1887

Chapter 41 : Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap41-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap41-2.gif

Abstract:

This chapter provides examples of antigenic variation that meet three criteria. (i) There is evidence that variation is mainly for avoidance of the host’s immune response or niche selection, i.e., adaptation to different microenvironments in the host, or both. (ii) The variation is multiphasic rather than biphasic. In other words, the repertoire of variable antigens is at least three. There is not a flip-flop between two antigen states, as occurs with some DNA inversion systems. (iii) The mechanism for antigenic variation is most consistent with gene conversion, and this occurs in a clonal population, not through lateral gene transfer between strains. The chapter on relapsing-fever species in the first edition was necessarily short: information about genetics of these organisms was limited. The agents of relapsing fever and Lyme disease are spirochetes, a separate group of eubacteria that are as different from gram-negative bacteria as they are from gram-positive bacteria or cyanobacteria. Although humans infected with a relapsing fever may become seriously ill and die, most infections of the usual vertebrate hosts for these microorganisms produce a mild illness. Clearly the bacterial examples of multiphasic antigenic variation of this chapter fall in the category of programmed rearrangements. Maenwhile, for relapsing fever spirochetes and gonococci at least, the process that varies expression among a repertoire of alleles is not as tidy and efficient as occurs in other programmed rearrangement systems, notably, yeast mating- type switches and the several examples of DNA inversions.

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41

Key Concept Ranking

Outer Membrane Proteins
0.47555053
Genetic Elements
0.4656883
Integral Membrane Proteins
0.43946886
Type IV Pili
0.41278207
0.47555053
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Single spirochete in a Wright-stained blood smear from a patient with tick-borne relapsing fever.

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Case of relapsing fever. The patient was exposed to ticks during week −1 and became infected with The first episodes of fever began during week 1. The temperature curves of the patient are shown; “x” marks indicate the temperature readings. Possible serotypes of that could be recovered from the patient at the time of fever peaks are shown above. In order of appearance the serotypes were white, gray, hatched, and black.

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Neighbor-joining phylogenetic relationships of genes of and with an gene of as the outgroup. The tree was based on data reported by Rich et al. ( ).

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Partial physical maps of linear plasmids lp28-1, lp32, and lp28-2 of containing the expressed gene, the silent gene, and several other silent (dark-gray arrows) and (black arrows) genes. Previous designations for the plasmids are shown in parentheses ( ). The right arm of plasmid lp28-1 contains the hairpin telomere. The family membership of genes is indicated by adjoining α, β, δ, and γ symbols. The maps also show the location of genes that are homologous to plasmid replication and partition genes (light gray arrows without asterisks) of ( ), whose gene families' numbers are given in tilted boxes. The light-gray arrows with asterisks are partial sequences homologous to a putative transposase (see text). The striped vertical rectangles indicate the positions of the DHS; DHS inside single quotation marks indicates a partial sequence. The gray bars above each map refer to the regions of the plasmids that are shown in sequence detail in Fig. 6

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Nucleotide alignment of the 5′ends of the genes of expressed (7E) and of silent (7S), (21S), (36S), (6S), (13S), and (26S). The promoter region of 7E and upstream regions of the silent loci are also aligned. The locations of the sequences on the plasmids are shown in Fig. 5 . The entire 7E sequence is highlighted in gray. Those positions that are identical to the 7E sequence are also highlighted. The start codon is shown in white text on a black background. The location of the RBS is indicated. Selected palindromes of four or six bases are underlined. “+1” indicates the transcriptional start site ( ).

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Four mechanisms for serotype switches by The different mechanisms are discussed in the text. indicates the promoter and location of the expression site; an overhead arrow shows whether the gene is active and the direction of transcription. The or gene at this location determines the phenotype of the cell. The linear plasmid-borne or genes are indicated by boxes in solid colors (white, light gray, medium gray, dark gray, and black). The rest of the plasmid sequences are shown by patterns. In mechanism 2 a deletion by direct repeats (small horizontal bars) occurs and results in a nonreplicative circle. In mechanism 3 the suspected donor sequences for templated partial gene conversions are shown. The vertical arrows indicate the changes of one or two linear plasmids with each type of switch.

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Unrooted neighbor-joining phylogenetic tree of the α, β, δ, and γ subfamilies of genes of The locations on the trees of selected relapse sequences are shown (Barbour et al., submitted).

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

(A) Full-length physical maps of four linear plasmids of containing expressed and silent alleles of and genes. The estimated lengths of the different plasmids are indicated to the right of the plasmid names. The locations of different and genes are indicated below the maps. The expressed promoter and the direction of transcription are indicated by and an arrow, respectively. Selected sites for the following restriction enzymes (with abbreviations in parentheses) are indicated: HI (B), I (C), RI (E), R47 (E), RV (Ev), II (G), dIII (H), I (P), II (V), I (Sa), I (S), F1 (Sr), I (Sp), and I (X). Modified from a figure in reference . Regions with the same pattern or shade have highly similar or identical sequences. (B) Matrix comparison of and and their downstream sequences. A two-bytwo matrix was performed on selected sequences shown in panel A. The axis displays and the downstream and (partial) genes; the axis displays and the downstream and (partial) genes. The diagonal lines represent windows with a match of at least 15 out of 20 nucleotides. Only contiguous matches of more than 50 bp are shown. Modified from a figure in reference .

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Organization of the locus and selected loci of the gene in one isolate of strain MSII ( ) of (A) and hypothetical recombinations between representative sequences and a locus (B). (A) genes are indicated by white boxes; the gray and block boxes indicate the RS1 and I/I repeats, respectively. (B) variable cassettes are designated by patterns or solid colors. To the left of each outcome of the gene conversion is shown a gonococcus with pili or without (outcome 3). The color of the bacterium refers to the pilin variant. In outcome 2 the partial gene conversion of the cassette results in a mosaic pilin gene. In outcome 3 the location of a stop codon in the reading frame is shown. The figure is modified from figures in reference .

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Alignment of variable regions of pilin amino acid sequences. Sequences 307 to 320 are from reference , and sequences 938 to 943 are from . Highlighted positions (Pos) indicate identical residues that were present in at least 10 of the 19 sequences. Conserved cysteines are underlined. The numbering refers to the sequence of the prepilin of strain MSII ( ).

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Schematic representation of the outcomes of inversions within the locus of The phenotype of the bacterium is indicated by a pattern and corresponds to the gene downstream of the promoter (). The arrow indicates the direction and extent of transcription. The black blocks at the 5′ends of the alleles are conserved sequences. The alleles are followed by nontranscribed repeats, which are shown as short gray boxes.

Citation: Barbou A. 2002. Antigenic Variation by Relapsing Fever Borrelia Species and Other Bacterial Pathogens, p 972-994. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch41
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap41
1. Apicella, M. A.,, M. Shero,, G. A. Jarvis,, J. M. Griffiss,, R. E. Mandrell,, and H. Schneider. 1987. Phenotypic variation in epitope expression of the Neisseria gonorrhoeae lipooligosaccharide. Infect. Immun. 55:17551761.
2. Barbour, A. G., 1989. Antigenic variation in relapsing fever Borrelia species: genetic aspects, p. 783789. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
3. Barbour, A. G. 1987. Immunobiology of relapsing fever. Contrib. Microbiol. Immunol. 8:125137.
4. Barbour, A. G., 1999. Relapsing fever and other Borrelia infections, p. 535546. In R. L. Guerrant,, D. H. Walker,, and P. F. Weller (ed.), Tropical Infectious Diseases. Principles, Pathogens, & Practice. Churchill Livingston, Philadelphia, Pa.
5. Barbour, A. G.,, O. Barrera,, and R. C. Judd. 1983. Structural analysis of the variable major proteins of Borrelia hermsii. J. Exp. Med. 158:21272140.
6. Barbour, A. G.,, and V. Bundoc. 2001. In vitro and in vivo neutralization of the relapsing fever agent Borrelia hermsii with serotype-specific immunoglobulin M antibodies. Infect. Immun. 69:10091015.
7. Barbour, A. G.,, N. Burman,, C. J. Carter,, T. Kitten,, and S. Bergstrom. 1991. Variable antigen genes of the relapsing fever agent Borrelia hermsii are activated by promoter addition. Mol. Microbiol. 5:489493.
8. Barbour, A. G.,, C. J. Carter,, V. Bundoc,, and J. Hinnebusch. 1996. The nucleotide sequence of a linear plasmid of Borrelia burgdorferi reveals similarities to those of circular plasmids of other prokaryotes. J. Bacteriol. 178:66356639.
9. Barbour, A. G.,, C. J. Carter,, N. Burman,, C. S. Freitag,, C. F. Garon,, and S. Bergstrom. 1991. Tandem insertion sequence-like elements define the expression site for variable antigen genes of Borrelia hermsii. Infect. Immun. 59:390397.
10. Barbour, A. G.,, C. J. Carter,, and C. D. Sohaskey. 2000. Surface protein variation by expression site switching in the relapsing fever agent Borrelia hermsii. Infect. Immun. 68: 71147121.
11. Barbour, A. G.,, and C. F. Garon. 1987. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237:409411.
12. Barbour, A. G.,, and S. F. Hayes. 1986. Biology of Borrelia species. Microbiol. Rev. 50:381400.
13. Barbour, A. G.,, and B. I. Restrepo. 2000. Antigenic variation of vector-borne pathogens. Emerg. Infect. Dis. 6:449457.
14. Barbour, A. G.,, and H. G. Stoenner,. 1985. Antigenic variation of Borrelia hermsii, p. 123135. In M. I. Simon, and I. Herskowitz (ed.), Genome Rearrangement. Alan R. Liss, Inc., New York, N.Y.
15. Barbour, A. G.,, S. L. Tessier,, and H. G. Stoenner. 1982. Variable major proteins of Borrelia hermsii. J. Exp. Med. 156:13121324.
16. Barbour, A. G.,, S. L. Tessier,, and W. J. Todd. 1983. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect. Immun. 41:795804.
17. Barstad, P. A.,, J. E. Coligan,, M. G. Raum,, and A. G. Barbour. 1985. Variable major proteins of Borrelia hermsii. Epitope mapping and partial sequence analysis of CNBr peptides. J. Exp. Med. 161:13021314.
18. Belland, R. J.,, S. G. Morrison,, J. H. Carlson,, and D. M. Hogan. 1997. Promoter strength influences phase variation of neisserial opa genes. Mol. Microbiol. 23:123135.
19. Bergström, S.,, V. G. Bundoc,, and A. G. Barbour. 1989. Molecular analysis of linear plasmid-encoded major surface proteins, OspA and OspB, of the Lyme disease spirochaete Borrelia burgdorferi. Mol. Microbiol. 3:479486.
20. Bergström, S.,, K. Robbins,, J. M. Koomey,, and J. Swanson. 1986. Piliation control mechanisms in Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 83:38903894.
21. Bhat, K. S.,, C. P. Gibbs,, O. Barrera,, S. G. Morrison,, F. Jahnig,, A. Stern,, E. M. Kupsch,, T. F. Meyer,, and J. Swanson. 1991. The opacity proteins of Neisseria gonorrhoeae strain MS11 are encoded by a family of 11 complete genes. Mol. Microbiol. 5:18891901.
22. Biswas, G. D.,, T. Sox,, E. Blackman,, and P. F. Sparling. 1977. Factors affecting genetic transformation of Neisseria gonorrhoeae. J. Bacteriol. 129:983992.
23. Black, W. J.,, R. S. Schwalbe,, I. Nachamkin,, and J. G. Cannon. 1984. Characterization of Neisseria gonorrhoeae protein II phase variation by use of monoclonal antibodies. Infect. Immun. 45:453457.
24. Blaser, M. J.,, and Z. Pei. 1993. Pathogenesis of Campylobacter fetus infections. Critical role of the high molecular weight S-layer proteins in virulence. J. Infect. Dis. 167: 696706.
25. Blaser, M. J.,, E. Wang,, M. K. Tummuru,, R. Washburn,, S. Fujimoto,, and A. Labigne. 1994. High-frequency S-layer protein variation in Campylobacter fetus revealed by sapA mutagenesis. Mol. Microbiol. 14:453462.
26. Boslego, J. W.,, E. C. Tramont,, R. C. Chung,, D. G. McChesney,, J. Ciak,, J. C. Sadoff,, M. V. Piziak,, J. D. Brown,, C. C. Brinton, Jr.,, S. W. Wood, et al. 1991. Efficacy trial of a parenteral gonococcal pilus vaccine in men. Vaccine 9:154162.
27. Brandt, M. E.,, B. S. Riley,, J. D. Radolf,, and M. V. Norgard. 1990. Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 58:983991.
28. Brinton, C. C.,, J. Bryan,, J.-A. Dillion,, N. Guerina,, L. J. Jacobson,, A. Labik,, S. Lee,, A. Levine,, S. Lim,, J. McMichael,, S. Polen,, K. Rodgers,, A. C.-C. To,, and S. C.-M. To,. 1978. Uses of pili in gonorrhea control: role of bacterial pili in disease, purification, and properties of gonococcal pili, and progress in the development of a gonococcal pilus vaccine for gonorrhea, p. 155178. In G. F. Brooks,, E. C. Gotschlich,, K. K. Holmes,, W. D. Sawyer,, and F. E. Young (ed.), Immunobiologyof Neisseria gonorrhoeae. American Society for Microbiology, Washington, D.C.
29. Buchanan, T. M. 1975. Antigenic heterogeneity of gonococcal pili. J. Exp. Med. 141:14701475.
30. Buchanan, T. M.,, and E. C. Gotschlich. 1973. Studies on gonococcus infection. 3. Correlation of gonococcal colony morphology with infectivity for the chick embryo. J. Exp. Med. 137:196200.
31. Bunikis, J.,, and A. G. Barbour. 1999. Access of antibody or trypsin to an integral outer membrane protein (P66) of Borrelia burgdorferi is hindered by Osp lipoproteins. Infect. Immun. 67:28742883.
32. Burch, C. L.,, R. J. Danaher,, and D. C. Stein. 1997. Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J. Bacteriol. 179:982986.
33. Burman, N. 1994. Antigenic variation in relapsing fever Borrelia. Thesis. Department of Microbiology, Umeå University, Umeå, Sweden.
34. Burman, N.,, S. Bergström,, B. I. Restrepo,, and A. G. Barbour. 1990. The variable antigens Vmp7 and Vmp21 of the relapsing fever bacterium Borrelia hermsii are structurally analogous to the VSG proteins of the African trypanosome. Mol. Microbiol. 4:17151726.
35. Burman, N.,, A. Shamaei-Tousi,, and S. Bergström. 1998. The spirochete Borrelia crocidurae causes erythrocyte rosetting during relapsing fever. Infect. Immun. 66:815819.
36. Cadavid, D.,, and A. G. Barbour. 1998. Neuroborreliosis during relapsing fever: review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin. Infect. Dis. 26:151164.
37. Cadavid, D.,, V. Bundoc,, and A. G. Barbour. 1993. Experimental infection of the mouse brain by a relapsing fever Borrelia species: a molecular analysis. J. Infect. Dis. 168: 143151.
38. Cadavid, D.,, P. M. Pennington,, T. A. Kerentseva,, S. Bergstrom,, and A. G. Barbour. 1997. Immunologic and genetic analyses of VmpA of a neurotropic strain of Borrelia turicatae. Infect. Immun. 65:33523360.
39. Cadavid, D.,, D. D. Thomas,, R. Crawley,, and A. G. Barbour. 1994. Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J. Exp. Med. 179:631642.
40. Carson, S. D.,, B. Stone,, M. Beucher,, J. Fu,, and P. F. Sparling. 2000. Phase variation of the gonococcal siderophore receptor FetA. Mol. Microbiol. 36:585593.
41. Carter, C. J.,, S. Bergstrom,, S. J. Norris,, and A. G. Barbour. 1994. A family of surface-exposed proteins of 20 kilodaltons in the genus Borrelia. Infect. Immun. 62:27922799.
42. Casjens, S.,, N. Palmer,, R. Van Vugt,, W. M. Huang,, B. Stevenson,, P. Rosa,, R. Lathigra,, G. Sutton,, J. Peterson,, R. J. Dodson,, D. Haft,, E. Hickey,, M. Gwinn,, O. White,, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35:490516.
43. Chaussee, M. S.,, J. Wilson,, and S. A. Hill. 1999. Characterization of the recD gene of Neisseria gonorrhoeae MS11 and the effect of recD inactivation on pilin variation and DNA transformation. Microbiology 145:389400.
44. Citti, C.,, M. F. Kim,, and K. S. Wise. 1997. Elongated versions of Vlp surface lipoproteins protect Mycoplasma hyorhinis escape variants from growth-inhibiting host antibodies. Infect. Immun. 65:17731785.
45. Coffey, E. M.,, and W. C. Eveland. 1967. Experimental relapsing fever initiated by Borellia hermsi. I. Identification of major serotypes by immunofluorescence. J. Infect. Dis. 117: 2328.
46. Corbeil, L. B.,, G. D. Schurig,, P. J. Bier,, and A. J. Winter. 1975. Bovine venereal vibriosis: antigenic variation of the bacterium during infection. Infect. Immun. 11:240244.
47. Dubreuil, J. D.,, M. Kostrzynska,, J. W. Austin,, and T. J. Trust. 1990. Antigenic differences among Campylobacter fetus Slayer proteins. J. Bacteriol. 172:50355043.
48. Dunn, J. J.,, S. R. Buchstein,, L. L. Butler,, S. Fisenne,, D. S. Polin,, B. N. Lade,, and B. J. Luft. 1994. Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi. J. Bacteriol. 176:27062717.
49. Dworkin, J.,, and M. J. Blaser. 1997. Molecular mechanisms of Campylobacter fetus surface layer protein expression. Mol. Microbiol. 26:433440.
50. Dworkin, J.,, O. L. Shedd,, and M. J. Blaser. 1997. Nested DNA inversion of Campylobacter fetus S-layer genes is recA dependent. J. Bacteriol. 179:75237529.
51. Dybvig, K. 1993. DNA rearrangements and phenotypic switching in prokaryotes. Mol. Microbiol. 10:465471.
52. Eggers, C. H.,, and D. S. Samuels. 1999. Molecular evidence for a new bacteriophage of Borrelia burgdorferi. J. Bacteriol. 181:73087313.
53. Facius, D.,, and T. F. Meyer. 1993. A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of comA-defect on pilin variation. Mol. Microbiol. 10:699712.
54. Felsenfeld, O. 1971. Borrelia. Strains, Vectors, Human and Animal Borreliosis. Warren H. Greene, Inc., St. Louis, Mo.
55. Ferdows, M. S.,, and A. G. Barbour. 1989. Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA 86:59695973.
56. Ferdows, M. S.,, P. Serwer,, G. A. Griess,, S. J. Norris,, and A. G. Barbour. 1996. Conversion of a linear to a circular plasmid in the relapsing fever agent Borrelia hermsii. J. Bacteriol. 178: 793800.
57. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Pal mer,, M. D. Adams,, J. Gocayne,, J. C. Venter, et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580586.
58. French, D. M.,, W. C. Brown,, and G. H. Palmer. 1999. Emergence of Anaplasma marginale antigenic variants during persistent rickettsemia. Infect. Immun. 67:58345840.
59. Garcia, M. M.,, C. L. Lutze-Wallace,, A. S. Denes,, M. D. Eaglesome,, E. Holst,, and M. J. Blaser. 1995. Protein shift and antigenic variation in the S-layer of Campylobacter fetus subsp. venerealis during bovine infection accompanied by genomic rearrangement of sapA homologs. J. Bacteriol. 177:19761980.
60. Haas, R.,, and T. F. Meyer. 1986. The repertoire of silent pilus genes in Neisseria gonorrhoeae: evidence for gene conversion. Cell 44:107115.
61. Hill, S. A. 1999. Cell to cell transmission of donor DNA overcomes differential incorporation of non-homologous and homologous markers in Neisseria gonorrhoeae. Gene 240: 175182.
62. Hill, S. A. 1996. Limited variation and maintenance of tight genetic linkage characterize heteroallelic pilE recombination following DNA transformation of Neisseria gonorrhoeae. Mol. Microbiol. 20:507518.
63. Hill, S. A.,, S. G. Morrison,, and J. Swanson. 1990. The role of direct oligonucleotide repeats in gonococcal pilin gene variation. Mol. Microbiol. 4:13411352.
64. Hinnebusch, B. J.,, A. G. Barbour,, B. I. Restrepo,, and T. G. Schwan. 1998. Population structure of the relapsing fever spirochete Borrelia hermsii as indicated by polymorphism of two multigene families that encode immunogenic outer surface lipoproteins. Infect. Immun. 66:432440.
65. Hinnebusch, J.,, and A. G. Barbour. 1991. Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. J. Bacteriol. 173: 72337239.
66. Hinnebusch, J.,, and A. G. Barbour. 1992. Linear- and circular- plasmid copy numbers in Borrelia burgdorferi. J. Bacteriol. 174:52515257.
67. Hinnebusch, J.,, S. Bergström,, and A. G. Barbour. 1990. Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4: 811820.
68. Hinnebusch, J.,, and K. Tilly. 1993. Linear plasmids and chromosomes in bacteria. Mol. Microbiol. 10:917922.
69. Holt, S. C. 1978. Anatomy and chemistry of spirochetes. Microbiol. Rev. 38:114160.
70. Hughes, C. A.,, and R. C. Johnson. 1990. Methylated DNA in Borrelia species. J. Bacteriol. 172:66026604.
71. Hyde, F. W.,, and R. C. Johnson. 1984. Genetic relationship of Lyme disease spirochetes to Borrelia, Treponema, and Leptospira spp. J. Clin. Microbiol. 20:151154.
72. James, J. F.,, C. J. Lammel,, D. L. Draper,, and G. F. Brooks,. 1980. Attachment of Neisseria gonorrhoeae colony phenotype variants to eukaryotic cells and tissues, p. 213216. In S. Normark, and D. Danielsson (ed.), Genetics and Immunobiologyof Pathogenic Neisseria. University of Umeå , Umeå , Sweden.
73. Jerse, A. E.,, M. S. Cohen,, P. M. Drown,, L. G. Whicker,, S. F. Isbey,, H. S. Seifert,, and J. G. Cannon. 1994. Multiple gonococcal opacity proteins are expressed during experimental urethral infection in the male. J. Exp. Med. 179:911920.
74. Jones, K. F.,, S. K. Hollingshead,, J. R. Scott,, and V. A. Fischetti. 1988. Spontaneous M6 protein size mutants of group A steptococci display variation in antigenic and opsonogenic epitopes. Proc. Natl. Acad. Sci. USA 85:82718275.
75. Jonsson, A.,, G. Nyberg,, and S. Normark. 1991. Phase variation of gonococcal pili by frameshift mutation in pilC, a novel gene for pilus assembly. EMBO J. 10:477488.
76. Jonsson, A. B.,, D. Ilver,, P. Falk,, J. Pepose,, and S. Normark. 1994. Sequence changes in the pilus subunit lead to tropism variation of Neisseria gonorrhoeae to human tissue. Mol. Microbiol. 13:403416.
77. Kellogg, D. S.,, I. R. Cohen,, L. C. Norins,, A. L. Schroeter,, and G. Reising. 1968. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J. Bacteriol. 96:596605.
78. Kellogg, D. S., Jr.,, W. L. Peacock,, W. E. Deacon,, L. Brown,, and C. I. Pirkle. 1963. Neisseria gonorrhoeae. I. Virulence genetically linked to colonial variation. J. Bacteriol. 85: 12741279.
79. Kieser, S. T.,, I. S. Eriks,, and G. H. Palmer. 1990. Cyclic rickettsemia during persistent Anaplasma marginale infection of cattle. Infect. Immun. 58:11171119.
80. Kitten, T.,, and A. G. Barbour. 1990. Juxtaposition of expressed variable antigen genes with a conserved telomere in the bacterium Borrelia hermsii. Proc. Natl. Acad. Sci. USA 87:60776081.
81. Kitten, T.,, and A. G. Barbour. 1992. The relapsing fever agent Borrelia hermsii has multiple copies of its chromosome and linear plasmids. Genetics 132:311324.
82. Kitten, T.,, A. V. Barrera,, and A. G. Barbour. 1993. Intragenic recombination and a chimeric outer membrane protein in the relapsing fever agent Borrelia hermsii. J. Bacteriol. 175: 25162522.
83. Koomey, J. M., 1994. Mechanisms of pilus antigenic variation in Neisseria gonorrhoeae, p. 113126. In V. I. Miller,, J. B. Kaper,, D. A. Portnoy,, and R. R. Isberg (ed.), Molecular Genetics of Bacterial Pathogenesis. American Society for Microbiology, Washington, D.C.
84. Koomey, M.,, E. C. Gotschlich,, K. Robbins,, S. Bergström,, and J. Swanson. 1987. Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. Genetics 117:391398.
85. Kuzminov, A. 1999. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63:751813.
86. Lafay, B.,, A. T. Lloyd,, M. J. McLean,, K. M. Devine,, P. M. Sharp,, and K. H. Wolfe. 1999. Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res. 27: 16421649.
87. Magoun, L.,, W. R. Zuckert,, D. Robbins,, N. Parveen,, K. R. Alugupalli,, T. G. Schwan,, A. G. Barbour,, and J. M. Leong. 2000. Variable small protein (Vsp)-dependent and Vsp-independent pathways for glycosaminoglycan recognition by relapsing fever spirochaetes. Mol. Microbiol. 36:886897.
88. Mehr, I. J.,, and H. S. Seifert. 1998. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30:697710.
89. Meier, J. T.,, M. I. Simon,, and A. G. Barbour. 1985. Antigenic variation is associated with DNA rearrangements in a relapsing fever Borrelia. Cell 41:403409.
90. Meleney, H. E. 1928. Relapse phenomena of Spironema recurrentis. J. Exp. Med. 48:6582.
91. Meyer, T. F. 1999. Pathogenic neisseriae: complexity of pathogen-host cell interplay. Clin. Infect. Dis. 28:433441.
92. Meyer, T. F.,, E. Billyard,, R. Haas,, S. Storzbach,, and M. So. 1984. Pilus genes of Neisseria gonorrheae: chromosomal organization and DNA sequence. Proc. Natl. Acad. Sci. USA 81:61106114.
93. Meyer, T. F.,, J. Pohlner,, and J. P. van Putten. 1994. Biology of the pathogenic Neisseriae. Curr. Top. Microbiol. Immunol. 192:283317.
94. Meyer, T. F.,, and J. P. van Putten. 1989. Genetic mechanisms and biological implications of phase variation in pathogenic Neisseriae. Clin. Microbiol. Rev. 2:S139S145.
95. Murphy, G. L.,, T. D. Connell,, D. S. Barritt,, M. Koomey,, and J. G. Cannon. 1989. Phase variation of gonococcal protein II: regulation of gene expression by slipped-strand mispairing of a repetitive DNA sequence. Cell 56:539547.
96. Parge, H. E.,, K. T. Forest,, M. J. Hickey,, D. A. Christensen,, E. D. Getzoff,, and J. A. Tainer. 1995. Structure of the fibre-forming protein pilin at 2.6 A resolution. Nature 378:3238.
97. Paster, B.,, F. Dewhirst,, W. Weisburg,, L. Tordoff,, G. Fraser,, R. Hespell,, T. Stanton,, L. Zablen,, L. Mandelco,, and C. Woese. 1991. Phylogenetic analysis of the spirochetes. J. Bacteriol. 173:61016109.
98. Pennington, P. M.,, C. D. Allred,, C. S. West,, R. Alvarez,, and A. G. Barbour. 1997. Arthritis severity and spirochete burden are determined by serotype in the Borrelia turicatae-mouse model of Lyme disease. Infect. Immun. 65:285292.
99. Pennington, P. M.,, D. Cadavid,, and A. G. Barbour. 1999. Characterization of VspB of Borrelia turicatae, a major outer membrane protein expressed in blood and tissues of mice. Infect. Immun. 67:46374645.
100. Pennington, P. M.,, D. Cadavid,, J. Bunikis,, S. J. Norris,, and A. G. Barbour. 1999. Extensive interplasmidic duplications change the virulence phenotype of the relapsing fever agent Borrelia turicatae. Mol. Microbiol. 34:11201132.
101. Plasterk, R. H.,, M. I. Simon,, and A. G. Barbour. 1985. Transposition of structural genes to an expression sequence on a linear plasmid causes antigenic variation in the bacterium Borrelia hermsii. Nature 318:257263.
102. Radolf, J. D.,, K. W. Bourell,, D. R. Akins,, J. S. Brusca,, and M. V. Norgard. 1994. Analysis of Borrelia burgdorferi membrane architecture by freeze-fracture electron microscopy. J. Bacteriol. 176:2131.
103. Ras, N. M.,, B. Lascola,, D. Postic,, S. J. Cutler,, F. Rodhain,, G. Baranton,, and D. Raoult. 1996. Phylogenesis of relapsing fever Borrelia spp. Int. J. Syst. Bacteriol. 46:859865.
104. Restrepo, B. I.,, and A. G. Barbour. 1994. Antigen diversity in the bacterium B. hermsii through “somatic” mutations in rearranged vmp genes. Cell 78:867876.
105. Restrepo, B. I.,, C. J. Carter,, and A. G. Barbour. 1994. Activation of a vmp pseudogene in Borrelia hermsii: an alternate mechanism of antigenic variation during relapsing fever. Mol. Microbiol. 13:287299.
106. Restrepo, B. I.,, T. Kitten,, C. J. Carter,, D. Infante,, and A. G. Barbour. 1992. Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic. Mol. Microbiol. 6:32993311.
107. Rich, S. M.,, S. M. Sawyer,, and A. G. Barbour. Antigen polymorphism in Borrelia hermsii, a clonal pathogenic bacterium. Proc. Natl. Acad. Sci. USA, in press.
108. Rudel, T.,, J. P. M. van Putten,, C. P. Gibbs,, R. Haas,, and T. F. Meyer. 1992. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol. Microbiol. 6: 32393450.
109. Russell, H. 1936. Observations on immunity in relapsing fever and trypanosomiasis. Trans. R. Soc. Trop. Med. Hyg. 30:179190.
110. Sadziene, A.,, D. D. Thomas,, and A. G. Barbour. 1995. Borrelia burgdorferi mutant lacking Osp: biological and immunological characterization. Infect. Immun. 63:15731580.
111. Schoolnik, G. K.,, R. Fernandez,, J. Y. Tai,, J. Rothbard,, and E. C. Gotschlich. 1984. Gonococcal pili. Primary structure and receptor binding domain. J. Exp. Med. 159:13511370.
112. Schuhardt, V. T.,, and M. Wilkerson. 1951. Relapse phenomena in rats infected with single spirochetes (Borrelia recurrenis var. turicatae). J. Bacteriol. 62:215219.
113. Schurig, G. D.,, C. E. Hall,, K. Burda,, L. B. Corbeil,, J. R. Duncan,, and A. J. Winter. 1973. Persistent genital tract infection with Vibrio fetus intestinalis associated with serotypic alteration of the infecting strain. Am. J. Vet. Res. 34: 13991403.
114. Schwan, T. G.,, and B. J. Hinnebusch. 1998. Bloodstream-versus tick-associated variants of a relapsing fever bacterium. Science 280:19381940.
115. Seifert, H. S. 1996. Questions about gonococcal pilus phase and antigenic variation. Mol. Microbiol. 21:433440.
116. Seifert, H. S.,, R. S. Ajioka,, C. Marchal,, P. F. Sparling,, and M. So. 1988. DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336:392395.
117. Seifert, H. S.,, C. J. Wright,, A. E. Jerse,, M. S. Cohen,, and J. G. Cannon. 1994. Multiple gonococcal pilin antigenic variants are produced during experimental human infections. J. Clin. Investig. 93:27442749.
118. Shamaei-Tousi, A.,, P. Martin,, A. Bergh,, N. Burman,, T. Brännström,, and S. Bergström. 1999. Erythrocyte-aggregating relapsing fever spirochete Borrelia crocidurae induces formation of microemboli. J. Infect. Dis. 180:19291938.
119. Simon, M. I.,, and I. Herskowitz,. 1985. Introduction, p. xvxix. In M. I. Simon, and I. Herskowitz (ed.), Genome Rearrangement. Alan R. Liss, Inc., New York, N.Y.
120. Smith, J. M.,, N. H. Smith,, M. O’Rourke,, and B. G. Spratt. 1993. How clonal are bacteria? Proc. Natl. Acad. Sci. USA 90:43844388.
121. Smith, N. H.,, E. C. Holmes,, G. M. Donovan,, G. A. Carpenter,, and B. G. Spratt. 1999. Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. Mol. Biol. Evol. 16: 773783.
122. Sohaskey, C. D.,, W. R. Zuckert,, and A. G. Barbour. 1999. The extended promoters for two outer membrane lipoprotein genes of Borrelia spp. uniquely include a T-rich region. Mol. Microbiol. 33:4151.
123. Stein, D. C.,, R. Chien,, and H. S. Seifert. 1992. Construction of a Neisseria gonorrhoeae MS11 derivative deficient in NgoMI restriction and modification. J. Bacteriol. 174: 48994906.
124. Stern, A.,, and T. F. Meyer. 1987. Common mechanism controlling phase and antigenic variation in pathogenic neisseriae. Mol. Microbiol. 1:512.
125. Stevenson, B.,, S. F. Porcella,, K. L. Oie,, C. A. Fitzpatrick,, S. J. Raffel,, L. Lubke,, M. E. Schrumpf,, and T. G. Schwan. 2000. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infect. Immun. 68:39003908.
126. Stoenner, H. G.,, T. Dodd,, and C. Larsen. 1982. Antigenic variation of Borrelia hermsii. J. Exp. Med. 156:12971311.
127. Swanson, J. 1982. Colony opacity and protein II composition of gonococci. Infect. Immun. 37:359368.
128. Swanson, J. 1973. Studies on gonococcus infection. IV. Pili: their role in attachment of gonococci to tissue culture cells. J. Exp. Med. 137:571589.
129. Swanson, J.,, and O. Barrera. 1983. Gonococcal size heterogeneity correlates with transitions in colony piliation phenotype, not with changes in colony opacity. J. Exp. Med. 158: 14591472.
130. Swanson, J.,, O. Barrera,, J. Sola,, and J. Boslego. 1988. Expression of outer membrane protein II by gonococci in experimental gonorrhea. J. Exp. Med. 168:21212129.
131. Swanson, J.,, R. J. Belland,, and S. A. Hill. 1992. Neisserial surface variation: how and why? Curr. Opin. Genet. Dev. 2: 805811.
132. Swanson, J.,, S. Bergström,, K. Robbins,, O. Barrera,, D. Corwin,, and J. M. Koomey. 1986. Gene conversion involving the pilin structural gene correlates with pilus++in equilibrium with pilus changes in Neisseria gonorrhoeae. Cell 47: 267276.
133. Swanson, J.,, and J. M. Koomey,. 1989. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae, p. 743761. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
134. Swanson, J.,, S. Morrison,, O. Barrera,, and S. Hill. 1990. Piliation changes in transformation-defective gonococci. J. Exp. Med. 171:21312139.
135. Swanson, J.,, K. Robbins,, O. Barrera,, D. Corwin,, J. Boslego,, J. Ciak,, M. S. Blake,, and J. M. Koomey. 1987. Gonococcal pilin variants in experimental gonorrhea. J. Exp. Med. 165: 13441357.
136. Takahashi, N.,, K. Sakagami,, K. Kusano,, K. Yamamoto,, H. Yoshikura,, and I. Kobayashi. 1997. Genetic recombination through double-strand break repair: shift from two-progeny to one-progeny mode by heterologous inserts. Genetics 146: 926.
137. Vidal, V.,, I. G. Scragg,, S. J. Cutler,, K. A. Rockett,, D. Fekade,, D. A. Warrell,, D. J. Wright,, and D. Kwiatkowski. 1998. Variable major lipoprotein is a principal TNF-inducing factor of louse-borne relapsing fever. Nat. Med. 4:14161420.
138. Virji, M.,, J. E. Heckels,, and P. J. Watt. 1983. Monoclonal antibodies to gonococcal pili: studies on antigenic determinants on pili variants of strain P9. J. Gen. Microbiol. 129:19651973.
139. Wainwright, L. A.,, K. H. Pritchard,, and H. S. Seifert. 1994. A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol. Microbiol. 13:7587.
140. Walker, E. M.,, L. A. Borenstein,, D. R. Blanco,, J. N. Miller,, and M. A. Lovett. 1991. Analysis of outer membrane ultra-structure of pathogenic Treponema and Borrelia species by freeze-fracture electron microscopy. J. Bacteriol. 173: 55855588.
141. Yang, Q. L.,, and E. C. Gotschlich. 1996. Variation of gonococcal lipooligosaccharide structure is due to alterations in poly-G tracts in 1gt genes encoding glycosyl transferases. J. Exp. Med. 183:323327.
142. Zhang, J. R.,, J. M. Hardham,, A. G. Barbour,, and S. J. Norris. 1997. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell 89:275285.
143. Zhang, J. R.,, and S. J. Norris. 1998. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Infect. Immun. 66:36893697.
144. Zhang, Q. Y.,, D. DeRyckere,, P. Lauer,, and M. Koomey. 1992. Gene conversion in Neisseria gonorrhoeae: evidence for its role in pilus antigenic variation. Proc. Natl. Acad. Sci. USA 89:53665370.
145. Zückert, W.,, T. A. Kerentseva,, C. L. Lawson,, and A. G. Barbour. 2000. Structural conservation of neurotropism-associated VspA within the variable Borrelia Vsp-OspC lipoprotein family. J. Biol. Chem. 276:457463.
146. Zückert, W. R.,, and J. Meyer. 1996. Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J. Bacteriol. 178:22872298.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error