1887

Chapter 45 : Mobile Genetic Elements and Bacterial Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mobile Genetic Elements and Bacterial Pathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap45-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap45-2.gif

Abstract:

Horizontally transferred genes were frequently disseminated among bacterial populations as components of mobile genetic elements, such as plasmids, phages, and transposons. This chapter focuses on bacterial pathogens, and in particular, on the role of sequence-specific mechanisms for intercellular gene transfer in the evolution of such organisms. It concentrates on virulence factors encoded by genes on mobilizable or formerly mobilizable genetic elements, especially plasmids, bacteriophages, and pathogenicity islands (PAIs). Finally, analyses based on the different classes of mobile elements can highlight the processes by which virulence genes have been transported and illuminate the evolutionary relationships between types of mobile elements. In the chapter, the last-mentioned approach is used, and bacteriophages, plasmids, and PAIs are sequentially discussed. Finally, some plasmids, such as the large virulence plasmid and the enterohemorrhagic (EHEC) virulence plasmid, contain remnants of DNA transfer systems, suggesting that they were previously capable of self-mobilization. Although the virulence genes acquired as components of mobile elements may not have been subject to host regulatory processes immediately after acquisition, they clearly have not remained autonomous agents, independent of host functions. Mobile genetic elements have clearly distributed a diverse collection of virulence genes and thereby played essential roles in the evolution of bacterial pathogens. However, a subset of virulence factors does not seem to confer any advantages on the bacterial hosts, so the forces underlying their continued production are a mystery.

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45

Key Concept Ranking

Mobile Genetic Elements
0.4810868
Bacterial Mobile Genetic Elements
0.43519998
Gene Expression and Regulation
0.41921446
Type IV Secretion Systems
0.4166172
Type III Secretion System
0.41532022
0.4810868
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

(A) Precise excision of a prophage from chromosomal flanking sequence. (B) Imprecise excision of a prophage, resulting in incorporation of adjacent chromosomal sequences into the phage genome and transfer of these sequences to a new host.

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Regulation of virulence gene expression in by transcription factors encoded within the chromosome and within the VPI. An ancestral chromosomal gene, regulates expression both of (encoding cholera toxin), which is part of the CTX prophage, and (encoding another regulator of virulence gene expression), which is part of the vibrio pathogenicity island (VPI). ToxT is required for expression of and other genes on the VPI, including the TCP and ACF gene clusters, which encode factors required for intestinal colonization ( ). Additional factors encoded on the chromosome and on the VPI also participate in this regulatory network (not shown). Black triangles represent the direct repeats that flank the VPI and the CTX prophage, encodes the putative VPI integrase, and encodes the major subunit of the toxin-coregulated pilus (TCP).

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap45
1. Acheson, D. W.,, J. Reidl,, X. Zhang,, G. T. Keusch,, J. J. Mekalanos,, and M. K. Waldor. 1998. In vivo transduction with Shiga toxin 1-encoding phage. Infect. Immun. 66: 4496 4498.
2. Ahmer, B. M.,, M. Tran,, and F. Heffron. 1999. The virulence plasmid of Salmonella typhimurium is self-transmissible. J. Bacteriol. 181: 1364 1368.
3. Akerley, B. J.,, P. A. Cotter,, and J. F. Miller. 1995. Ectopic expression of the flagellar regulon alters development of the Bordetella-host interaction. Cell 80: 611 620.
4. Al-Hasani, K.,, I. R. Henderson,, H. Sakellaris,, K. Rajakumar,, T. Grant,, J. P. Nataro,, R. Robins-Browne,, and B. Adler. 2000. The sigA gene which is borne on the She pathogenicity island of Shigella flexneri 2a encodes an exported cytopathic protease involved in intestinal fluid accumulation. Infect. Immun. 68: 2457 2463.
5. Alfano, J. R.,, A. O. Charkowski,, W. L. Deng,, J. L. Badel,, T. Petnicki-Ocwieja,, K. van Dijk,, and A. Collmer. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97: 4856 4861.
6. Andersson, J. O.,, and S. G. Andersson. 1999. Insights into the evolutionary process of genome degradation. Curr. Opin. Genet. Dev. 9: 664 671.
7. Bajaj, V.,, R. L. Lucas,, C. Hwang,, and C. A. Lee. 1996. Coordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22: 703 714.
8. Barondess, J. J.,, and J. Beckwith. 1990. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature 346: 871 874.
9. Baudry, B.,, A. Fasano,, J. Ketley,, and J. B. Kaper. 1992. Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect. Immun. 60: 428 434.
10. Bieber, D.,, S. W. Ramer,, C. Y. Wu,, W. J. Murray,, T. Tobe,, R. Fernandez,, and G. K. Schoolnik. 1998. Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280: 2114 2118.
11. Billington, S. J.,, J. L. Johnston,, and J. I. Rood. 1996. Virulence regions and virulence factors of the ovine footrot pathogen, Dichelobacter nodosus. FEMS Microbiol. Lett. 145: 147 156.
12. Biot, T.,, and G. R. Cornelis. 1988. The replication, partition and yop regulation of the pYV plasmids are highly conserved in Yersinia enterocolitica and Y. pseudotuberculosis. J. Gen. Microbiol. 134: 1525 1534.
13. Blanc-Potard, A. B.,, and E. A. Groisman. 1997. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 16: 5376 5385.
14. Blanc-Potard, A. B.,, F. Solomon,, J. Kayser,, and E. A. Groisman. 1999. The SPI-3 pathogenicity island of Salmonella enterica. J. Bacteriol. 181: 998 1004.
15. Blum, G.,, V. Falbo,, A. Caprioli,, and J. Hacker. 1995. Gene clusters encoding the cytotoxic necrotizing factor type 1, Prsfimbriae and alpha-hemolysin form the pathogenicity island II of the uropathogenic Escherichia coli strain J96. FEMS Microbiol. Lett. 126: 189 195.
16. Blum, G.,, M. Ott,, A. Lischewski,, A. Ritter,, H. Imrich,, H. Tschape,, and J. Hacker. 1994. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect. Immun. 62: 606 614.
17. Boyd, E. F.,, and D. L. Hartl. 1998. Salmonella virulence plasmid. Modular acquisition of the spv virulence region by an F-plasmid in Salmonella enterica subspecies I and insertion into the chromosome of subspecies II, IIIa, IV and VII isolates. Genetics 149: 1183 1190.
18. Braun, V.,, T. Hundsberger,, P. Leukel,, M. Sauerborn,, and C. von Eichel-Streiber. 1996. Definition of the single integration site of the pathogenicity locus in Clostridium difficile. Gene 181: 29 38.
19. Braun, V.,, and C. von Eichel-Streiber,. 1999. Virulence-associated elements in bacilli and clostridia, p. 233 264. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. American Society for Microbiology, Washington, D.C..
20. Buchrieser, C.,, R. Brosch,, S. Bach,, A. Guiyoule,, and E. Carniel. 1998. The high-pathogenicity island of Yersinia pseudotuberculosis can be inserted into any of the three chromosomal asn tRNA genes. Mol. Microbiol. 30: 965 978.
21. Burland, V.,, Y. Shao,, N. T. Perna,, G. Plunkett,, H. J. Sofia,, and F. R. Blattner. 1998. The complete DNA sequence and analysis of the large virulence plasmid of Escherichia coli O157:H7. Nucleic Acids Res. 26: 4196 4204.
22. Calderwood, S. B.,, F. Auclair,, A. Donohue-Rolfe,, G. T. Keusch,, and J. J. Mekalanos. 1987. Nucleotide sequence of the Shiga-like toxin genes of Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 4364 4368.
23. Campbell, A. M. 1992. Chromosomal insertion sites for phages and plasmids. J. Bacteriol. 174: 7495 7499.
24. Canard, B.,, B. Saint-Joanis,, and S. T. Cole. 1992. Genomic diversity and organization of virulence genes in the pathogenic anaerobe Clostridium perfringens. Mol. Microbiol. 6: 1421 1429.
25. Carniel, E.,, I. Guilvout,, and M. Prentice. 1996. Characterization of a large chromosomal "high-pathogenicity island" in biotype 1B Yersinia enterocolitica. J. Bacteriol. 178: 6743 6751.
26. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli,, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type Ispecific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93: 14648 14653.
27. Cheetham, B. F.,, and M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18: 201 208.
28. Cherepanov, P. A.,, T. G. Mikhailova,, G. A. Karimova,, N. M. Zakharova,, V. Ershov Iu,, and K. I. Volkovoi. 1991. Cloning and detailed mapping of the fra-ymt region of the Yersinia pestis pFra plasmid. Mol. Genet. Microbiol. Virusol. 1991: 19 26.
29. Christie, P. J. 1997. Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179: 3085 3094.
30. Clark, C. A.,, J. Beltrame,, and P. A. Manning. 1991. The oac gene encoding a lipopolysaccharide O-antigen acetylase maps adjacent to the integrase-encoding gene on the genome of Shigella flexneri bacteriophage Sf6. Gene 107: 43 52.
31. Coleman, D. C.,, D. J. Sullivan,, R. J. Russell,, J. P. Arbuthnott,, B. F. Carey,, and H. M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. J. Gen. Microbiol. 135: 1679 1697.
32. Dallas, W. S.,, and S. Falkow. 1980. Amino acid sequence homology between cholera toxin and Escherichia coli heatlabile toxin. Nature 288: 499 501.
33. Davies, J. 1996. Origins and evolution of antibiotic resistance. Microbiologia 12: 9 16.
34. Davis, B. M.,, and M. K. Waldor. CTX_ contains a hybrid genome derived from tandemly integrated elements. Proc. Natl. Acad. Sci. USA, in press.
35. DiRita, V. J.,, C. Parsot,, G. Jander,, and J. J. Mekalanos. 1991. Regulatory cascade controls virulence in Vibrio cholerae. Proc. Natl. Acad. Sci. USA 88: 5403 5407.
36. Echeverria, P.,, J. Seriwatana,, D. N. Taylor,, S. Changchawalit,, C. J. Smyth,, J. Twohig,, and B. Rowe. 1986. Plasmids coding for colonization factor antigens I and II, heat-labile enterotoxin, and heat-stable enterotoxin A2 in Escherichia coli. Infect. Immun. 51: 626 630.
37. Fang, F. C.,, M. A. DeGroote,, J. W. Foster,, A. J. Baumler,, U. Ochsner,, T. Testerman,, S. Bearson,, J. C. Giard,, Y. Xu,, G. Campbell,, and T. Laessig. 1999. Virulent Salmonella typhimurium has two periplasmic Cu, Zn-superoxide dismutases. Proc. Natl. Acad. Sci. USA 96: 7502 7507.
38. Fetherston, J. D.,, and R. D. Perry. 1994. The pigmentation locus of Yersinia pestis KIM6+ is flanked by an insertion sequence and includes the structural genes for pesticin sensitivity and HMWP2. Mol. Microbiol. 13: 697 708.
39. Fetherston, J. D.,, P. Schuetze,, and R. D. Perry. 1992. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. Mol. Microbiol. 6: 2693 2704.
40. Figueroa-Bossi, N.,, and L. Bossi. 1999. Inducible prophages contribute to Salmonella virulence in mice. Mol. Microbiol. 33: 167 176.
41. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61: 136 169.
42. Finn, C. W., Jr.,, R. P. Silver,, W. H. Habig,, M. C. Hardegree,, G. Zon,, and C. F. Garon. 1984. The structural gene for tetanus neurotoxin is on a plasmid. Science 224: 881 884.
43. Frank, D. W. 1997. The exoenzyme S regulon of Pseudomonas aeruginosa. Mol. Microbiol. 26: 621 629.
44. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,, R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J. F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. C. Venter, et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580 586.
45. Freeman, V. J. 1951. Studies of the virulence of bacteriophage- infected strains of Corynebacterium diptheriae. J. Bacteriol. 61: 675 688.
46. Fuqua, W. C.,, and S. C. Winans. 1994. A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. J. Bacteriol. 176: 2796 2806.
47. Galan, J. E.,, and P. J. Sansonetti,. 1996. Molecular and cellular bases of Salmonella and Shigella interactions with host cells, p. 2757 2773. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C..
48. Green, B. D.,, L. Battisti,, T. M. Koehler,, C. B. Thorne,, and B. E. Ivins. 1985. Demonstration of a capsule plasmid in Bacillus anthracis. Infect. Immun. 49: 291 297.
49. Groisman, E. A.,, and H. Ochman. 1997. How Salmonella became a pathogen. Trends Microbiol. 5: 343 349.
50. Groisman, E. A.,, and H. Ochman. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791 794.
51. Gulig, P. A.,, H. Danbara,, D. G. Guiney,, A. J. Lax,, F. Norel,, and M. Rhen. 1993. Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol. Microbiol. 7: 825 830.
52. Hacker, J.,, L. Bender,, M. Ott,, J. Wingender,, B. Lund,, R. Marre,, and W. Goebel. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. Microb. Pathog. 8: 213 225.
53. Hacker, J.,, G. Blum-Oehler,, B. Janke,, G. Nagy,, and W. Goebel,. 1999. Pathogenicity islands of extraintestinal Escherichia coli, p. 59 76. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
54. Hacker, J.,, G. Blum-Oehler,, I. Muhldorfer,, and H. Tschape. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089 1097.
55. Hacker, J.,, and J. B. Kaper,. 1999. The concept of pathogenicity islands, p. 1 11. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
56. Hall, R. M. 1997. Mobile gene cassettes and integrons: moving antibiotic resistance genes in Gram-negative bacteria. Ciba Found. Symp. 207: 192 205.
57. Hardt, W. D.,, H. Urlaub,, and J. E. Galan. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl. Acad. Sci. USA 95: 2574 2579.
58. Hare, J. M.,, A. K. Wagner,, and K. A. McDonough. 1999. Independent acquisition and insertion into different chromosomal locations of the same pathogenicity island in Yersinia pestis and Yersinia pseudotuberculosis. Mol. Microbiol. 31: 291 303.
59. Hayashi, T.,, H. Matsumoto,, M. Ohnishi,, and Y. Terawaki. 1993. Molecular analysis of a cytotoxin-converting phage, phi CTX, of Pseudomonas aeruginosa: structure of the attPcos- ctx region and integration into the serine tRNA gene. Mol. Microbiol. 7: 657 667.
60. Heithoff, D. M.,, R. L. Sinsheimer,, D. A. Low,, and M. J. Mahan. 1999. An essential role forDNAadenine methylation in bacterial virulence. Science 284: 967 970.
61. Hicks, S.,, G. Frankel,, J. B. Kaper,, G. Dougan,, and A. D. Phillips. 1998. Role of intimin and bundle-forming pili in enteropathogenic Escherichia coli adhesion to pediatric intestinal tissue in vitro. Infect. Immun. 66: 1570 1578.
62. Hinnebusch, B. J.,, R. D. Perry,, and T. G. Schwan. 1996. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273: 367 370.
63. Hochhut, B.,, J. Marrero,, and M. K. Waldor. 2000. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J. Bacteriol. 182: 2043 2047.
64. Holmes, R. K.,, and L. Barksdale. 1969. Genetic analysis of tox+ and tox− bacteriophages of Corynebacterium diphtheriae. J. Virol. 3: 586 598.
65. Hu, S. T.,, and C. H. Lee. 1988. Characterization of the transposon carrying the STII gene of enterotoxigenic Escherichia coli. Mol. Gen. Genet. 214: 490 495.
66. Huan, P. T.,, B. L. Whittle,, D. A. Bastin,, A. A. Lindberg,, and N. K. Verma. 1997. Shigella flexneri type-specific antigen V: cloning, sequencing and characterization of the glucosyl transferase gene of temperate bacteriophage SfV. Gene 195: 207 216.
67. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379 433.
68. Johnson, L. P.,, P. M. Schlievert,, and D. W. Watson. 1980. Transfer of group A streptococcal pyrogenic exotoxin production to nontoxigenic strains of lysogenic conversion. Infect. Immun. 28: 254 257.
69. Johnston, C.,, D. A. Pegues,, C. J. Hueck,, A. Lee,, and S. I. Miller. 1996. Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol. Microbiol. 22: 715 727.
70. Kaniga, K.,, J. C. Bossio,, and J. E. Galan. 1994. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and PulD family of proteins. Mol. Microbiol. 13: 555 568.
71. Karaolis, D. K.,, J. A. Johnson,, C. C. Bailey,, E. C. Boedeker,, J. B. Kaper,, and P. R. Reeves. 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc. Natl. Acad. Sci. USA 95: 3134 3139.
72. Karaolis, D. K.,, S. Somara,, D. R. Maneval, Jr.,, J. A. Johnson,, and J. B. Kaper. 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399: 375 379.
73. Kimsey, H. H.,, and M. K. Waldor. 1998. CTXϕ immunity: application in the development of cholera vaccines. Proc. Natl. Acad. Sci. USA 95: 7035 7039.
74. Kovach, M. E.,, M. D. Shaffer,, and K. M. Peterson. 1996. A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142: 2165 2174.
75. Kreft, J.,, J.-A. Vasquez-Boland,, E. Ng,, and W. Goebel,. 1999. Virulence gene clusters and putative pathogenicity islands in Listeriae, p. 219 232. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
76. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 9413 9417.
77. Lazar, S.,, and M. K. Waldor. 1998. ToxR-independent expression of cholera toxin from the replicative form of CTXϕ. Infect. Immun. 66: 394 397.
78. Lee, C. A. 1996. Pathogenicity islands and the evolution of bacterial pathogens. Infect. Agents Dis. 5: 1 7.
79. Lee, S. H.,, D. L. Hava,, M. K. Waldor,, and A. Camilli. 1999. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99: 625 634.
80. Lee, V. T.,, and O. Schneewind. 1999. Type III machines of pathogenic yersiniae secrete virulence factors into the extracellular milieu. Mol. Microbiol. 31: 1619 1629.
81. Libby, S. J.,, L. G. Adams,, T. A. Ficht,, C. Allen,, H. A. Whitford,, N. A. Buchmeier,, S. Bossie,, and D. G. Guiney. 1997. The spv genes on the Salmonella dublin virulence plasmid are required for severe enteritis and systemic infection in the natural host. Infect. Immun. 65: 1786 1792.
82. Lindsay, J. A.,, A. Ruzin,, H. F. Ross,, N. Kurepina,, and R. P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Mol. Microbiol. 29: 527 543.
83. Lucas, R. L.,, and C. A. Lee. 2000. Unravelling the mysteries of virulence gene regulation in Salmonella typhimurium. Mol. Microbiol. 36: 1024 1033.
84. Mahan, M. J.,, J. M. Slaugh,, and J. J. Mekalanos,. 1996. Environmental regulation of virulence gene expression in Escherichia, Salmonella, and Shigella spp., p. 2803 2815. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C..
85. Mainil, J. G.,, F. Bex,, P. Dreze,, A. Kaeckenbeeck,, and M. Couturier. 1992. Replicon typing of virulence plasmids of enterotoxigenic Escherichia coli isolates from cattle. Infect. Immun. 60: 3376 3380.
86. Mavris, M.,, P. A. Manning,, and R. Morona. 1997. Mechanism of bacteriophage SfII-mediated serotype conversion in Shigella flexneri. Mol. Microbiol. 26: 939 950.
87. McDaniel, T. K.,, K. G. Jarvis,, M. S. Donnenberg,, and J. B. Kaper. 1995. A genetic locus of enterocyte effacement conserved among diverse enterobacterial pathogens. Proc. Natl. Acad. Sci. USA 92: 1664 1668.
88. McDonough, M. A.,, and J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol. 34: 1058 1069.
89. McShan, W. M.,, and J. J. Ferretti. 1997. Genetic diversity in temperate bacteriophages of Streptococcus pyogenes: identification of a second attachment site for phages carrying the erythrogenic toxin A gene. J. Bacteriol. 179: 6509 6511.
90. Mellies, J. L.,, S. J. Elliott,, V. Sperandio,, M. S. Donnenberg,, and J. B. Kaper. 1999. The Per regulon of enteropathogenic Escherichia coli: identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol. Microbiol. 33: 296 306.
91. Miller, S. I.,, and J. J. Mekalanos. 1990. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172: 2485 2490.
92. Mills, D. M.,, V. Bajaj,, and C. A. Lee. 1995. A 40 kb chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 chromosome. Mol. Microbiol. 15: 749 759.
93. Mirold, S.,, W. Rabsch,, M. Rohde,, S. Stender,, H. Tschape,, H. Russmann,, E. Igwe,, and W. D. Hardt. 1999. Isolation of a temperate bacteriophage encoding the type III effector protein SopE from an epidemic Salmonella typhimurium strain. Proc. Natl. Acad. Sci. USA 96: 9845 9850.
94. Moss, J. E.,, T. J. Cardozo,, A. Zychlinsky,, and E. A. Groisman. 1999. The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol. Microbiol. 33: 74 83.
95. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269 288. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
96. Murray, B. E.,, D. J. Evans, Jr.,, M. E. Penaranda,, and D. G. Evans. 1983. CFA/I-ST plasmids: comparison of enterotoxigenic Escherichia coli (ETEC) of serogroups O25, O63, O78, and O128 and mobilization from an R factor-containing epidemic ETEC isolate. J. Bacteriol. 153: 566 570.
97. Murray, R. A.,, and C. A. Lee. Invasion genes are not required for Salmonella enterica serovar Typhimurium to breach the intestinal epithelium: evidence that Salmonella pathogenicity island 1 has alternative functions during infection. Infect. Immun., in press.
98. O’Brien, A. D.,, and R. K. Holmes,. 1996. Protein toxins of Escherichia coli and Salmonella, p. 2788 2802. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C..
99. Ochman, H.,, and E. A. Groisman. 1996. Distribution of pathogenicity islands in Salmonella spp. Infect. Immun. 64: 5410 5412.
100. Ochman, H.,, J. G. Lawrence,, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299 304.
101. Odenbreit, S.,, J. Puls,, B. Sedlmaier,, E. Gerland,, W. Fischer,, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 1497 1500.
102. Ohlsen, K.,, W. Ziebuhr,, W. Reichardt,, W. Witte,, F. Götz,, and J. Hacker,. 1999. Mobile elements, phages, and genomic islands of staphylococci and streptococci, p. 265 287. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
103. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim,, T. M. Koehler,, G. Lamke,, S. Kumano,, J. Mahillon,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. J. Jackson. 1999. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181: 6509 6515.
104. Pappenheimer, A. M., Jr.,, and J. R. Murphy. 1983. Studies on the molecular epidemiology of diphtheria. Lancet 11: 923 926.
105. Parsot, C.,, and P. J. Sansonetti,. 1999. The virulence plasmid of shigellae: an archipelago of pathogenicity islands?, p. 151 165. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
106. Perna, N. T.,, G. F. Mayhew,, G. Posfai,, S. Elliott,, M. S. Donnenberg,, J. B. Kaper,, and F. R. Blattner. 1998. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 66: 3810 3817.
107. Plunkett, G., 3rd, D. J. Rose, T. J. Durfee, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 18: 1767 1778.
108. Rajakumar, K.,, C. Sasakawa,, and B. Adler. 1997. Use of a novel approach, termed island probing, identifies the Shigella flexneri she pathogenicity island which encodes a homolog of the immunoglobulin A protease-like family of proteins. Infect. Immun. 65: 4606 4614.
109. Rakin, A.,, S. Schubert,, C. Pelludat,, D. Brem,, and J. Heesemann,. 1999. The high-pathogenicity island of yersiniae, p. 77 90. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
110. Ritter, A.,, G. Blum,, L. Emody,, M. Kerenyi,, A. Bock,, B. Neuhierl,, W. Rabsch,, F. Scheutz,, and J. Hacker. 1995. tRNA genes and pathogenicity islands: influence on virulence and metabolic properties of uropathogenic Escherichia coli. Mol. Microbiol. 17: 109 121.
111. Rood, J. I. 1998. Virulence genes of Clostridium perfringens. Annu. Rev. Microbiol. 52: 333 360.
112. Salyers, A.,, N. Shoemaker,, G. Bonheyo,, and J. Frias,. 1999. Conjugative transposons: transmissible resistance islands, p. 331 346. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
113. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L. Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59: 579 590.
114. Sansonetti, P. J.,, T. L. Hale,, G. J. Dammin,, C. Kapfer,, H. H. Collins, Jr.,, and S. B. Formal. 1983. Alterations in the pathogenicity of Escherichia coli K-12 after transfer of plasmid and chromosomal genes from Shigella flexneri. Infect. Immun. 39: 1392 1402.
115. Sansonetti, P. J.,, D. J. Kopecko,, and S. B. Formal. 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect. Immun. 35: 852 860.
116. Schubert, S.,, A. Rakin,, D. Fischer,, J. Sorsa,, and J. Heesemann. 1999. Characterization of the integration site of Yersinia high-pathogenicity island in Escherichia coli. FEMS Microbiol. Lett. 179: 409 414.
117. Sears, C. L.,, and J. B. Kaper. 1996. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60: 167 215.
118. Segal, G.,, and H. A. Shuman. 1997. Characterization of a new region required for macrophage killing by Legionella pneumophila. Infect. Immun. 65: 5057 5066.
119. Shea, J. E.,, M. Hensel,, C. Gleeson,, and D. W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93: 2593 2597.
120. Skorupski, K.,, and R. K. Taylor. 1997. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25: 1003 1009.
121. Smith, H. W.,, and M. A. Linggood. 1971. The transmissible nature of enterotoxin production in a human enteropathogenic strain of Escherichia coli. J. Med. Microbiol. 4: 301 305.
122. So, M.,, and B. J. McCarthy. 1980. Nucleotide sequence of the bacterial transposon Tn 1681 encoding a heat-stable (ST) toxin and its identification in enterotoxigenic Escherichia coli strains. Proc. Natl. Acad. Sci. USA 77: 4011 4015.
123. Sodeinde, O. A.,, and J. D. Goguen. 1988. Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect. Immun. 56: 2743 2748.
124. Sodeinde, O. A.,, A. K. Sample,, R. R. Brubaker,, and J. D. Goguen. 1988. Plasminogen activator/coagulase gene of Yersinia pestis is responsible for degradation of plasmid-encoded outer membrane proteins. Infect. Immun. 56: 2749 2752.
125. Spicer, E. K.,, W. M. Kavanaugh,, W. S. Dallas,, S. Falkow,, W. H. Konigsberg,, and D. E. Schafer. 1981. Sequence homologies between A subunits of Escherichia coli and Vibrio cholerae enterotoxins. Proc. Natl. Acad. Sci. USA 78: 50 54.
126. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759.
127. Strockbine, N. A.,, L. R. Marques,, J. W. Newland,, H. W. Smith,, R. K. Holmes,, and A. D. O’Brien. 1986. Two toxinconverting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun. 53: 135 140.
128. Suzuki, K.,, Y. Hattori,, M. Uraji,, N. Ohta,, K. Iwata,, K. Murata,, A. Kato,, and K. Yoshida. 2000. Complete nucleotide sequence of a plant tumor-inducing Ti plasmid. Gene 242: 331 336.
129. Swenson, D. L.,, N. O. Bukanov,, D. E. Berg,, and R. A. Welch. 1996. Two pathogenicity islands in uropathogenic Escherichia coli J96: cosmid cloning and sample sequencing. Infect. Immun. 64: 3736 3743.
130. Taylor, R. K.,, V. L. Miller,, D. B. Furlong,, and J. J. Mekalanos. 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc. Natl. Acad. Sci. USA 84: 2833 2837.
131. Trucksis, M.,, J. E. Galen,, J. Michalski,, A. Fasano,, and J. B. Kaper. 1993. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl. Acad. Sci. USA 90: 5267 5271.
132. Uchida, I.,, K. Hashimoto,, and N. Terakado. 1986. Virulence and immunogenicity in experimental animals of Bacillus anthracis strains harbouring or lacking 110 MDa and 60 MDa plasmids. J. Gen. Microbiol. 132: 557 559.
133. Uchida, I.,, S. Makino,, C. Sasakawa,, M. Yoshikawa,, C. Sugimoto,, and N. Terakado. 1993. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol. Microbiol. 9: 487 496.
134. Uchida, T.,, D. M. Gill,, and A. M. Pappenheimer, Jr. 1971. Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat. New Biol. 233: 8 11.
135. Vazquez-Torres, A.,, Y. Xu,, J. Jones-Carson,, D. W. Holden,, S. M. Lucia,, M. C. Dinauer,, P. Mastroeni,, and F. C. Fang. 2000. Salmonella pathogenicity island 2-dependent evasion of the phagocyte NADPH oxidase. Science 287: 1655 1658.
136. Verma, N. K.,, D. J. Verma,, P. T. Huan,, and A. A. Lindberg. 1993. Cloning and sequencing of the glucosyl transferaseencoding gene from converting bacteriophage X (SFX) of Shigella flexneri. Gene 129: 99 101.
137. Vogel, J. P.,, H. L. Andrews,, S. K. Wong,, and R. R. Isberg. 1998. Conjugative transfer by the virulence system of Legionella pneumophila. Science 279: 873 876.
138. Vokes, S. A.,, S. A. Reeves,, A. G. Torres,, and S. M. Payne. 1999. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol. Microbiol. 33: 63 73.
139. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 1914.
140. Weeks, C. R.,, and J. J. Ferretti. 1984. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect. Immun. 46: 531 536.
141. Weiss, A. A.,, F. D. Johnson,, and D. L. Burns. 1993. Molecular characterization of an operon required for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 90: 2970 2974.
142. Winans, S. C.,, V. Kalogeraki,, S. Jafri,, R. Akakura,, and Q. Xia,. 1999. Diverse roles of Agrobacterium Ti plasmid-borne genes in the formation and colonization of plant tumors, p. 289 307. In J. B. Kaper, and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C..
143. Wong, K. K.,, M. McClelland,, L. C. Stillwell,, E. C. Sisk,, S. J. Thurston,, and J. D. Saffer. 1998. Identification and sequence analysis of a 27-kilobase chromosomal fragment containing a Salmonella pathogenicity island located at 92 minutes on the chromosome map of Salmonella enterica serovar Typhimurium LT2. Infect. Immun. 66: 3365 3371.
144. Zhang, X.,, A. D. McDaniel,, L. E. Wolf,, G. T. Keusch,, M. K. Waldor,, and D. W. Acheson. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181: 664 670.
145. Zhu, J.,, P. M. Oger,, B. Schrammeijer,, P. J. J. Hooykaas,, S. K. Farrand,, and S. C. Winans. 2000. The bases of crown gall tumorigenesis. J. Bacteriol. 182: 3885 3895.

Tables

Generic image for table
Table 1

Virulence-linked bacteriophages

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45
Generic image for table
Table 2

Virulence-linked plasmids

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45
Generic image for table
Table 3

Type IV secretion systems

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45
Generic image for table
Table 4

Pathogenicity islands

Citation: Davis B, Waldor M. 2002. Mobile Genetic Elements and Bacterial Pathogenesis, p 1040-1059. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch45

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error