Chapter 43 : Interactions between Transposable Elements and the Host Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Interactions between Transposable Elements and the Host Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap43-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap43-2.gif


This chapter explores the issue of how eukaryotic transposable elements interact with their hosts, trying to disclose the benefits they can bring to the genome by analyzing the interactions at the molecular level in every step of the transposition process. The tendency of transposable elements to increase in copy number antagonizes the interest of the host genome to keep its genetic information free of the interference produced by new insertions. Due to this tradeoff, transposable elements and their hosts have developed mechanisms to control transposition, which is the most critical step in limiting their propensity to spread throughout the host genome. The same proteins would have evolved afterward to become major players in transcription regulation through alterations in chromatin structure. Another hint of how transposable elements could be subject to silencing and heterochromatization by the host genomes comes from studies of the organization of the pericentromeric regions of the chromosomes and the heterochromatic sex chromosomes. One of the more substantial contributions of this work is the conclusion that the phylogenetic distribution of elements in relation to their respective hosts can be explained without the necessity to assume horizontal transfer between species. Transposable elements, by virtue of the properties discussed here, have facilitated the shuffling and reorganization of the genome necessary for the magnitude of protein evolution observed when distant genomes such as yeast, worms, humans, and flies are compared.

Citation: Labrador M, Corces V. 2002. Interactions between Transposable Elements and the Host Genome, p 1008-1023. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch43

Key Concept Ranking

Group II Introns
Transcription Start Site
Transposable Elements
RNA Polymerase III
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Bailey, J. A.,, L. Carrel,, A. Chakravarti,, and E. E. Eichler. 2000. From the cover: molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97:66346639.
2. Bestor, T. H. 1998. Gene silencing. Methylation meets acetylation. Nature 393:311312.
3. Biessmann, H.,, J. M. Mason,, K. Ferry,, M. d’Hulst,, K. Valgeirsdottir,, K. L. Traverse,, and M. L. Pardue. 1990. Addition of telomere-associated HeT DNA sequences "heals: broken chromosome ends in Drosophila. Cell 61:663673.
4. Bigot, Y.,, M. H. Hamelin,, P. Capy,, and G. Periquet. 1994. Mariner-like elements in hymenopteran species: insertion site and distribution. Proc. Natl. Acad. Sci. USA 91:34083412.
5. Bingham, P. M. 1997. Cosuppression comes to the animals. Cell 90:385387.
6. Birchler, J. A.,, U. Bhadra,, L. Rainbow,, R. Linsk,, and A. T. Nguyen-Huynh. 1994. Weakener of white (Wow), a gene that modifies the expression of the white eye color locus and that suppresses position effect variegation in Drosophila melanogaster. Genetics 137:10571070.
7. Birchler, J. A.,, M. Pal-Bhadra,, and U. Bhadra. 1999. Less from more: cosuppression of transposable elements. Nat. Genet. 21:148149.
8. Boeke, J. D.,, and S. E. Devine. 1998. Yeast retrotransposons: finding a nice quiet neighborhood. Cell 93:10871089.
9. Boeke, J. D.,, and O. K. Pickeral. 1999. Retroshuffling the genomic deck. Nature 398:108109, 111.
10. Brookman, J. J.,, A. T. Toosy,, L. S. Shashidhara,, and R. A. White. 1992. The 412 retrotransposon and the development of gonadal mesoderm in Drosophila. Development 116:11851192.
11. Brutnell, T. P.,, and S. L. Dellaporta. 1994. Somatic inactivation and reactivation of Ac associated with changes in cytosine methylation and transposase expression. Genetics 138:213225.
12. Bushman, F. D. 1994. Tethering human immunodeficiency virus 1 integrase to a DNA site directs integration to nearby sequences. Proc. Natl. Acad. Sci. USA 91:92339237.
13. Bushman, F. D.,, and M. D. Miller. 1997. Tethering human immunodeficiency virus type 1 preintegration complexes to target DNA promotes integration at nearby sites. J. Virol. 71:458464.
14. Capy, P.,, R. Vitalis,, T. Langin,, D. Higuet,, and C. Bazin. 1996. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42:359368.
15. Carteau, S.,, C. Hoffmann,, and F. Bushman. 1998. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J. Virol. 72:40054014.
16. Cavarec, L.,, S. Jensen,, J. F. Casella,, S. A. Cristescu,, and T. Heidmann. 1997. Molecular cloning and characterization of a transcription factor for the copia retrotransposon with homology to the BTB-containing lola neurogenic factor. Mol. Cell. Biol. 17:482494.
17. Cavarec, L.,, S. Jensen,, and T. Heidmann. 1994. Identification of a strong transcriptional activator for the copia retrotransposon responsible for its differential expression in Drosophila hydei and melanogaster cell lines. Biochem. Biophys. Res. Commun. 203:392399.
18. Chaboissier, M. C.,, A. Bucheton,, and D. J. Finnegan. 1998. Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc. Natl. Acad. Sci. USA 95:1178111785.
19. Chalvet, F.,, L. Teysset,, C. Terzian,, N. Prud’homme,, P. Santamaria,, A. Bucheton,, and A. Pelisson. 1999. Proviral amplification of the gypsy endogenous retrovirus of Drosophila melanogaster involves env-independent invasion of the female germline. EMBO J. 18:26592669.
20. Clark, J. B.,, P. C. Kim,, and M. G. Kidwell. 1998. Molecular evolution of P transposable elements in the genus Drosophila. III. The melanogaster species group. Mol. Biol. Evol. 15:746755.
21. Conte, D., Jr.,, E. Barber,, M. Banerjee,, D. J. Garfinkel,, and M. J. Curcio. 1998. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol. Cell. Biol. 18:25022513.
22. Conte, D., Jr.,, and M. J. Curcio. 2000. Fus3 controls Ty1 transpositional dormancy through the invasive growth MAPK pathway. Mol. Microbiol. 35:415427.
23. Cousineau, B.,, S. Lawrence,, D. Smith,, and M. Belfort. 2000. Retrotransposition of a bacterial group II intron. Nature 404:10181021.
24. Cousineau, B.,, D. Smith,, S. Lawrence-Cavanagh,, J. E. Mueller,, J. Yang,, D. Mills,, D. Manias,, G. Dunny,, A. M. Lambowitz,, and M. Belfort. 1998. Retrohoming of a bacterial group II intron: mobility via complete reverse splicing, independent of homologous DNA recombination. Cell 94:451462.
25. Craigie, R. 1992. Hotspots and warm spots: integration specificity of retroelements. Trends Genet. 8:187190.
26. Curcio, M. J.,, A. M. Hedge,, J. D. Boeke,, and D. J. Garfinkel. 1990. TyRNA levels determine the spectrum of retrotransposition events that activate gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 220:213221.
27. Curcio, M. J.,, N. J. Sanders,, and D. J. Garfinkel. 1998. Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8:35713581.
28. Dalmay, T.,, A. Hamilton,, S. Rudd,, S. Angell,, and D. C. Baulcombe. 2000. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543553.
29. Devine, S. E.,, and J. D. Boeke. 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNApolymerase III. Genes Dev. 10:620633.
30. Dickson, L.,, L. Liu,, M. Matsuura,, A. M. Lambowitz,, and P. S. Perlman. 2001. Retrotransposition of a yeast group II intron occurs by reverse splicing directly into ectopic DNA sites. Proc. Natl. Acad. Sci. USA 98:1320713212.
31. Doak, T. G.,, F. P. Doerder,, C. L. Jahn,, and G. Herrick. 1994. A proposed superfamily of transposase genes: transposonlike elements in ciliated protozoa and a common ‘‘D35E’’ motif. Proc. Natl. Acad. Sci. USA 91:942946.
32. Donze, D.,, C. R. Adams,, J. Rine,, and R. T. Kamakaka. 1999. The boundaries of the silenced HMRdomain in Saccharomyces cerevisiae. Genes Dev. 13:698708.
33. Doolittle, W. F.,, and C. Sapienza. 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284:601603.
34. Dorer, D. R.,, and S. Henikoff. 1997. Transgene repeat arrays interact with distant heterochromatin and cause silencing in cis and trans. Genetics 147:11811190.
35. Du, C.,, M. E. McGuffin,, B. Dauwalder,, L. Rabinow,, and W. Mattox. 1998. Protein phosphorylation plays an essential role in the regulation of alternative splicing and sex determination in Drosophila. Mol. Cell 2:741750.
36. Eickbush, T. H. 2000. Molecular biology. Introns gain ground. Nature 404:940941, 943.
37. Eickbush, T. H. 1997. Telomerase and retrotransposons: which came first? Science 277:911912.
38. Engelman, A.,, K. Mizuuchi,, and R. Craigie. 1991. HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:12111221.
39. Engels, W. R. 1992. The origin of P elements in Drosophila melanogaster. Bioessays 14:681686.
40. Esnault, C.,, J. Maestre,, and T. Heidmann. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363367.
41. Fanti, L.,, D. R. Dorer,, M. Berloco,, S. Henikoff,, and S. Pimpinelli. 1998. Heterochromatin protein 1 binds transgene arrays. Chromosoma 107:286292.
42. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905916.
43. Fire, A. 1999. RNA-triggered gene silencing. Trends Genet. 15:358363.
44. Fire, A.,, S. Xu,, M. K. Montgomery,, S. A. Kostas,, S. E. Driver,, and C. C. Mello. 1998. Potent and specific genetic interference by double-strandedRNAin Caenorhabditis elegans. Nature 391:806811.
45. Gerasimova, T. I.,, and V. G. Corces. 1998. Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell 92:511521.
46. Giniger, E.,, K. Tietje,, L. Y. Jan,, and Y. N. Jan. 1994. lola encodes a putative transcription factor required for axon growth and guidance in Drosophila. Development 120:13851398.
47. Goodier, J. L.,, E. M. Ostertag,, and H. H. Kazazian, Jr. 2000. Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9:653657.
48. Greider, C. W.,, and E. H. Blackburn. 1987. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887898.
49. Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389:349352.
50. Hama, C.,, Z. Ali,, and T. B. Kornberg. 1990. Region-specific recombination and expression are directed by portions of the Drosophila engrailed promoter. Genes Dev. 4:10791093.
51. Hamilton, A. J.,, and D. C. Baulcombe. 1999. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950952.
52. Hammond, S. M.,, E. Bernstein,, D. Beach,, and G. J. Hannon. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293296.
53. Hartl, D. L.,, A. R. Lohe,, and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31:337358.
54. Henikoff, S. 1998. Conspiracy of silence among repeated transgenes. Bioessays 20:532535.
55. Hirochika, H.,, K. Sugimoto,, Y. Otsuki,, H. Tsugawa,, and M. Kanda. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93:77837788.
56. Inouye, S.,, and M. Inouye. 1993. The retron: a bacterial retroelement required for the synthesis of msDNA. Curr. Opin. Genet. Dev. 3:713718.
57. Jacobsen, S. E.,, and E. M. Meyerowitz. 1997. Hypermethylated SUPERMAN epigenetic alleles in arabidopsis. Science 277:11001103.
58. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153:17671774.
59. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21:209212.
60. Jones, P. L.,, G. J. Veenstra,, P. A. Wade,, D. Vermaak,, S. U. Kass,, N. Landsberger,, J. Strouboulis,, and A. P. Wolffe. 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187191.
61. Ke, N.,, P. A. Irwin,, and D. F. Voytas. 1997. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. EMBO J. 16:62726280.
62. Ketting, R. F.,, T. H. Haverkamp,, H. G. van Luenen,, and R. H. Plasterk. 1999. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133141.
63. Ketting, R. F.,, and R. H. Plasterk. 2000. A genetic link between co-suppression and RNA interference in C. elegans. Nature 404:296298.
64. Kidwell, M. G.,, and D. Lisch. 1997. Transposable elements as sources of variation in animals and plants. Proc. Natl. Acad. Sci. USA 94:77047711.
65. Kirchner, J.,, C. M. Connolly,, and S. B. Sandmeyer. 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:14881491.
66. Kumar, A.,, and J. L. Bennetzen. 1999. Plant retrotransposons. Annu. Rev. Genet. 33:479532.
67. Labrador, M.,, and V. G. Corces. 1997. Transposable element- host interactions: regulation of insertion and excision. Annu. Rev. Genet. 31:381404.
68. Labrador, M.,, M. D. C. Seleme,, and A. Fontdevila. 1998. The evolutionary history of Drosophila buzzatii. XXXIV. The distribution of the retrotransposon Osvaldo in original and colonizing populations. Mol. Biol. Evol. 15:15321547.
69. Lecher, P.,, A. Bucheton,, and A. Pelisson. 1997. Expression of the Drosophila retrovirus gypsy as ultrastructurally detectable particles in the ovaries of flies carrying a permissive flamenco allele. J. Gen. Virol. 78:23792388.
70. Lee, M. S.,, and R. Craigie. 1998. A previously unidentified host protein protects retroviral DNA from autointegration. Proc. Natl. Acad. Sci. USA 95:15281533.
71. Levis, R. W.,, R. Ganesan,, K. Houtchens,, L. A. Tolar,, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:10831093.
72. Liao, G. C.,, E. J. Rehm,, and G. M. Rubin. 2000. Insertion site preferences of the P transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97:33473351.
73. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTRretrotransposition. Cell 72:595605.
74. Luff, B.,, L. Pawlowski,, and J. Bender. 1999. An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol. Cell 3:505511.
75. Lyon, M. F. 2000. LINE-1 elements andXchromosome inactivation: a function for "junk" DNA? Proc. Natl. Acad. Sci. USA 97:62486249.
76. Madhani, H. D.,, C. A. Styles,, and G. R. Fink. 1997. MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673684.
77. Malik, H. S.,, W. D. Burke,, and T. H. Eickbush. 1999. The age and evolution of non-LTRretrotransposable elements. Mol. Biol. Evol. 16:793805.
78. Marin, I.,, A. Franke,, G. J. Bashaw,, and B. S. Baker. 1996. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383:160163.
79. Menees, T. M.,, and S. B. Sandmeyer. 1996. Cellular stress inhibits transposition of the yeast retrovirus-like element Ty3 by a ubiquitin-dependent block of virus-like particle formation. Proc. Natl. Acad. Sci. USA 93:56295634.
80. Misquitta, L.,, and B. M. Paterson. 1999. Targeted disruption of gene function in Drosophila by RNA interference (RNAi): a role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96:14511456.
81. Modolell, J.,, W. Bender,, and M. Meselson. 1983. Drosophila melanogaster mutations suppressible by the suppressor of Hairy-wing are insertions of a 7.3-kilobase mobile element. Proc. Natl. Acad. Sci. USA 80:16781682.
82. Montgomery, E. A.,, S. M. Huang,, C. H. Langley,, and B. H. Judd. 1991. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129:10851098.
83. Moran, J. V.,, R. J. DeBerardinis,, and H. H. Kazazian, Jr. 1999. Exon shuffling by L1 retrotransposition. Science 283:15301534.
84. Moran, J. V.,, S. E. Holmes,, T. P. Naas,, R. J. DeBerardinis,, J. D. Boeke,, and H. H. Kazazian, Jr. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917927.
85. Mueller, M. W.,, M. Allmaier,, R. Eskes,, and R. J. Schweyen. 1993. Transposition of group II intron aI1 in yeast and invasion of mitochondrial genes at new locations. Nature 366:174176.
86. Murray, M. V.,, M. A. Turnage,, K. J. Williamson,, W. R. Steinhauer,, and L. L. Searles. 1997. The Drosophila suppressor of sable protein binds toRNAand associates with a subset of polytene chromosome bands. Mol. Cell. Biol. 17:22912300.
87. Nakamura, T. M.,, and T. R. Cech. 1998. Reversing time: origin of telomerase. Cell 92:587590.
88. Nakamura, T. M.,, G. B. Morin,, K. B. Chapman,, S. L. Weinrich,, W. H. Andrews,, J. Lingner,, C. B. Harley,, and T. R. Cech. 1997. Telomerase catalytic subunit homologs from fission yeast and human. Science 277:955959.
89. Nan, X.,, H. H. Ng,, C. A. Johnson,, C. D. Laherty,, B. M. Turner,, R. N. Eisenman,, and A. Bird. 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386389.
90. Ngo, H.,, C. Tschudi,, K. Gull,, and E. Ullu. 1998. Doublestranded RNA induces mRNA degradation in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 95:1468714692.
91. O’Neill, R. J.,, M. J. O’Neill,, and J. A. Graves. 1998. Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature 393:6872.
92. Orgel, L. E.,, and F. H. Crick. 1980. Selfish DNA: the ultimate parasite. Nature 284:604607.
93. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1997. Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90:479490.
94. Pal-Bhadra, M.,, U. Bhadra,, and J. A. Birchler. 1999. Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99:3546.
95. Pardue, M. L.,, O. N. Danilevskaya,, K. Lowenhaupt,, F. Slot,, and K. L. Traverse. 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12:4852.
96. Parkhurst, S. M.,, and V. G. Corces. 1987. Developmental expression of Drosophila melanogaster retrovirus-like transposable elements. EMBO J. 6:419424.
97. Pelisson, A.,, S. U. Song,, N. Prud’homme,, P. A. Smith,, A. Bucheton,, and V. G. Corces. 1994. Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 13:44014411.
98. Pickeral, O. K.,, W. Makaowski,, M. S. Boguski,, and J. D. Boeke. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10:411415.
99. Pirrotta, V. 1997. Chromatin-silencing mechanisms in Drosophila maintain patterns of gene expression. Trends Genet. 13:314318.
100. Prud’homme, N.,, M. Gans,, M. Masson,, C. Terzian,, and A. Bucheton. 1995. Flamenco, a gene controlling the gypsy retrovirus of Drosophila melanogaster. Genetics 139:697711.
101. Pruss, D.,, R. Reeves,, F. D. Bushman,, and A. P. Wolffe. 1994. The influence of DNA and nucleosome structure on integration events directed by HIV integrase. J. Biol. Chem. 269:2503125041.
102. Rabinow, L.,, S. L. Chiang,, and J. A. Birchler. 1993. Mutations at the Darkener of apricot locus modulate transcript levels of copia and copia-induced mutations in Drosophila melanogaster. Genetics 134:11751185.
103. Ratcliff, F.,, B. D. Harrison,, and D. C. Baulcombe. 1997. A similarity between viral defense and gene silencing in plants. Science 276:15581560.
104. Razin, A. 1998. CpG methylation, chromatin structure and gene silencing—a three-way connection. EMBO J. 17: 49054908.
105. Rio, D. C. 1990. Molecular mechanisms regulating Drosophila P element transposition. Annu. Rev. Genet. 24:543578.
106. Romano, N.,, and G. Macino. 1992. Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol. 6:33433353.
107. Sanchez Alvarado, A.,, and P. A. Newmark. 1999. Doublestranded RNA specifically disrupts gene expression during planarian regeneration. Proc. Natl. Acad. Sci. USA 96:50495054.
108. Sellem, C. H.,, G. Lecellier,, and L. Belcour. 1993. Transposition of a group II intron. Nature 366:176178.
109. Sezutsu, H.,, E. Nitasaka,, and T. Yamazaki. 1995. Evolution of the LINE-like I element in the Drosophila melanogaster species subgroup. Mol. Gen. Genet. 249:168178.
110. Sharp, P. A. 1991. ‘‘Five easy pieces.’’ Science 254:663.
111. Simmons, M. J.,, J. D. Raymond,, C. D. Grimes,, C. Belinco,, B. C. Haake,, M. Jordan,, C. Lund,, T. A. Ojala,, and D. Papermaster. 1996. Repression of hybrid dysgenesis in Drosophila melanogaster by heat-shock-inducible sense and antisense P-element constructs. Genetics 144:15291544.
112. Smith, J. S.,, and J. D. Boeke. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11:241254.
113. Smith, P. A.,, and V. G. Corces. 1992. The suppressor of Hairy-wing binding region is required for gypsy mutagenesis. Mol. Gen. Genet. 233:6570.
114. Smith, P. A.,, and V. G. Corces. 1995. The suppressor of Hairy-wing protein regulates the tissue-specific expression of the Drosophila gypsy retrotransposon. Genetics 139:215228.
115. Sniegowski, P. D.,, and B. Charlesworth. 1994. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster. Genetics 137:815827.
116. Song, S. U.,, T. Gerasimova,, M. Kurkulos,, J. D. Boeke,, and V. G. Corces. 1994. An env-like protein encoded by a Drosophila retroelement: evidence that gypsy is an infectious retrovirus. Genes Dev. 8:20462057.
117. Song, S. U.,, M. Kurkulos,, J. D. Boeke,, and V. G. Corces. 1997. Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila. Development 124:27892798.
118. Spana, C.,, D. A. Harrison,, and V. G. Corces. 1988. The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon. Genes Dev. 2:14141423.
119. Spradling, A. C.,, D. M. Stern,, I. Kiss,, J. Roote,, T. Laverty,, and G. M. Rubin. 1995. Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. Proc. Natl. Acad. Sci. USA 92:1082410830.
120. Steinemann, M.,, and S. Steinemann. 1998. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 103:409420.
121. Steinemann, M.,, and S. Steinemann. 1997. The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the Neo-Y chromosome of Drosophila miranda. Genetics 145:261266.
122. Tabara, H.,, M. Sarkissian,, W. G. Kelly,, J. Fleenor,, A. Grishok,, L. Timmons,, A. Fire,, and C. C. Mello. 1999. The rde- 1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123132.
123. Taillebourg, E.,, and J. M. Dura. 1999. A novel mechanism for P element homing in Drosophila. Proc. Natl. Acad. Sci. USA 96:68566861.
124. Takagaki, Y.,, and J. L. Manley. 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 372:471474.
125. Takeda, S.,, K. Sugimoto,, H. Otsuki,, and H. Hirochika. 1999. A 13-bp cis-regulatory element in the LTRpromoter of the tobacco retrotransposon Ttol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant J. 18:383393.
126. Takeda, S.,, K. Sugimoto,, H. Otsuki,, and H. Hirochika. 1998. Transcriptional activation of the tobacco retrotransposon Ttol by wounding and methyl jasmonate. Plant Mol. Biol. 36:365376.
127. Terzian, C.,, C. Ferraz,, J. Demaille,, and A. Bucheton. 2000. Evolution of the gypsy endogenous retrovirus in the Drosophila melanogaster subgroup. Mol. Biol. Evol. 17:908914.
128. Voinnet, O.,, Y. M. Pinto,, and D. C. Baulcombe. 1999. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96:1414714152.
129. Walsh, C. P.,, and T. H. Bestor. 1999. Cytosine methylation and mammalian development. Genes Dev. 13:2634.
130. Walsh, C. P.,, J. R. Chaillet,, and T. H. Bestor. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20:116117.
131. Wei, S. Q.,, K. Mizuuchi,, and R. Craigie. 1998. Footprints on the viral DNA ends in moloney murine leukemia virus preintegration complexes reflect a specific association with integrase. Proc. Natl. Acad. Sci. USA 95:1053510540.
132. Weiner, A. M. 2000. Do all SINEs lead to LINEs? Nat. Genet. 24:332333.
133. Wilke, C. M.,, and J. Adams. 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131:3142.
134. Withers-Ward, E. S.,, Y. Kitamura,, J. P. Barnes,, and J. M. Coffin. 1994. Distribution of targets for avian retrovirus DNA integration in vivo. Genes Dev. 8:14731487.
135. Xiong, Y.,, and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:33533362.
136. Yang, J.,, H. S. Malik,, and T. H. Eickbush. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96:78477852.
137. Yang, J.,, G. Mohr,, P. S. Perlman,, and A. M. Lambowitz. 1998. Group II intron mobility in yeast mitochondria: target DNA-primed reverse transcription activity of aI1 and reverse splicing into DNA transposition sites in vitro. J. Mol. Biol. 282:505523.
138. Yoder, J. A.,, C. P. Walsh,, and T. H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335340.
139. Yun, B.,, R. Farkas,, K. Lee,, and L. Rabinow. 1994. The Doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 8:11601173.
140. Zhu, Y.,, S. Zou,, D. A. Wright,, and D. F. Voytas. 1999. Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13:27382749.
141. Zimmerly, S.,, H. Guo,, R. Eskes,, J. Yang,, P. S. Perlman,, and A. M. Lambowitz. 1995. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell 83:529538.
142. Zimmerly, S.,, H. Guo,, P. S. Perlman,, and A. M. Lambowitz. 1995. Group II intron mobility occurs by target DNA-primed reverse transcription. Cell 82:545554.
143. Zou, S.,, N. Ke,, J. M. Kim,, and D. F. Voytas. 1996. The Saccharomyces retrotransposon Ty5 integrates preferentially into regions of silent chromatin at the telomeres and mating loci. Genes Dev. 10:634645.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error