by converting some offspring of a haploid cell of one mating type to cells of the opposite mating type. This chapter briefly looks at the determination of cell lineage and at the mechanism of silencing the donor sequences. The conversion of one mating type to the other involves the replacement at the locus of Ya or Yα by a gene conversion induced by a DSB. Additional information has been gleaned from the analysis of DSB-induced recombination in meiotic cells. has evolved an elaborate mechanism that gives it the ability to choose between its two donors. It makes sense that should seek out and recombine with rather than , so that the recombinational repair of the DSB will lead to a switch to the opposite mating type. By comparing the recombination enhancer (RE) sequences of and (which is functional in ), it was possible to narrow down the RE to 270 contiguous base pairs in or 244 in , within which are four well-conserved subdomains.

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39

Key Concept Ranking

DNA Synthesis
0.7246247
Bacterial Proteins
0.52278835
Origin Recognition Complex
0.4337391
Nucleotide Excision Repair
0.418185
0.7246247
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Mating-type loci on chromosome III. In addition to the expressed locus, chromosome III harbors two unexpressed donor loci, and These donors are maintained in a heterochromatic structure (diagonal lines) enforced by two adjacent silencer sequences -E (E) and -I (I), and -E (E) and -I (I). The locus shares X and Z1 regions of homology with both and whereas the W and Z2 regions are shared only with When the HO endonuclease is expressed, alleles can be switched by repair of a double-strand break, leading to a gene conversion event in which the -Y region is replaced without altering the donor sequences. The choice of or is mating-type dependent and is enforced by a small -acting element, the RE. Reprinted from reference 57 with permission from the (© 1998 by Annual Reviews).

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Homothallic life cycle of A homothallic () haploid cell that has divided can switch to the opposite mating type, and the original cell and its switched partner can conjugate to form a diploid cell. switching usually occurs only in the G1 phase of the cell cycle and only in haploid cells that have divided previously (i.e., in mother cells). The restriction of switching to mother cells depends on a novel regulatory mechanism in which the mRNA of a repressor protein, Ash1p, is localized only to the daughter cell and thus prevents expression in those cells. A cell that has switched but fails to conjugate can switch again. The efficiency of switching and conjugation is very high, so that colonies derived from single haploid spores are composed only of nonmating diploid cells, where is turned off. With appropriate carbon sources and under nitrogen starvation, diploid cells can undergo meiosis and sporulation, which will regenerate haploid cells. Reprinted in part from reference 57 with permission from the (© 1998 by Annual Reviews).

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Mating-type regulation of -specific, α-specific, and haploid-specific genes. (A) Expression of haploid and matingtype- specific genes depends on several combinations of regulatory proteins expressed by and , in combination with the Mcm1p. (B) Structure of and alleles, distinguished by their Y(650 bp) or Y(750 bp) regions and the expression of genes in different cell types. contains two transcripts. 1 encodes a corepressor that acts in / diploids to turn off haploid-specific genes, along with the homeodomain protein 2, 2 may have a role in the pheromone response pathway. In the 1 gene encodes a coactivator of transcription of -specific genes, acting in conjunction with Mcm1p. 2 encodes a corepressor that acts with the Mcm1 protein to turn off specific genes. In a diploid, Mata1p and Mat2p repress 1 transcription.

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

A basic model for switching, based on the DSB repair model of Szostak et al. (185). After HO endonuclease cleavage, a 3′ end in Z1 is exposed by 5′-to-3′ exonuclease. Strand invasion allows the initiation of new DNA synthesis from the 3′ end of the invading strand, copying the donor locus. This intermediate step can be monitored by PCR amplification between a primer homologous to a region distal to and one homologous to the Y region of the donor locus; amplification is only possible when there is a covalent DNA intermediate that connects both primer sites. Removal of the original Y region allows a second strand of new DNA synthesis. The completion of switching can be detected by Southern blot hybridization or by a second PCR primer set. Experimentally, the intermediate measured by the first PCR reaction occurs 30 min before the process is completed ( ). Reprinted in part from reference 57 with permission from the (© 1998 by Annual Reviews).

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Silencing of and (A) A cartoon of heterochromatic structure of the silent locus A highly positioned array of nucleosomes (large circles) are established between -E and -1, which contain binding sites for the DNA replication complex, ORC, and the DNA-binding proteins Rap1 and Abf1. Silencing depends also on the deacetylation of histones and the interactions of four Sir proteins. (B) Schematic representation of the chromatin maps of the silent mating type loci and adapted from the data of Weiss and Simpson ( ) and Ravindra et al. ( ). Map units correspond to base pair positions of the sequence of chromosome III. White boxes labeled E and I identify the silencer sequences, boxes labeled W, X,Yα and YZ1 and Z2 identify the mating-type loci regions. Black arrowheads identify sites that are hypersensitive to micrococcal nuclease, with thicker arrows indicating more pronounced cleavage; tick marks correspond to regions generally sensitive to nuclease cleavage. Open ellipses with heavy borders indicate precisely positioned nucleosomes. Light gray and striped ellipses indicate more loosely positioned nucleosomes and the less-defined chromatin structure of the W region, respectively. The 1, 2, a1, and a2 coding regions are identified by horizontal arrows.

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.
Figure 6.

A synthesis-dependent, strand-annealing model for switching. Proteins involved at different stages of the process are shown. In this mechanism, the DSB is first converted into 3′-ended single-stranded tails. -dependent strand invasion allows the invading 3′ end to initiate new DNA synthesis, requiring RFC, PCNA, and either Polδ and Polϵ; but, at the same time, a second strand is synthesized by lagging-strand replication, requiring Polδ and primase. Experiments have shown that leading-strand synthesis is impaired when lagging-strand polymerase is inactive ( ). Unlike normal semiconservative DNA replication, it is proposed that the newly synthesized strands are displaced from the template by branch migration. Removal of the original Y region is excised by a flap endonuclease including Rad1/Rad10, Msh2/Msh3, and Srs2. Reprinted in part from reference 57 with permission from the (© 1998 by Annual Reviews).

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.
Figure 7.

Donor preference in switching. (A) Control of an entire chromosome arm for recombination depends on an intact RE. In cells, or a donor placed at other sites along the left arm of chromosome III, is activated to be the preferred donor. In α, the RE is turned off and the entire left arm and part of the right arm become “cold,” allowing to be the preferred donor. When the RE is deleted in a cell, the left arm becomes inaccessible and becomes the preferred donor. (B) General features and chromatin structure of the RE region in and α cells, as determined by Wu et al. ( ). The 2.5-kb intergenic region containing the RE contains a 753-bp RE region that is sufficient for full donor preference, in either orientation. In cells this region contains two prominent protein footprints (FP1 and FP2) and a DNase I hypersensitive (HS) region, and one or more transcripts (arrow). Both this region and another site with the 2.5-kb region contain binding sites for the Matα2p-Mcm1p repressor (dark boxes). In α cells, the region is covered by positioned nucleosomes that do not extend into adjacent coding regions. (C) A 270-bp “minimum enhancer” was identified by comparing the and RE regions ( ). Regions A, C, and D are essential for activity. Region C contains the Matα2p-Mcm1p binding site necessary for repressing the RE in α cells. The region of that is located where the transcripts have been seen in ( ) is not well conserved, nor is a second region, similar to region D containing repeats of TTT(A/G). Reprinted in part from reference 57 with permission from the (© 1998 by Annual Reviews).

Citation: Haber J. 2002. Switching of Mating-Type Genes, p 927-952. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap39
1. Amann, J.,, V. J. Kidd,, and J. M. Lahti. 1997. Characterization of putative human homologues of the yeast chromosome transmission fidelity gene, CHL1. J. Biol. Chem. 272: 3823 3832.
2. Amati, B. B.,, and S. M. Gasser. 1988. Chromosomal ARS and CEN elements bind specifically to the yeast nuclear scaffold. Cell 54: 967 978.
3. Amon, A. 1996. Mother and daughter are doing fine: asymmetric cell division in yeast. Cell 84: 651 654.
4. Andrulis, E. D.,, A. M. Neiman,, D. C. Zappulla,, and R. Sternglanz. 1998. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394: 592 595.
5. Aparicio, O. M.,, D. M. Weinstein,, and S. P. Bell. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91: 59 69.
6. Åström, S. U.,, S. M. Okamura,, and J. Rine. 1999. Yeast cell-type regulation of DNA repair. Nature 397: 310.
7. Axelrod, A.,, and J. Rine. 1991. A role for CDC7 in repression of transcription at the silent mating-type locus HMR in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 1080 1091.
8. Bartsch, S.,, L. E. Kang,, and L. S. Symington. 2000. RAD51 is required for the repair of plasmid double-stranded DNA gaps from either plasmid or chromosomal templates. Mol. Cell. Biol. 20: 1194 1205.
9. Beach, D. L.,, E. D. Salmon,, and K. Bloom. 1999. Localization and anchoring of mRNA in budding yeast. Curr. Biol. 9: 569 578.
10. Benson, F. E.,, P. Baumann,, and S. C. West. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391: 401 404.
11. Bi, X.,, M. Braunstein,, G. J. Shei,, and J. R. Broach. 1999. The yeast HML I silencer defines a heterochromatin domain boundary by directional establishment of silencing. Proc. Natl. Acad. Sci. USA 96: 11934 11939.
12. Bi, X.,, and J. R. Broach. 1997. DNA in transcriptionally silent chromatin assumes a distinct topology that is sensitive to cell cycle progression. Mol. Cell. Biol. 17: 7077 7087.
13. Blat, Y.,, and N. Kleckner. 1999. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98: 249 259.
14. Bobola, N.,, R. P. Jansen,, T. H. Shin,, and K. Nasmyth. 1996. Asymmetric accumulation of Ash1p in postanaphase nuclei depends on a myosin and restricts yeast mating-type switching to mother cells. Cell 84: 699 709.
15. Boscheron, C.,, L. Maillet,, S. Marcand,, M. Tsai-Pflugfelder,, S. M. Gasser,, and E. Gilson. 1996. Cooperation at a distance between silencers and proto-silencers at the yeast HML locus. EMBO J. 15: 2184 2195.
16. Bosco, G.,, and J. E. Haber. 1998. Chromosome break-induced DNA replication leads to non-reciprocal translocations and telomere capture. Genetics 150: 1037 1047.
17. Brachmann, C. B.,, J. M. Sherman,, S. E. Devine,, E. E. Cameron,, L. Pillus,, and J. D. Boeke. 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9: 2888 2902.
18. Brand, A. H.,, L. Breeden,, J. Abraham,, R. Sternglanz,, and K. Nasmyth. 1985. Characterization of a "silencer" in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41: 41 48.
19. Braunstein, M.,, A. B. Rose,, S. G. Holmes,, C. D. Allis,, and J. R. Broach. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7: 592 604.
20. Bruhn, L.,, and G. F. Sprague, Jr. 1994. MCM1 point mutants deficient in expression of alpha-specific genes: residues important for interaction with alpha 1. Mol. Cell. Biol. 14: 2534 2544.
21. Chen-Cleland, T. A.,, M. M. Smith,, S. Le,, R. Sternglanz,, and V. G. Allfrey. 1993. Nucleosome structural changes during derepression of silent mating-type loci in yeast. J. Biol. Chem. 268: 1118 1124.
22. Cheng, T. H.,, and M. R. Gartenberg. 2000. Yeast heterochromatin is a dynamic structure that requires silencers continuously. Genes Dev. 14: 452 463.
23. Chi, M. H.,, and D. Shore. 1996. SUM1-1, a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating- type loci and decreases chromosome stability. Mol. Cell. Biol. 16: 4281 4294.
24. Chien, C. T.,, S. Buck,, R. Sternglanz,, and D. Shore. 1993. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75: 531 541.
25. Clever, B.,, H. Interthal,, M. J. Schmuckli,, J. King,, M. Sigrist,, and W. D. Heyer. 1997. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins. EMBO J. 16: 2535 2544.
25a.. Colaiacovo, M. 1999. Ph.D. thesis. Brandeis University, Waltham, Mass.
26. Colaiácovo, M. P.,, F. Pâques,, and J. E. Haber. 1999. Removal of one nonhomologous DNA end during gene conversion by a RAD1- and MSH2-independent pathway. Genetics 151: 1409 1423.
27. Collins, I.,, and C. S. Newlon. 1994. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14: 3524 3534.
28. Connolly, B.,, C. I. White,, and J. E. Haber. 1988. Physical monitoring of mating type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 2342 2349.
29. Corda, Y.,, V. Schramke,, M. P. Longhese,, T. Smokvina,, V. Paciotti,, V. Brevet,, E. Gilson,, and V. Geli. 1999. Interaction between Set1p and checkpoint protein Mec3p in DNA repair and telomere functions. Nat. Genet. 21: 204 208.
30. Cosma, M. P.,, T. Tanaka,, and K. Nasmyth. 1999. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299 311.
31. Derbyshire, M. K.,, K. G. Weinstock,, and J. N. Strathern. 1996. HST1, a new member of the SIR2 family of genes. Yeast 12: 631 640.
32. Dillin, A.,, and J. Rine. 1997. Separable functions of ORC5 in replication initiation and silencing in Saccharomyces cerevisiae. Genetics 147: 1053 1062.
33. Donze, D.,, C. R. Adams,, J. Rine,, and R. T. Kamakaka. 1999. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev. 13: 698 708.
34. Dorland, S.,, M. L. Deegenaars,, and D. J. Stillman. 2000. Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3. Genetics 154: 573 586.
35. Dubey, D. D.,, L. R. Davis,, S. A. Greenfeder,, L. Y. Ong,, J. G. Zhu,, J. R. Broach,, C. S. Newlon,, and J. A. Huberman. 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11: 5346 5355.
36. Ehrenhofer-Murray, A. E.,, R. T. Kamakaka,, and J. Rine. 1999. A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153: 1171 1182.
37. Ehrenhofer-Murray, A. E.,, D. H. Rivier,, and J. Rine. 1997. The role of Sas2, an acetyltransferase homologue of Saccharomyces cerevisiae, in silencing and ORC function. Genetics 145: 923 934.
38. Elble, R.,, and B. K. Tye. 1991. Both activation and repression of a-mating-type-specific genes in yeast require transcription factor Mcm1. Proc. Natl. Acad. Sci. USA 88: 10966 10970.
39. Enomoto, S.,, and J. Berman. 1998. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 12: 219 232.
40. Evans, E.,, N. Sugawara,, J. E. Haber,, and E. Alani. 2000. The Saccharomyces cerevisiae Msh2 mismatch repair protein localizes to recombination intermediates in vivo. Mol. Cell 5: 789 799.
41. Fasullo, M.,, T. Bennett,, and P. Dave. 1999. Expression of Saccharomyces cerevisiae MATa and MATα enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates. Mutat. Res. 433: 33 44.
42. Feldman, J. B.,, J. B. Hicks,, and J. R. Broach. 1984. Identification of sites required for repression of a silent mating type locus in yeast. J. Mol. Biol. 178: 815 834.
43. Ferguson, D. O.,, and W. K. Holloman. 1996. Recombinational repair of gaps in DNAis asymmetric in Ustilago maydis and can be explained by a migrating D-loop model. Proc. Natl. Acad. Sci. USA 93: 5419 5424.
44. Fishman-Lobell, J.,, and J. E. Haber. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258: 480 484.
45. Fox, C. A.,, A. E. Ehrenhofer-Murray,, S. Loo,, and J. Rine. 1997. The origin recognition complex, SIR1, and the S phase requirement for silencing. Science 276: 1547 1551.
46. Frank, S.,, and S. Werner. 1996. The human homologue of the yeast CHL1 gene is a novel keratinocyte growth factor regulated gene. J. Biol. Chem. 271: 24337 24340.
47. Friis, J.,, and H. Roman. 1968. The effect of the mating-type alleles on intragenic recombination in yeast. Genetics 59: 33 36.
48. Galitski, T.,, A. J. Saldanha,, C. A. Styles,, E. S. Lander,, and G. R. Fink. 1999. Ploidy regulation of gene expression. Science 285: 251 254.
49. Galy, V.,, J. C. Olivo-Marin,, H. Scherthan,, V. Doye,, N. Rascalou,, and U. Nehrbass. 2000. Nuclear pore complexes in the organization of silent telomeric chromatin. Nature 403: 108 112.
50. Gartenberg, M. R. 2000. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more. Curr. Opin. Microbiol. 3: 132 137.
51. Gasser, S. M. 1991. Replication origins, factors and attachment sites. Curr. Opin. Cell Biol. 3: 407 413.
52. Gerring, S. L.,, F. Spencer,, and P. Hieter. 1990. The CHL1 (CTF1) gene product of Saccharomyces cerevisiae is important for chromosome transmission and normal cell cycle progression in G2/M. EMBO J. 9: 4347 4358.
53. Grunstein, M. 1998. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93: 325 328.
54. Guarente, L. 1999. Diverse and dynamic functions of the Sir silencing complex. Nat. Genet. 23: 281 285.
55. Gustin, M. C.,, J. Albertyn,, M. Alexander,, and K. Davenport. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264 1300.
56. Haber, J. 1995. In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17: 609 620.
57. Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32: 561 599.
58. Haber, J. E. 1999. DNA recombination: the replication connection. Trends Biochem. Sci. 24: 271 275.
59. Haber, J. E. 2000. Lucky breaks: analysis of recombination in Saccharomyces. Mutat. Res. 451: 53 69.
60. Haber, J. E.,, D. W. Mascioli,, and D. T. Rogers. 1980. Illegal transposition of mating-type genes in yeast. Cell 20: 519 528.
61. Haber, J. E.,, B. L. Ray,, J. M. Kolb,, and C. I. White. 1993. Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast. Proc. Natl. Acad. Sci. USA 90: 3363 3367.
62. Haber, J. E.,, D. T. Rogers,, and J. H. McCusker. 1980. Homothallic conversions of yeast mating-type genes occur by intrachromosomal recombination. Cell 22: 277 289.
63. Haber, J. E.,, L. Rowe,, and D. T. Rogers. 1981. Transposition of yeast mating type genes from two translocations of the left arm of chromosome III. Mol. Cell. Biol. 1: 1106 1119.
64. Hagen, D. C.,, L. Bruhn,, C. A. Westby,, and G. F. Sprague, Jr. 1993. Transcription of alpha-specific genes in Saccharomyces cerevisiae: DNA sequence requirements for activity of the coregulator alpha 1. Mol. Cell. Biol. 13: 6866 6875.
65. Hastings, P. J. 1988. Recombination in the eukaryotic nucleus. Bioessays 9: 61 64.
66. Hawthorne, D. C. 1963. A deletion in yeast and its bearing on the structure of the mating type locus. Genetics 48: 1727.
67. Hawthorne, D. C. 1963. Directed mutation of the mating type alleles as an explanation of homothallism in yeast. Proc. Int. Congr. Genet. 1: 34.
68. Hays, S. L.,, A. A. Firmenich,, and P. Berg. 1995. Complex formation in yeast double-strand break repair: participation of Rad51, Rad52, Rad55, and Rad57 proteins. Proc. Natl. Acad. Sci. USA 92: 6925 6929.
69. Hecht, A.,, T. Laroche,, B. S. Strahl,, S. M. Gasser,, and M. Grunstein. 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80: 583 592.
70. Heude, M.,, and F. Fabre. 1993. a/alpha-control of DNA repair in the yeast Saccharomyces cerevisiae: genetic and physiological aspects. Genetics 133: 489 498.
71. Hicks, J.,, J. Strathern,, A. Klar,, S. Ismail,, and J. Broach. 1984. Structure of the SAD mutation and the location of control sites at silent mating type genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 1278 1285.
72. Hicks, J. B.,, J. N. Strathern,, and I. Herskowitz,. 1977. The cassette model of mating-type interconversion, p. 457 462. In A. I. Burkhari,, J. A. Shapiro,, and S. L. Adhya (ed.), DNA Insertion Elements. Plasmids and Episomes. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
73. Holmes, A.,, and J. E. Haber. 1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96: 415 424.
74. Huang, H.,, A. Kahana,, D. E. Gottschling,, L. Prakash,, and S. W. Liebman. 1997. The ubiquitin-conjugating enzyme Rad6 (Ubc2) is required for silencing in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 6693 6699.
75. Hurst, S. T.,, and D. H. Rivier. 1999. Identification of a compound origin of replication at the HMR-E locus in Saccharomyces cerevisiae. J. Biol. Chem. 274: 4155 4159.
76. Imai, S.,, C. M. Armstrong,, M. Kaeberlein,, and L. Guarente. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795 800.
77. Inbar, O.,, and M. Kupiec. 1999. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19: 4134 4142.
78. Inbar, O.,, B. Liefshitz,, G. Bitan,, and M. Kupiec. The relationship between homology length and crossing-over during the repair of a broken chromosome. J. Biol. Chem., in press.
79. Ivanov, E. L.,, and J. E. Haber. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15: 2245 2251.
80. Ivanov, E. L.,, N. Sugawara,, J. Fishman-Lobell,, and J. E. Haber. 1996. Genetic requirements for the single-strand an nealing pathway of double-strand break repair in Saccharomyces cerevisiae. Genetics 142: 693 704.
81. Ivanov, E. L.,, N. Sugawara,, C. I. White,, F. Fabre,, and J. E. Haber. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14: 3414 3425.
82. Jansen, R. P.,, C. Dowzer,, C. Michaelis,, M. Galova,, and K. Nasmyth. 1996. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin myo4p and other cytoplasmic proteins. Cell 84: 687 697.
83. Jeggo, P. A. 1998. DNA breakage and repair. Adv. Genet. 38: 185 218.
84. Jensen, R.,, and I. Herskowitz. 1984. Directionality and regulation of cassette substitution in yeast. Cold Spring Harbor Symp. Quant. Biol. 49: 97 104.
85. Jin, Y.,, G. Binkowski,, L. D. Simon,, and D. Norris. 1997. HO endonuclease cleaves MATDNA in vitro by an inefficient stoichiometric reaction mechanism. J. Biol. Chem. 272: 7352 7359.
86. Johnson, L. M.,, P. S. Kayne,, E. S. Kahn,, and M. Grunstein. 1990. Genetic evidence for an interaction between SIR3 and histone H4 in the repression of the silent mating loci in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87: 6286 6290.
87. Kanaar, R.,, J. H. Hoeijmakers,, and D. C. van Gent. 1998. Molecular mechanisms of DNA double strand break repair. Trends Cell Biol. 8: 483 489.
88. Kaufman, P. D.,, J. L. Cohen,, and M. A. Osley. 1998. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18: 4793 4806.
89. Kimmerly, W.,, A. Buchman,, R. Kornberg,, and J. Rine. 1988. Roles of two DNA-binding factors in replication, segregation and transcriptional repression mediated by a yeast silencer. EMBO J. 7: 2241 2253.
90. Klar, A. J.,, J. B. Hicks,, and J. N. Strathern. 1982. Directionality of yeast mating-type interconversion. Cell 28: 551 561.
91. Klar, A. J.,, and J. N. Strathern. 1984. Resolution of recombination intermediates generated during yeast mating type switching. Nature 310: 744 748.
92. Klar, A. J.,, J. N. Strathern,, and J. B. Hicks. 1981. A position-effect control for gene transposition: state of expression of yeast mating-type genes affects their ability to switch. Cell 25: 517 524.
92a.. Klar, A. J. S., 1989. The interconversion of mating type: Saccharomyces cerevisiae and Schizosaccharomyces pombe, p. 671 691. In M. M. Howe, and D. E. Berg (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
93. Kostriken, R.,, and F. Heffron. 1984. The product of the HO gene is a nuclease: purification and characterization of the enzyme. Cold Spring Harbor Symp. Quant. Biol. 49: 89 96.
94. Kostriken, R.,, J. N. Strathern,, A. J. S. Klar,, J. B. Hicks,, and F. Heffron. 1983. A site-specific endonuclease essential for mating-type switching in Saccharomyces cerevisiae. Cell 35: 167 174.
95. Kupiec, M. 2000. Damage-induced recombination in the yeast Saccharomyces cerevisiae. Mutat. Res. 451: 91 105.
96. Landry, J.,, A. Sutton,, S. T. Tafrov,, R. C. Heller,, J. Stebbins,, L. Pillus,, and R. Sternglanz. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97: 5807 5811.
97. Laroche, T.,, S. G. Martin,, M. Gotta,, H. C. Gorham,, F. E. Pryde,, E. J. Louis,, and S. M. Gasser. 1998. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8: 653 656.
98. Le, S.,, J. K. Moore,, J. E. Haber,, and C. Greider. 1999. RAD50 and RAD51 define two different pathways that collaborate to maintain telomeres in the absence of telomerase. Genetics 152: 143 152.
99. Leberer, E.,, D. Y. Thomas,, and M. Whiteway. 1997. Pheromone signalling and polarized morphogenesis in yeast. Curr. Opin. Genet. Dev. 7: 59 66.
100. Lee, S.,, A. Pellicioli,, J. Demeter,, M. Vaze,, A. P. Gasch,, A. Malkova,, P. Brown,, T. Stearns,, M. Foiani,, and J. E. Haber. Arrest, adaptation and recovery following a chromosome double-strand break in Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol., in press.
101. Lee, S. E.,, F. Pâques,, J. Sylvan,, and J. E. Haber. 1999. Role of yeast SIR genes and mating type in channeling double-strand breaks to homologous and nonhomologous recombination pathways. Curr. Biol. 9: 767 770.
102. Leung, W.,, A. Malkova,, and J. E. Haber. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94: 6851 6856.
103. Liras, P.,, J. McCusker,, D. Mascioli,, and J. E. Haber. 1978. Characterization of a mutation in yeast causing nonrandom chromosome loss during mitosis. Genetics 88: 651 671.
104. Long, R. M.,, R. H. Singer,, X. Meng,, I. Gonzalez,, K. Nasmyth,, and R. P. Jansen. 1997. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277: 383 387.
105. Loo, S.,, P. Laurenson,, M. Foss,, A. Dillin,, and J. Rine. 1995. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae. Genetics 141: 889 902.
106. Loo, S.,, and J. Rine. 1994. Silencers and domains of generalized repression. Science 264: 1768 1771.
107. Lundblad, V.,, and E. H. Blackburn. 1993. An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73: 347 360.
108. Mahoney, D. J.,, and J. R. Broach. 1989. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol. Cell. Biol. 9: 4621 4630.
109. Malkova, A.,, E. L. Ivanov,, and J. E. Haber. 1996. Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc. Natl. Acad. Sci. USA 93: 7131 7136.
110. Marshall, W. F.,, A. Straight,, J. F. Marko,, J. Swedlow,, A. Dernburg,, A. Belmont,, A. W. Murray,, D. A. Agard,, and J. W. Sedat. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7: 930 939.
111. McGill, C.,, B. Shafer,, and J. N. Strathern. 1989. Coconversion of flanking sequences with homothallic switching. Cell 57: 459 467.
112. McGill, C. B.,, B. K. Shafer,, L. K. Derr,, and J. N. Strathern. 1993. Recombination initiated by double-strand breaks. Curr. Genet. 23: 305 314.
113. McNally, F. J.,, and J. Rine. 1991. A synthetic silencer mediates SIR-dependent functions in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5648 5659.
114. Miller, A. M.,, and K. A. Nasmyth. 1984. Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312: 247 251.
115. Milne, G. T.,, and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7: 1755 1765.
116. Morrow, D. M.,, C. Connelly,, and P. Hieter. 1997. "Break copy" duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147: 371 382.
117. Mortensen, U. H.,, C. Bendixen,, I. Sunjevaric,, and R. Rothstein. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93: 10729 10734.
118. Mueller, J. E.,, J. Clyman,, Y. J. Huang,, M. M. Parker,, and M. Belfort. 1996. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 10: 351 364.
119. Nasmyth, K. 1982. Molecular genetics of yeast mating type. Annu. Rev. Genet. 16: 439 500.
120. Nasmyth, K. 1983. Molecular analysis of a cell lineage. Nature 302: 670 676.
121. Nasmyth, K. 1987. The determination of mother cell-specific mating type switching in yeast by a specific regulator of HO transcription. EMBO J. 6: 243 248.
122. Nasmyth, K.,, and D. Shore. 1987. Transcriptional regulation in the yeast cell cycle. Science 237: 1162 1170.
123. Nasmyth, K. A.,, and K. Tatchell. 1980. The structure of transposable yeast mating type loci. Cell 19: 753 764.
124. Nassif, N.,, J. Penney,, S. Pal,, W. R. Engels,, and G. B. Gloor. 1994. Efficient copying of nonhomologous sequences from ectopic sites via P-element-induced gap repair. Mol. Cell. Biol. 14: 1613 1625.
125. Naumov, G. I.,, and I. I. Toistorukov. 1973. Comparative genetics of yeast. X. Reidentification of mutators of mating types in Saccharomyces. Genetika 9: 82 91.
126. New, J. H.,, T. Sugiyama,, E. Zaitseva,, and S. C. Kowalczykowski. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391: 407 410.
127. Newlon, C. S.,, L. R. Lipchitz,, I. Collins,, A. Deshpande,, R. J. Devenish,, R. P. Green,, H. L. Klein,, T. G. Palzkill,, R. B. Ren,, S. Synn, et al. 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129: 343 357.
128. Nickoloff, J. A.,, E. Y. Chen,, and F. Heffron. 1986. A 24-basepair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc. Natl. Acad. Sci. USA 83: 7831 7835.
129. Nickoloff, J. A.,, J. D. Singer,, M. F. Hoekstra,, and F. Heffron. 1989. Double-strand breaks stimulate alternative mechanisms of recombination repair. J. Mol. Biol. 207: 527 541.
130. Ogawa, T.,, X. Yu,, A. Shinohara,, and E. H. Egelman. 1993. Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science 259: 1896 1899.
131. Palacios DeBeer, M. A.,, and C. A. Fox. 1999. A role for a replicator dominance mechanism in silencing. EMBO J. 18: 3808 3819.
132. Pâques, F.,, and J. E. Haber. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 6765 6771.
133. Pâques, F.,, and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63: 349 404.
134. Pâques, F.,, W. Y. Leung,, and J. E. Haber. 1998. Expansions and contractions in a tandem repeat induced by double-strand break repair. Mol. Cell. Biol. 18: 2045 2054.
135. Park, E. C.,, and J. W. Szostak. 1990. Point mutations in the yeast histone H4 gene prevent silencing of the silent mating type locus HML. Mol. Cell. Biol. 10: 4932 4934.
136. Park, E. C.,, and J. W. Szostak. 1992. ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J. 11: 2087 2093.>
137. Parket, A.,, O. Inbar,, and M. Kupiec. 1995. Recombination of Ty elements in yeast can be induced by a double-strand break. Genetics 140: 67 77.
138. Paul, T. T.,, and M. Gellert. 1998. The 3′to 5′exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell. 1: 969 980.
139. Perez-Martin, J. 1999. Chromatin and transcription in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 23: 503 523.
140. Petes, T. D.,, R. E. Malone,, and L. S. Symington,. 1991. Recombination in yeast, p. 407 521. In E. W. Jones, and J. R. Pringle (ed.), The Molecular and Cellular Biology of the Yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
141. Petukhova, G.,, S. Van Komen,, S. Vergano,, H. Klein,, and P. Sung. 1999. Yeast Rad54 promotes Rad51-dependent homologous DNA pairing via ATP hydrolysis-driven change in DNA double helix conformation. J. Biol. Chem. 274: 29453 29462.
142. Pillus, L.,, and J. Rine. 1989. Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell 59: 637 647.
143. Pleiss, A.,, A. Perrin,, J. E. Haber,, and B. Dujon. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130: 451 460.
144. Porter, S. E.,, M. A. White,, and T. D. Petes. 1993. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics 134: 5 19.
145. Rattray, A. J.,, and L. S. Symington. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138: 587 595.
146. Rattray, A. J.,, and L. S. Symington. 1995. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 139: 45 56.
147. Raveh, D.,, S. H. Hughes,, B. K. Shafer,, and J. N. Strathern. 1989. Analysis of the HO-cleaved MAT DNA intermediate generated during the mating type switch in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 220: 33 42.
148. Ravindra, A.,, K. Weiss,, and R. T. Simpson. 1999. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa. Mol. Cell. Biol. 19: 7944 7950.
149. Ray, A.,, N. Machin,, and F. W. Stahl. 1989. A double strand break stimulates triparental recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86: 6225 6229.
150. Ray, B. L.,, C. I. White,, and J. E. Haber. 1991. Heteroduplex formation and mismatch repair of the "stuck" mutation during mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 5372 5380.
151. Reifsnyder, C.,, J. Lowell,, A. Clarke,, and L. Pillus. 1996. Yeast SAS silencing genes and human genes associated with AML and HIV-1 Tat interactions are homologous with acetyltransferases. Nat. Genet. 14: 42 49.
152. Richard, G. F.,, G. M. Goellner,, C. T. McMurray,, and J. E. Haber. 2000. Recombination-induced CAG trinucleotide repeat expansions in yeast involve the MRE11-RAD50-XRS2 complex. EMBO J. 19: 2381 2390.
153. Rine, J.,, and I. Herskowitz. 1980. The transaction of HMRa in mating type interconversion. Mol. Gen. Genet. 180: 99 105.
154. Rivier, D. H.,, J. L. Ekena,, and J. Rine. 1999. HMR-I is an origin of replication and a silencer in Saccharomyces cerevisiae. Genetics 151: 521 529.
155. Rivier, D. H.,, and J. Rine. 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256: 659 663.
156. Rudin, N.,, and J. E. Haber. 1988. Efficient repair of HO induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8: 3918 3928.
157. Rudin, N.,, E. Sugarman,, and J. E. Haber. 1989. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122: 519 534.
158. Sandell, L. L.,, and V. A. Zakian. 1993. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75: 729 739.
159. Santa Maria, J.,, and D. Vidal. 1970. Segregación anormal del "mating type" en Saccharomyces. Inst. Nac. Investig. Agron. Conf. 30: 1.
160. Santocanale, C.,, K. Sharma,, and J. F. Diffley. 1999. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 13: 2360 2364.
161. Shei, G. J.,, and J. R. Broach. 1995. Yeast silencers can act as orientation-dependent gene inactivation centers that respond to environmental signals. Mol. Cell. Biol. 15: 3496 3506.
162. Sherman, J. M.,, and L. Pillus. 1997. An uncertain silence. Trends Genet. 13: 308 313.
163. Shinohara, A.,, H. Ogawa,, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in Saccharomyces cerevisiae is a RecA-like protein. Cell 69: 457 470.
164. Shinohara, A.,, and T. Ogawa. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391: 404 407.
165. Sil, A.,, and I. Herskowitz. 1996. Identification of asymmetrically localized determinant, Ash1p, required for lineage-specific transcription of the yeast HO gene. Cell 84: 711 722.
166. Smith, D. L.,, and A. D. Johnson. 1994. Operator-constitutive mutations in a DNA sequence recognized by a yeast homeodomain. EMBO J. 13: 2378 2387.
167. Smith, J. S.,, C. B. Brachmann,, I. Celic,, M. A. Kenna,, S. Muhammad,, V. J. Starai,, J. L. Avalos,, J. C. Escalante-Semerena,, C. Grubmeyer,, C. Wolberger,, and J. D. Boeke. 2000. A phylogenetically conserved NAD +-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA 97: 6658 6663.
168. Song, B.,, and P. Sung. 2000. Functional interactions among yeast Rad51 recombinase, Rad52 mediator, and replication protein A in DNA strand exchange. J. Biol. Chem. 275: 15895 15904.
169. Stone, E. M.,, P. Heun,, T. Laroche,, L. Pillus,, and S. M. Gasser. 2000. MAP kinase signaling induces nuclear reorganization in budding yeast. Curr. Biol. 10: 373 382.
170. Straight, A. F.,, W. F. Marshall,, J. W. Sedat,, and A. W. Murray. 1997. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277: 574 578.
171. Strathern, J.,, J. Hicks,, and I. Herskowitz. 1981. Control of cell type in yeast by the mating type locus. The alpha 1-alpha 2 hypothesis. J. Mol. Biol. 147: 357 372.
172. Strathern, J. N.,, and I. Herskowitz. 1979. Asymmetry and directionality in production of new cell types during clonal growth: the switching pattern of homothallic yeast. Cell 17: 371 381.
173. Strathern, J. N.,, A. J. S. Klar,, J. B. Hicks,, J. A. Abraham,, J. M. Ivy,, K. A. Nasmyth,, and C. McGill. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double- stranded cut in the MAT locus. Cell 31: 183 192.
174. Sugawara, N.,, and J. E. Haber. 1992. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12: 563 575.
175. Sugawara, N.,, G. Ira,, and J. E. Haber. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20: 5300 5309.
176. Sugawara, N.,, E. L. Ivanov,, L. J. Fishman,, B. L. Ray,, X. Wu,, and J. E. Haber. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373: 84 86.
177. Sugawara, N.,, F. Paques,, M. Colaiacovo,, and J. E. Haber. 1997. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc. Natl. Acad. Sci. USA 94: 9214 9219.
178. Sun, Z. W.,, and M. Hampsey. 1999. A general requirement for the Sin3-Rpd3 histone deacetylase complex in regulating silencing in Saccharomyces cerevisiae. Genetics 152: 921 932.
179. Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272: 28194 28197.
180. Sung, P. 1997. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11: 1111 1121.
181. Sung, P.,, and D. L. Robberson. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82: 453 461.
182. Sung, P.,, K. M. Trujillo,, and S. Van Komen. 2000. Recombination factors of Saccharomyces cerevisiae. Mutat. Res. 451: 257 275.
183. Szeto, L.,, and J. R. Broach. 1997. Role of alpha2 protein in donor locus selection during mating type interconversion. Mol. Cell. Biol. 17: 751 759.
184. Szeto, L.,, M. K. Fafalios,, H. Zhong,, A. K. Vershon,, and J. R. Broach. 1997. Alpha2p controls donor preference during mating type interconversion in yeast by inactivating a recombinational enhancer of chromosome III. Genes Dev. 11: 1899 1911.
185. Szostak, J. W.,, W. T. Orr,, R. J. Rothstein,, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33: 25 35.
186. Takahashi, T. 1958. Complementary genes controlling homothallism in Saccharomyces. Genetics 43: 705.
187. Takano, I.,, and Y. Oshima. 1967. An allele specific and a complementary determinant controlling homothallism in Saccharomyces oviformis. Genetics 57: 875 885.
188. Takano, I.,, and Y. Oshima. 1970. Mutational nature of an allele-specific conversion of the mating type by the homothallic gene HO alpha in Saccharomyces. Genetics 65: 421 427.
189. Takizawa, P. A.,, A. Sil,, J. R. Swedlow,, I. Herskowitz,, and R. D. Vale. 1997. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389: 90 93.
190. Takizawa, P. A.,, and R. D. Vale. 2000. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc. Natl. Acad. Sci. USA 97: 5273 5278.
191. Tan, S.,, and T. J. Richmond. 1998. Crystal structure of the yeast MATα2/Mcm1/DNA ternary complex. Nature 391: 660 666.
192. Tanaka, K.,, T. Oshima,, H. Araki,, S. Harashima,, and Y. Oshima. 1984. Mating type control in Saccharomyces cerevisiae: a frameshift mutation at the common DNA sequence, X, of the HMLα locus. Mol. Cell. Biol. 4: 203 211.
193. Tatchell, K.,, K. A. Nasmyth,, B. D. Hall,, C. Astell,, and M. Smith. 1981. In vitro mutation analysis of the mating-type locus in yeast. Cell 27: 25 35.
194. Tsubouchi, H.,, and H. Ogawa. 1998. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18: 260 268.
195. Tsubouchi, H.,, and H. Ogawa. 2000. Exol roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol. Biol. Cell 11: 2221 2233.
196. Umezu, K.,, N. Sugawara,, C. Chen,, J. E. Haber,, and R. D. Kolodner. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148: 989 1005.
197. Usui, T.,, T. Ohta,, H. Oshumi,, H. Tsubouchi,, J.-I. Tomizawa,, H. Ogawa,, and T. Ogawa. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95: 705 716.
198. Vujcic, M.,, C. A. Miller,, and D. Kowalski. 1999. Activation of silent replication origins at autonomously replicating sequence elements near the HML locus in budding yeast. Mol. Cell. Biol. 19: 6098 6109.
199. Weiffenbach, B.,, and J. E. Haber. 1981. Homothallic mating type switching generates lethal chromosome breaks in rad52 strains of Saccharomyces cerevisiae. Mol. Cell. Biol. 1: 522 534.
200. Weiler, K. S.,, and J. R. Broach. 1992. Donor locus selection during Saccharomyces cerevisiae mating type interconversion responds to distant regulatory signals. Genetics 132: 929 942.
201. Weiler, K. S.,, L. Szeto,, and J. R. Broach. 1995. Mutations affecting donor preference during mating type interconversion in Saccharomyces cerevisiae. Genetics 139: 1495 1510.
202. Weiss, K.,, and R. T. Simpson. 1997. Cell type-specific chromatin organization of the region that governs directionality of yeast mating type switching. EMBO J. 16: 4352 4360.
203. Weiss, K.,, and R. T. Simpson. 1998. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol. Cell. Biol. 18: 5392 5403.
204. Weng, Y. S.,, J. Whelden,, L. Gunn,, and J. A. Nickoloff. 1996. Double-strand break-induced mitotic gene conversion: examination of tract polarity and products of multiple recombinational repair events. Curr. Genet. 29: 335 343.
205. White, C. I.,, and J. E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663 674.
206. Wu, C.,, K. Weiss,, C. Yang,, M. A. Harris,, B. K. Tye,, C. S. Newlon,, R. T. Simpson,, and J. E. Haber. 1998. Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev. 12: 1726 1737.
207. Wu, X.,, and J. E. Haber. 1995. MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes Dev. 9: 1922 1932.
208. Wu, X.,, and J. E. Haber. 1996. A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87: 277 285.
209. Wu, X.,, J. K. Moore,, and J. E. Haber. 1996. Mechanism of MATα donor preference during mating-type switching of Saccharomyces cerevisiae. Mol. Cell. Biol. 16: 657 668.
210. Wu, X.,, C. Wu,, and J. E. Haber. 1997. Rules of donor preference in Saccharomyces mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147: 399 407.
211. Xu, E. Y.,, S. Kim,, and D. H. Rivier. 1999. SAS4 and SAS5 are locus-specific regulators of silencing in Saccharomyces cerevisiae. Genetics 153: 25 33.
212. Zhang, Z.,, and A. R. Buchman. 1997. Identification of a member of a DNA-dependent ATPase family that causes interference with silencing. Mol. Cell. Biol. 17: 5461 5472.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error