1887

Chapter 4 : Chromosome Manipulation by Cre-lox Recombination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chromosome Manipulation by Cre-lox Recombination, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap04-2.gif

Abstract:

Spaital and temporal regulation of Cre activity has led to the development of conditional somatic mutagenesis strategies that allow more precise determination of gene function in metazoans and plants. These strategies have been rapidly and widely adopted, particularly in the study of gene-modified and transgenic mice. In addition, Cre’s modest biochemical requirements have led to the adoption of Cre for use in a variety of other DNA manipulation strategies both in vitro and in vivo. The molecular genetics of the yeast is extraordinarily well developed, particularly in comparison with other eukaryotes. The genetic approach to mapping the spatial organization of the genome in the nucleus promises to provide important insights into the role of chromosome disposition in DNA repair and gene expression. The first successful approach to achieving the on/off expression control needed for inducible recombination-mediated gene ablation in mice was the use of the interferon-inducible Mx promoter to drive expression. A second strategy for regulating expression in mice is based on the successful adaptations of the prokaryotic tetracycline repressor operator system to regulate gene expression in eukaryotes. Precise engineering of individual chromosomes themselves, with production of defined chromosomal inversions, deletions, and duplications, is now possible using Cre recombinase. Advances in the genetic manipulation of model organisms have consistently led to deeper appreciation and understanding of their basic biology and to insights into the etiology of human disease.

Citation: Sauer B. 2002. Chromosome Manipulation by Cre-lox Recombination, p 38-58. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch4

Key Concept Ranking

Genetic Elements
0.5267642
Chromosomal DNA
0.40104312
0.5267642
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

DNA recombination reactions catalyzed by Cre. Open arrows represent the 34-bp site, and thin horizontal arrows indicate the 13-bp inverted repeat elements of the site. Rearrangement of the arbitrary genetic markers A, B, C, and D show the consequences of Cre-mediated DNA excision, integration, and inversion. The sequence of the spacer or core region (ATGTATGC) of differs from that of the heterospecific site ( ) at only a single position (ATGTATAC).

Citation: Sauer B. 2002. Chromosome Manipulation by Cre-lox Recombination, p 38-58. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Stabilization of plasmid partitioning by Cre recombinase. The P1 genome in is represented by a circle, the site by the small black box.

Citation: Sauer B. 2002. Chromosome Manipulation by Cre-lox Recombination, p 38-58. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Conditional Cre-mediated gene activation. Mice carrying a STOP cassette (GenBank accession no. U51223) inserted between a promoter and a reporter or potentially lethal gene are mated with transgenic mice having expression under the control of promoters with the desired spatial-temporal pattern. Double transgenic progeny are thereby produced in which the STOP cassette has been removed in the desired spatial-temporal manner. Example transgenics use the adenovirus EIIa ( ), CMV or cytomegalovirus major immediate early ( ), and Figure 3 . α-CaMKII or α- calcium-calmodulin-dependent kinase II ( ) promoters.

Citation: Sauer B. 2002. Chromosome Manipulation by Cre-lox Recombination, p 38-58. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Cre-mediated chromosomal targeting in ES cells. The thin lines represent the transfected plasmid DNA; thick lines represent chromosomal DNA sequences. The desired transgene is designated YFG (our avorite ene) and the plasmid replication origin (ori) is represented by the circle. (A) Mutated site strategy ( ). Mutation (a 4-bp deletion) of in one of the inverted repeat elements is represented by an asterisk. After intermolecular recombination, one of the product sites carries mutations in both arms or inverted repeat elements and is thus blocked from participating in Cre-mediated reversal of integration. (B) Double replacement recombination ( ). Different heterospecific sites having nonidentical spacer sequences are indicated by open () and filled () large arrows. Alternatively, two sites in inverted configuration have been used ( ). Double-crossover recombination between sites on the incoming plasmid and the resident chromosomal sites replaces the -bounded chromosomal interval with that on the plasmid. Integration can be selected by incorporation of a marker on the plasmid into the chromosome, or by negative selection for loss of a negative selectable marker from the chromosome.

Citation: Sauer B. 2002. Chromosome Manipulation by Cre-lox Recombination, p 38-58. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap4
1. Abremski, K.,, and R. Hoess. 1985. Phage P1 Cre- loxP sitespecific recombination: effects of DNA supercoiling on catenation and knotting of recombinant products. J. Mol. Biol. 184: 211 220.
2. Abremski, K.,, R. Hoess,, and N. Sternberg. 1983. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32: 1301 1311.
3. Abuin, A.,, and A. Bradley. 1996. Recycling selectable markers in mouse embryonic stem cells. Mol. Cell. Biol. 16: 1851 1856.
4.. Akagi, K.,, V. Sandig,, M. Vooijs,, M. Van der Valk,, M. Giovannini,, M. Strauss,, and A. Berns. 1997. Cre-mediated somatic site-specific recombination in mice. Nucleic Acids Res. 25: 1766 1773.
5. Alani, E.,, L. Cao,, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116: 541 545.
6. Albert, H.,, E. C. Dale,, E. Lee,, and D. W. Ow. 1995. Sitespecific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649 659.
7. Anton, M.,, and F. L. Graham. 1995. Site-specific recombination mediated by an adenovirus vector expressing the Cre recombinase protein: a molecular switch for control of gene expression. J. Virol. 69: 4600 4606.
8. Aoki, K.,, C. Barker,, X. Danthinne,, M. J. Imperiale,, and G. J. Nabel. 1999. Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol. Med. 5: 224 231.
9. Araki, K.,, M. Araki,, J.-I. Miyazaki,, and P. Vassalli. 1995. Site-specific recombination of a transgene in fertilized eggs by transient expression of Cre recombinase. Proc. Natl. Acad. Sci. USA 92: 160 164.
10. Araki, K.,, M. Araki,, and K. Yamamura. 1997. Targeted integration of DNA using mutant lox site in embryonic stem cell. Nucleic Acids Res. 25: 868 872.
11. Araki, K.,, T. Imaizumi,, T. Sekimoto,, K. Yoshinobu,, J. Yoshimuta,, M. Akizuki,, K. Miura,, M. Araki,, and K. Yamamura. 1999. Exchangeable gene trap using the Cre/mutated lox system. Cell. Mol. Biol. 45: 737 750.
12. Artelt, P.,, R. Grannemann,, C. Stocking,, J. Friel,, J. Bartsch,, and H. Hauser. 1991. The prokaryotic neomycin-resistance encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249 254.
13. Austin, S.,, M. Ziese,, and N. Sternberg. 1981. A novel role for site-specific recombination in maintenance of bacterial replicons. Cell 25: 729 736.
14. Backman, K.,, M. J. O’Conner,, A. Maruya,, and M. Erfle. 1984. Use of synchronous site specific recombination in vivo to regulate gene expression. Biotechnology 2: 1045 1049.
15. Baubonis, W.,, and B. Sauer. 1993. Genomic targeting with purified Cre recombinase. Nucleic Acids Res. 21: 2025 2029.
16. Berghella, L.,, L. De Angelis,, M. Coletta,, B. Berarducci,, C. Sonnino,, G. Salvatori,, C. Anthonissen,, R. Cooper,, G. S. Butler- Browne,, V. Mouly,, G. Ferrari,, F. Mavilio,, and G. Cossu. 1999. Reversible immortalization of human myogenic cells by site-specific excision of a retrovirally transferred oncogene. Hum. Gene Ther. 10: 1607 1617.
17. Bethke, B.,, and B. Sauer. 1997. Segmental genomic replacement by Cre-mediated recombination: genotoxic stress activation of the p53 promoter in single-copy transformants. Nucleic Acids Res. 25: 2828 2834.
18. Betz, U. A. K.,, C. A. J. Voβhenrich,, K. Rajewsky,, and W. Müller. 1996. Bypass of lethality with mosaic mice generated by Cre- loxP-mediated recombination. Curr. Biol. 6: 1307 1316.
19. Bouhassira, E. E.,, K. Westerman,, and P. Leboulch. 1997. Transcriptional behavior of LCRenhancer elements integrated at the same chromosomal locus by recombinase-mediated cassette exchange. Blood 90: 3332 3344.
20. Brocard, J.,, R. Feil,, P. Chambon,, and D. Metzger. 1998. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26: 4086 4090.
21. Brocard, J.,, X. Warot,, O. Wendling,, N. Messaddeq,, J. L. Vonesch,, P. Chambon,, and D. Metzger. 1997. Spatio-temporally controlled site-specific somatic mutagenesis in the mouse. Proc. Natl. Acad. Sci. USA 94: 14559 14563.
22. Brunelli, J. P.,, and M. L. Pall. 1993. A series of yeast/ Escherichia coli lambda expression vectors designed for directional cloning of cDNAs and cre/lox-mediated plasmid excision. Yeast 9: 1309 1318.
23. Burgess, S. M.,, and N. Kleckner. 1999. Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev. 13: 1871 1883.
24. Call, L. M.,, C. S. Moore,, G. Stetten,, and J. D. Gearhart. 2000. A Cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum. Mol. Genet. 9: 1745 1751.
25. Castilho, B. A.,, P. Olfson,, and M. J. Casadaban. 1984. Plasmid insertion mutagenesis and lac gene fusion with mini- Mu bacteriophage transposons. J. Bacteriol. 158: 488 495.
26. Chai, Y.,, X. Jiang,, Y. Ito,, P. Bringas, Jr.,, J. Han,, D. H. Rowitch,, P. Soriano,, A. P. McMahon,, and H. M. Sucov. 2000. Fate of the mammalian cranial neural crest during tooth and mandibular morphogenesis. Development 127: 1671 1679.
27. Chalfrie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward,, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802 805.
28. Chesney, R. H.,, J. R. Scott,, and D. Vapnek. 1979. Integration of the plasmid prophages P1 and P7 into the chromosome of Escherichia coli. J. Mol. Biol. 130: 161 173.
29. Choi, S.,, D. Begum,, H. Koshinsky,, D. W. Ow,, and R. A. Wing. 2000. A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Res. 28: e19.
30. Colleaux, L.,, L. D’Auriol,, F. Galibert,, and B. Dujon. 1988. Recognition and cleavage site of the intron-encoded omega transposase. Proc. Natl. Acad. Sci. USA 85: 6022 6026.
31. Dale, E. C.,, and D. W. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Natl. Acad. Sci. USA 88: 10558 10562.
32. Dale, E. C.,, and D. W. Ow. 1990. Intra- and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79 85.
33. Danielian, P. S.,, D. Muccino,, D. H. Rowitch,, S. K. Michael,, and A. P. McMahon. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8: 1323 1326.
34. de Wit, T.,, D. Drabek,, and F. Grosveld. 1998. Microinjection of cre recombinase RNA induces site-specific recombination of a transgene in mouse oocytes. Nucleic Acids Res. 26: 676 678.
35. Díaz, V.,, F. Rojo,, C. Martínez-A., J. C. Alonso, and A. Bernad. 1999. The prokaryotic recombinase catalyzes site-specific β-recombinase catalyzes site-specific recombination in mammalian cells. J. Biol. Chem. 274: 6634 6640.
36. Dietrich, P.,, I. Dragatsis,, S. Xuan,, S. Zeitlin,, and A. Efstratiadis. 2000. Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm. Genome 11: 196 205.
37. Drago, J.,, P. Padungchaichot,, J. Y.-F. Wong,, A. J. Lawrence,, J. F. McManus,, S. H. Sumarsono,, A. L. Natoli,, M. Lakso,, N. Wreford,, H. Westphal,, I. Kola,, and D. I. Finkelstein. 1998. Targeted expression of a toxin gene to D1 dopamine receptor neurons by Cre-mediated site-specific recombination. J. Neurosci. 18: 9845 9857.
38. Elledge, S. J.,, J. T. Mulligan,, S. W. Ramer,, M. Spottswood,, and R. W. Davis. 1991. λYES: a multifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proc. Natl. Acad. Sci. USA 88: 1731 1735.
39. Epstein, J. A.,, J. Li,, D. Lang,, F. Chen,, C. B. Brown,, F. Jin,, M. M. Lu,, M. Thomas,, E. Liu,, A. Wessels,, and C. W. Lo. 2000. Migration of cardiac neural crest cells in Splotch embryos. Development 127: 1869 1878.
40. Falco, S. C.,, Y. Li,, J. R. Broach,, and D. Botstein. 1982. Genetic properties of chromosomally integrated 2 mu plasmid DNA in yeast. Cell 29: 573 584.
41. Feil, R.,, J. Brocard,, B. Mascrez,, M. LeMeur,, D. Metzger,, and P. Chambon. 1996. Ligand-activated site-specific recombination in mice. Proc. Natl. Acad. Sci. USA 93: 10887 10890.
42. Feil, R.,, J. Wagner,, D. Metzger,, and P. Chambon. 1997. Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem. Biophys. Res. Commun. 237: 752 757.
43. Feiring, S.,, C. G. Kim,, E. M. Epner,, and M. Groudine. 1993. An “in-out” strategy using gene targeting and FLP recombinase for the functional dissection of complexDNA regulatory elements: analysis of the β-globin locus control region. Proc. Natl. Acad. Sci. USA 90: 8469 8473.
44. Feng, Y.-Q.,, J. Seibler,, R. Alami,, A. Eisen,, K. Westerman,, P. Leboulch,, S. Feiring,, and E. E. Bouhassira. 1999. Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J. Mol. Biol. 292: 779 785.
45. Forlino, A.,, F. D. Porter,, E. J. Lee,, H. Westphal,, and J. C. Marini. 1999. Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an alpha(I) G349C substitution. Variability in phenotype in Brt1IV mice. J. Biol. Chem. 274: 37923 37931.
46. Freundlieb, S.,, C. Schirra-Muller,, and H. Bujard. 1999. A tetracycline controlled activation/repression system with increased potential for gene transfer into mammalian cells. J. Gene Med. 1: 4 12.
47. Fukushige, S.,, and J. E. Ikeda. 1996. Trapping of mammalian promoters by Cre-lox site-specific recombination. DNA Res. 3: 73 80.
48. Fukushige, S.,, and B. Sauer. 1992. Targeted genomic integration with a positive selection lox recombination vector allows highly reproducible gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 89: 7905 7909.
49. Gage, P. J.,, B. Sauer,, M. Levine,, and J. C. Glorioso. 1992. A cell-free recombination system for site-specific integration of multigenic shuttle plasmids into the herpes simplex virus type 1 genome. J. Virol. 66: 5509 5515.
50. Gagneten, S.,, Y. Le,, J. Miller,, and B. Sauer. 1997. Brief expression of a GFP cre fusion gene in embryonic stem cells allows rapid retrieval of site-specific genomic deletions. Nucleiccids Res. 25: 3326 3331.
51. Gatz, C.,, and P. H. Quail. 1988. Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc. Natl. Acad. Sci. USA 85: 1394 1397.
52. Golic, K. 1991. Site-specific recombination between homologous chromosomes in Drosophila. Science 252: 958 961.
53. Golic, K. G.,, and S. Lindquist. 1989. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59: 499 509.
54. Gossen, M.,, and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89: 5547 5551.
55. Gossen, M.,, S. Freundlieb,, G. Bender,, G. Muller,, W. Hillen,, and H. Bujard. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268: 1766 1769.
56. Groth, A. C.,, E. C. Olivares,, B. Thyagarajan,, and M. P. Calos. 2000. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97: 5995 6000.
57. Gu, H.,, J. D. Marth,, P. C. Orban,, H. Mossmann,, and K. Rajewsky. 1994. Deletion of a polymerase beta gene segment in T cells using cell type-specific gene targeting. Science 265: 103 106.
58. Gu, H.,, Y. R. Zou,, and K. Rajewsky. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre- loxP-mediated gene targeting. Cell 73: 1155 1164.
59. Guldener, U.,, S. Heck,, T. Fielder,, J. Beinhauer,, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24: 2519 2524.
60. Harada, N.,, Y. Tomai,, T. Ishikawa,, B. Sauer,, K. Takaku,, M. Oshima,, and M. M. Taketo. 1999. Intestinal polyposis in mice with a dominant stable mutation of the _-catenin gene. EMBO J. 18: 5931 5942.
61. Hardouin, N.,, and A. Nagy. 2000. Gene-trap-based target site for Cre-mediated transgenic insertion. Genesis 26: 245 252.
62. Herrera, P. L. 2000. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127: 2317 2322.
63. Herrera, P. L.,, L. Orci,, and J. D. Vassalli. 1998. Two transgenic approaches to define the cell lineages in endocrine pancreas development. Mol. Cell. Endocrinol. 140: 45 50.
64. Hoekstra, M. F.,, D. Burbee,, J. Singer,, E. Mull,, E. Chiao,, and F. Heffron. 1991. A Tn3 derivative that can be used to make short in-frame insertions within genes. Proc. Natl. Acad. Sci. USA 88: 5457 5461.
65. Hoekstra, M. F.,, H. S. Seifert,, J. Nickoloff,, and F. Heffron. 1991. Shuttle mutagenesis: bacterial transposons for genetic manipulation in yeast. Methods Enzymol. 194: 329 342.
66. Hoess, R. H.,, and K. Abremski,. 1990. The Cre- lox recombination system, p. 99 109. In F. Eckstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology, vol. 4. Springer- Verlag KG, Berlin, Germany.
67. Hoess, R. H.,, and K. Abremski. 1984. Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc. Natl. Acad. Sci. USA 81: 1026 1029.
68. Hoess, R. H.,, A. Wierzbicki,, and K. Abremski. 1986. The role of the spacer region in P1 site-specific recombination. Nucleic Acids Res. 14: 2287 2300.
69. Hoess, R. H.,, M. Ziese,, and N. Sternberg. 1982. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc. Natl. Acad. Sci. USA 79: 3398 3402.
70. Huang, L.-C.,, E. A. Wood,, and M. M. Cox. 1991. A bacterial model system for chromosomal targeting. Nucleic Acids Res. 19: 443 448.
71. Iida, S. 1984. Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome. Virology 134: 421 434.
72. Indra, A. K.,, X. Warot,, J. Brocard,, J. M. Bornert,, J. H. Xiao,, P. Chambon,, and D. Metzger. 1999. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res. 27: 4324 4327.
73. Ioannou, P. A.,, C. T. Amemiya,, J. Garnes,, P. M. Kroisel,, H. Shizuya,, C. Chen,, M. A. Batzer,, and P. J. de Jong. 1994. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat. Genet. 6: 84 89.
74. Jiang, X.,, D. H. Rowitch,, P. Soriano,, A. P. McMahon,, and H. M. Sucov. 2000. Fate of the mammalian cardiac neural crest. Development 127: 1607 1614.
75. Kawamoto, S.,, H. Niwa,, F. Tashiro,, S. Sano,, G. Kondoh,, J. Takeda,, K. Tabayashi,, and J.-I. Miyazaki. 2000. A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett. 470: 263 268.
76. Kellendonk, C.,, F. Tronche,, E. Casanova,, K. Anlag,, C. Opherk,, and G. Schutz. 1999. Inducible site-specific recombination in the brain. J. Mol. Biol. 285: 175 182.
77. Kellendonk, C.,, F. Tronche,, A.-P. Monaghan,, P.-O. Angrand,, and F. Stewart. 1996. Regulation of Cre recombinase activity by the synthetic steroid RU486. Nucleic Acids Res. 24: 1404 1411.
78. Kimmel, R. A.,, D. H. Turnbull,, V. Blanquet,, W. Wurst,, C. A. Loomis,, and A. L. Joyner. 2000. Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev. 14: 1377 1389.
79. Kobayashi, N.,, T. Fujiwara,, K. A. Westerman,, Y. Inoue,, M. Sakaguchi,, H. Noguchi,, M. Miyazaki,, J. Cai,, N. Tanaka,, I. J. Fox,, and P. Leboulch. 2000. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science 287: 1258 1262.
80. Kolb, A. F.,, R. Ansell,, J. McWhir,, and S. G. Siddell. 1999. Insertion of a foreign gene into the beta-casein locus by Cremediated ite-specific recombination. Gene 227: 21 31.
81. Kolb, A. F.,, and S. G. Siddell. 1997. Genomic targeting of a bicistronic DNA fragment by Cre-mediated site-specific recombination. Gene 203: 209 216.
82. Kolot, M.,, N. Silberstein,, and E. Yagil. 1999. Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol. Biol. Rep. 26: 207 213.
83. Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283 292.
84. Kühn, R.,, F. Schwenk,, M. Aguet,, and K. Rajewsky. 1995. Inducible gene targeting in mice. Science 269: 1427 1429.
85. Lakso, M.,, J. G. Pichel,, J. R. Gorman,, B. Sauer,, Y. Okamoto,, E. Lee,, F. W. Alt,, and H. Westphal. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93: 5860 5865.
86. Lakso, M.,, B. Sauer,, B. Mosinger, Jr.,, E. J. Lee,, R. W. Manning,, S.-H. Yu,, K. L. Mulder,, and H. Westphal. 1992. Targeted oncogene activation by site-specific recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6232 6236.
87. Le, Y.,, S. Gagneten,, D. Tombaccini,, B. Bethke,, and B. Sauer. 1998. Identification of nuclear targeting determinants in the Cre recombinase of phage P1. Nucleic Acids Res. 24: 4703 4709.
88. Le, Y.,, J. L. Miller,, and B. Sauer. 1999. GFP cre fusion vectors with enhanced expression. Anal. Biochem. 270: 334 336.
89. Lee, G.,, and I. Saito. 1998. Role of nucleotide sequences of loxP spacer region in Cre-mediated recombination. Gene 216: 55 65.
90. Lewandoski, M.,, and G. R. Martin. 1997. Cre-mediated chromosome loss in mice. Nat. Genet. 17: 223 225.
91. Lewandoski, M.,, K. M. Wassarman,, and G. R. Martin. 1997. Zp3-cre, a transgenic mouse line for the activation or inactivation of loxP-flanked target genes specifically in the female germ line. Curr. Biol. 7: 148 151.
92. Li, L.,, and S. N. Cohen. 1996. Tsg101: a novel tumor susceptibility gene isolated by controlled homozygous functional knockout of allelic loci in mammalian cells. Cell 85: 319 329.
93. Li, Z.-W.,, G. Stark,, J. Götz,, T. Rülicke,, U. Müller,, and C. Weissmann. 1996. Generation of mice with a 200-kb amyloid precursor protein gene deletion by Cre recombinase-mediated site-specific recombination in embryonic stem cells. Proc. Natl. Acad. Sci. USA 93: 6158 6162.
94. Liu, J.-L.,, A. Grinberg,, H. Westphal,, B. Sauer,, D. Accili,, M. Karas,, and D. LeRoith. 1998. Insulin-like growth factor-I affects perinatal lethality and postnatal development in a gene dosage-dependent manner: manipulation using the Cre/loxP system in transgenic mice. Mol. Endocrinol. 12: 1452 1462.
95. Liu, P.,, H. Zhang,, A. McLellan,, H. Vogel,, and A. Bradley. 1998. Embryonic lethality and tumorigenesis caused by segmental aneuploidy on mouse chromosome 11. Genetics 150: 1155 1168.
96. Lobe, C. G.,, K. E. Koop,, W. Kreppner,, H. Lomeli,, M. Gertsenstein,, and A. Nagy. 1999. Z/AP, a double reporter for cremediated recombination. Dev. Biol. 208: 281 292.
97. Maeser, S.,, and R. Kahmann. 1991. The Gin recombinase of bacteriophage Mu can catalyse site-specific recombination in plant protoplasts. gMol. Gen. Genet. 230: 170 176.
98. Mao, X.,, Y. Fujiwara,, and S. H. Orkin. 1999. Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc. Natl. Acad. Sci. USA 96: 5037 5042.
99. Marth, J. D. 1996. Recent advances in gene mutagenesis by site-directed recombination. J. Clin. Invest. 97: 1999 2002.
100. Matsuzaki, H.,, R. Nakajima,, J. Nishiyama,, H. Araki,, and Y. Oshima. 1990. Chromosome engineering in Saccharomyces cerevisi+ by using a site-specific recombination system of a yeast plasmid. J. Bacteriol. 172: 610 618.
101. McDevitt, M. A.,, R. A. Shivdasani,, Y. Fujiwara,, H. Yang,, and S. H. Orkin. 1997. A “knockdown” mutation created by cis-element gene targeting reveals the dependence of erythroid cell maturation on the level of transcription factor GATA-1. Proc. Natl. Acad. Sci. USA 94: 6781 6785.
102. Medberry, S. L.,, E. Dale,, M. Qin,, and D. W. Ow. 1995. Intra-chromosomal rearrangements generated by Cre- lox site-specific recombination. Nucleic Acids Res. 23: 485 490.
103. Metzger, D.,, J. Clifford,, H. Chiba,, and P. Chambon. 1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc. Natl. Acad. Sci. USA 92: 6991 6995.
104. Meyers, E. N.,, M. Lewandoski,, and G. R. Martin. 1998. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 18: 136 141.
105. Mozo, T.,, and P. J. J. Hooykaas. 1992. Design of a novel system for the construction of vectors for Agrobacteriummediated plant transformation. Mol. Gen. Genet. 236: 1 7.
106. Nagy, A.,, C. Moens,, E. Ivanyi,, J. Pawling,, M. Gertsenstein,, A. K. Hadjantonakis,, M. Pirity,, and J. Rossant. 1998. Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles. Curr. Biol. 8: 661 664.
107. Nunes-Düby, S. E.,, H. J. Kwon,, R. S. Tirumalai,, T. Ellenberger,, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26: 391 406.
108. Odell, J.,, P. Caimi,, B. Sauer,, and S. Russell. 1990. Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet. 223: 369 378.
109. Onouchi, H.,, K. Yokoi,, C. Machida,, H. Matsuzaki,, Y. Oshima,, K. Matsuoka,, K. Nakamura,, and Y. Machida. 1991. Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res. 19: 6373 6378.
110. Orban, P. C.,, D. Chui,, and J. D. Marth. 1992. Tissue- and site-specific DNA recombination in transgenic mice. Proc. Natl. Acad. Sci. USA 89: 6861 6865.
111. Osborne, B. I.,, U. Wirtz,, and B. Baker. 1995. A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre- lox. Plant J. 7: 687 701.
112. Palazzolo, M. J.,, B. A. Hamilton,, D. Ding,, C. H. Martin,, D. A. Mead,, R. C. Mierendorf,, K. V. Raghavan,, E. M. Meyerowitz,, and H. D. Lipshitz. 1990. Phage lambda cDNA cloning vectors for subtractive hybridization, fusion-protein synthesis and Cre- loxP automatic plasmid subcloning. Gene 88: 25 36.
113. Peakman, T. C.,, R. A. Harris,, and D. R. Gewert. 1992. Highly efficient generation of recombinant baculoviruses by enzymatically mediated site-specific in vitro recombination. Nucleic Acids Res. 20: 495 500.
114. Picard, D. 1994. Regulation of protein function through expression of chimaeric proteins. Curr. Opin. Biotechnol. 5: 511 515.
115. Qin, M.,, C. Bayley,, T. Stockton,, and D. W. Ow. 1994. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc. Natl. Acad. Sci. USA 91: 1706 1710.
116. Qin, M.,, E. Lee,, T. Zankel,, and D. W. Ow. 1995. Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucleic Acids Res. 23: 1923 1927.
117. Raben, N.,, K. Nagaraju,, E. Lee,, P. Kessler,, B. Byrne,, L. Lee,, M. LaMarca,, C. King,, J. Ward,, B. Sauer,, and P. Plotz. 1998. Targeted disruption of the acid _-glucosidase gene in mice causes an illness with the critical features of both infantile and adult human Glycogen Storage Disease Type II. J. Biol. Chem. 273: 19086 19092.
118. Rajewsky, K.,, H. Gu,, R. Kühn,, U. A. Betz,, W. Müller,, J. Roes,, and F. Schwenk. 1996. Conditional gene targeting. J. Clin. Invest. 98: 600 603.
119. Ramírez-Solis, R.,, P. Liu,, and A. Bradley. 1995. Chromosome engineering in mice. Nature (London) 378: 720 724.
120. Rijli, F. M.,, P. Dollé,, V. Fraulob,, M. Lemeur,, and P. Chambon. 1994. Insertion of a targeting construct in a Hoxd-10 allele can influence the control of Hoxd-9 expression. Dev. Dyn. 201: 366 377.
121. Ripoll, P. J.,, A. Cowper,, S. Salmeron,, P. Dickinson,, D. Porteous,, and B. Arveiler. 1998. A new yeast artificial chromosome vector designed for gene transfer into mammalian cells. Gene 210: 163 172.
122. Rong, Y. S.,, and K. G. Golic. 2000. Gene targeting by homologous recombination in Drosophila . Science 288: 1973 1975.
123. Ross-Macdonald, P.,, A. Sheehan,, G. S. Roeder,, and M. Snyder. 1997. A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94: 190 195.
124. Rouet, P.,, F. Smith,, and M. Jasin. 1994. Expression of a sitespecific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064 6068.
125. Rucker, E. B.,, and J. A. Piedrahita. 1997. Cre-mediated recombination at the murine whey acidic protein (mWAP) locus. Mol. Reprod. Dev. 48: 324 331.
126. Russell, S. H.,, J. L. Hoopes,, and J. T. Odell. 1992. Directed excision of a transgene from the plant genome. Mol. Gen. Genet. 234: 49 59.
127. Saam, J. R.,, and J. I. Gordon. 1999. Inducible gene knockouts in the small intestinal and colonic epithelium. J. Biol. Chem. 274: 38071 38082.
128. Sauer, B. 1987. Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2087 2096.
129. Sauer, B. 1992. Identification of cryptic lox sites in the yeast genome by selection for chromosome translocations that confer multiple drug resistance. J. Mol. Biol. 223: 911 928.
130. Sauer, B. 1998. Inducible gene targeting in mice using the Cre/ lox system. Methods 14: 381 392.
131. Sauer, B. 1996. Multiplex Cre/ lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res. 24: 4608 4613.
132. Sauer, B. 1994. Recycling selectable markers in yeast. Bio- Techniques 16: 1086 1088.
133. Sauer, B.,, W. Baubonis,, S. Fukushige,, and L. Santomenna. 1992. Construction of isogenic cell lines expressing human and rat angiotensin II AT1 receptors by Cre-mediated site specific recombination. Methods 4: 143 149.
134. Sauer, B.,, and N. Henderson. 1989. Cre-stimulated recombination at loxP sites placed into the genome of mammalian cells. Nucleic Acids Res. 17: 147 161.
135. Sauer, B.,, and N. Henderson. 1988. The cyclization of linear DNA in Escherichia coli by site-specific recombination. Gene 70: 331 341.
136. Sauer, B.,, and N. Henderson. 1988. Site-specificDNArecombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc. Natl. Acad. Sci. USA 85: 5166 5170.
137. Sauer, B.,, and N. Henderson. 1990. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase. New Biol. 2: 441 449.
138. Sauer, B.,, M. Whealy,, A. Robbins,, and L. Enquist. 1987. Site-specific insertion of DNA into a pseudorabies virus vector. Proc. Natl. Acad. Sci. USA 84: 9108 9112.
139. Schwenk, F.,, U. Baron,, and K. Rajewsky. 1995. A cretransgenic mouse strain for the ubiquitous deletion of loxPflanked gene segments including deletion in germ cells. Nucleic Acids Res. 23: 5080 5081.
140. Schwenk, F.,, B. Sauer,, N. Kukoc,, R. Hoess,, W. Müller,, C. Kocks,, R. Kühn,, and K. Rajewsky. 1997. Generation of Cre recombinase-specific monoclonal antibodies to characterize the pattern of Cre expression in cre-transgenic mouse strains. J. Immunol. Methods 207: 203 212.
141. Scott, J. R. 1968. Genetic studies on bacteriophage P1. Virology 36: 564 574.
142. Shockett, P.,, M. Difilippantonio,, N. Hellman,, and D. G. Schatz. 1995. A modified tetracycline-regulated system provides autoregulatory, inducible gene expression in cultured cells and transgenic mice. Proc. Natl. Acad. Sci. USA 92: 6522 6526.
143. Sieburth, L. E.,, G. N. Drews,, and E. M. Meyerowtz. 1998. Non-autonomy of AGAMOUS function in flower development: use of Cre/ loxP method for mosaic analysis in Arabidopsis. Development 125: 4303 4312.
144. Siegal, M. L.,, and D. L. Hartl. 1996. Transgene coplacement and high efficiency site-specific recombination with the Cre/ loxP system in Drosophila. Genetics 144: 715 726.
145. Smith, A. J. H.,, M. A. De Sousa,, B. Kwabi-Addo,, A. Heppell- Parton,, H. Imprey,, and P. Rabbitts. 1995. A site-directed chromosomal translocation induced in embryonic stem cells by Cre- loxP recombination. Nat. Genet. 9: 376 385.
146. Soriano, P. 1999. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21: 70 71.
147. Soukharev, S.,, J. L. Miller,, and B. Sauer. 1999. Segmental genomic replacement in embryonic stem cells by double lox targeting. Nucleic Acids Res. 27: e21.
148. Sternberg, N. 1990. Bacteriophage P1 cloning system for the isolation, amplification, and recovery of DNA fragments as large as 100 kilobase pairs. Proc. Natl. Acad. Sci. USA 87: 103 107.
149. Sternberg, N. 1978. Demonstration and analysis of P1 sitespecific recombination using _-P1 hybrid phages constructed in vitro. Cold Spring Harbor Symp. Quant. Biol. 43: 1143 1146.
150. Sternberg, N.,, R. Hoess,, and K. Abremski,. 1983. The P1 lox- Cre site specific recombination system: properties of lox sites and biochemistry of lox-Cre interactions, p. 671-– 684. In N. R. Cozzarelli (ed.), UCLA Symposia on Molecular and Cellular Biology, vol. 10. Mechanisms of DNA Replication and Recombination. Alan R. Liss, New York, N.Y..
151. Sternberg, N.,, B. Sauer,, R. Hoess,, and K. Abremski. 1986. Bacteriophage P1 cre gene and its regulatory region: evidence for multiple promoters and for regulation by DNA methylation. J. Mol. Biol. 187: 197 212.
152. Stuurman, J.,, M. J. de Vroomen,, H. J. Nijkamp,, and M. J. van Haaren. 1996. Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre- lox site-specific recombination. Plant Mol. Biol. 32: 901 913.
153. Su, H.,, X. Wang,, and A. Bradley. 2000. Nested chromosomal deletions induced with retroviral vectors in mice. Nat. Genet. 24: 92 95.
154. Taniguchi, M.,, M. Sanbo,, S. Watanabe,, I. Naruse,, M. Mishina,, and T. Yagi. 1998. Efficient production of Cre-mediated site-directed recombinants through the utilization of the puromycin resistance gene, pac: a transient gene-integration marker for ES cells. Nucleic Acids Res. 26: 679 680.
155. Thorey, I. S.,, K. Muth,, A. P. Russ,, J. Otte,, A. Reffelmann,, and H. von Melchner. 1998. Selective disruption of genes transiently induced in differentiating mouse embryonic stem cells by using gene trap mutagenesis and site-specific recombination. Mol. Cell. Biol. 18: 3081 3088.
156. Thorpe, H. M.,, and M. C. Smith. 1998. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA 95: 5505 5510.
157. Thyagarajan, B.,, M. J. Guimarães,, A. C. Groth,, and M. P. Calos. 2000. Mammalian genomes contain active recombinase recognition sites. Gene 244: 47 54.
158. Tsien, J. Z.,, D. F. Chen,, D. Gerber,, C. Tom,, E. H. Mercer,, D. J. Anderson,, M. Mayford,, E. R. Kandel,, and S. Tonegawa. 1996. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87: 1317 1326.
159. Tsien, J. Z.,, P. T. Huerta,, and S. Tonegawa. 1996. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87: 1327 1338.
160. Tsujita, M.,, H. Mori,, M. Watanabe,, M. Suzuki,, J. Miyazaki,, and M. Mishina. 1999. Cerebellar granule cell-specific and inducible expression of Cre recombinase in the mouse. J. Neurosci. 19: 10318 10323.
161. Utomo, A. R.,, A. Y. Nikitin,, and W. H. Lee. 1999. Temporal, spatial, and cell type-specific control of Cre-mediated DNA recombination in transgenic mice. Nat. Biotechnol. 17: 1091 1096.
162. van Deursen, J.,, M. Fornerod,, B. van Rees,, and G. Grosveld. 1995. Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc. Natl. Acad. Sci. USA 92: 7376 7380.
163. Vasioukhin, V.,, L. Degenstein,, B. Wise,, and E. Fuchs. 1999. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc. Natl. Acad. Sci. USA 96: 8551 8556.
164. Vidal, F.,, J. Sage,, F. Cuzin,, and M. Rassoulzadegan. 1998. Cre expression in primary spermatocytes: a tool for genetic engineering of the germ line. Mol. Reprod. Dev. 51: 274 280.
165. Walker, D. H., Jr.,, and J. T. Walker. 1975. Genetic studies of coliphage P1. I. Mapping by use of prophage deletions. J. Virol. 16: 525 534.
166. Wang, P.,, M. Anton,, F. L. Graham,, and S. Bacchetti. 1995. High frequency recombination between loxP sites in human chromosomes mediated by an adenovirus vector expressing Cre recombinase. Somat. Cell Mol. Genet. 21: 429 441.
167. Waterhouse, P.,, A. D. Griffiths,, K. S. Johnson,, and G. Winter. 1993. Combinatorial infection and in vivo recombination: a strategy for making large phage antibody repertoires. Nucleic Acids Res. 21: 2265 2266.
168. Westerman, K. A.,, and P. Leboulch. 1996. Reversible immortalization of mammalian cells mediated by retroviral transfer and site-specific recombination. Proc. Natl. Acad. Sci. USA 93: 8971 8976.
169. Yakar, S.,, J.-L. Liu,, B. Stannard,, A. Butler,, D. Accili,, B. Sauer,, and D. LeRoith. 1999. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 96: 7324 7329.
170. Yamauchi, Y.,, K. Abe,, A. Mantani,, Y. Hitoshi,, M. Suzuki,, F. Osuzu,, S. Kuratani,, and K. Yamamura. 1999. A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev. Biol. 212: 191 203.
171. Yarmolinsky, M. B.,, and N. Sternberg. 1988. Bacteriophage P1, p. 291 438. In R. Calendar (ed.), The Bacteriophages, vol. 1. Plenum Press, New York.
172. Zhang, Y.,, C. Riesterer,, A. M. Ayrall,, F. Sablitzky,, T. D. Littlewood,, and M. Reth. 1996. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24: 543 548.
173. Zheng, B.,, M. Sage,, E. A. Sheppeard,, V. Jurecic,, and A. Bradley. 2000. Engineering mouse chromosomes with Cre- loxP: range, efficiency, and somatic applications. Mol. Cell. Biol. 20: 648 655.
174. Zinyk, D. L.,, E. H. Mercer,, E. Harris,, D. J. Anderson,, and A. L. Joyner. 1998. Fate mapping of the mouse midbrainhindbrain constriction using a site-specific recombination system. Curr. Biol. 8: 665 668.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error