1887

Chapter 46 : Archaeal Mobile DNA

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Archaeal Mobile DNA, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap46-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap46-2.gif

Abstract:

This chapter summarizes the different classes of mobile DNA elements of archaea and considers their impact on archaeal evolution. Several viruses and virus-like particles have been characterized for the archaea, although, with the exception of , no comprehensive studies have been performed to examine the diversity of viruses that are present. To date, although there is strong evidence for exchange of insertion elements (IS) elements between viruses and chromosomes, there is no direct evidence for chromosome integration of any euryarchaeal viruses. All of the crenarchaeal viruses that have been characterized so far carry double-stranded DNA genomes and differ in morphology from their euryarchaeal counterparts. Several plasmids have been isolated and characterized, at least partially, from both archaeal kingdoms. Conjugative plasmids in Archaea have so far been found only in closely related strains of , where they occur frequently. Putative large inserts, which resemble bacterial integrons, have been detected in archaeal chromosomes. Some archaeal genomes, and in particular those from some and species, are rich in IS elements, both in their chromosomes and in their extrachromosomal genetic elements, while others appear to contain very few. Several IS elements have also been detected in archaeal genetic elements. These include two copies of ISH1800 in each of the haloarchaeal viruses φH2 and φH5. Archaea carry introns in their tRNA, rRNA, and mRNA genes that are archaea-specific with respect to both the structures of their RNA intron-exon junctions and their splicing mechanism.

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46

Key Concept Ranking

Genetic Elements
0.48723686
Bacterial Proteins
0.46036336
Linear Double-Stranded DNA
0.44871283
0.48723686
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

A model for the excision/integration of the putative plasmid pXQ1 in the chromosome of P2. The integrase target sites in the plasmid and chromosome are the 45-bp direct repeats, where L and R denote left and right, respectively. Excision and circularization produce an intact integrase gene (). The IS element ISC1439A interrupts A. Four ORFs from pXQ1 show high sequence similarity to genes of other members of the pRN family. and represent putative double-strand and single-strand origins of replication, respectively ( ).

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

(a) Consensus sequences of the aligned terminal inverted repeats for the MITE SM1 and its partner IS element ISC1048. The terminal inverted repeats are shaded, and capital letters indicate identical nucleotides. (b) Potentially mobile unit (800 bp) containing a copy of ISC1048 where the upstream half has been replaced by SM1 and the remainder contains a copy of SM2 ( ). The left inverted repeat (IR) of SM1 and the right IR of ISC1048 are complementary, as shown in panel a.

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Distribution of SM elements in the chromosome of P2. The areas marked IS-1 to IS-4 represent high concentrations of IS and SM elements ( ).

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap46
1. Aagaard, C.,, M. J. Awayez,, and R. A. Garrett. 1997. Profile of the DNA recognition site of the archaeal homing endonuclease I- DmoI. Nucleic Acids Res. 25: 1523 1530.
2. Aagaard, C.,, J. Dalgaard,, and R. A. Garrett. 1995. Inter-cellular mobility and homing of an archaeal rDNA intron confers selective advantage over intron-cells of Sulfolobus acidocaldarius. Proc. Natl. Acad. Sci. USA 92: 12285 12289.
3. Aravalli, R. N.,, and R. A. Garrett. 1997. Shuttle vectors for hyperthermophilic archaea. Extremophiles 1: 183 191.
4. Aravalli, R. N.,, Q. She,, and R. A. Garrett. 1998. Archaea and the new age of microorganisms. Trends Ecol. Evol. 13: 190 194.
5. Arnold, H. P.,, Q. She,, H. Phan,, K. Stedman,, D. Prangishvili,, I. Holz,, J. K. Kristjansson,, R. Garrett,, and W. Zillig. 1999. The genetic element pSSVx of the extremely thermophilic crenarchaeon Sulfolobus is a hybrid between a plasmid and a virus. Mol. Microbiol. 34: 217 226.
6. Arnold, H. P.,, K. M. Stedman,, and W. Zillig,. 1999. Archaeal phages, p. 76 89. In A. Granoff, and R. G. Webster (ed.), The Encyclopedia of Virology. Academic Press, San Diego, Calif.
7. Arnold, H. P.,, U. Ziese,, and W. Zillig. 2000. SNDV, a novel virus of the extremely thermophilic and acidophilic archaeon Sulfolobus. Virology 272: 409 416.
8. Arnold, H. P.,, W. Zillig,, U. Ziese,, I. Holz,, M. Crosby,, T. Utterback,, J. F. Weidman,, J. K. Kristjansson,, H. P. Klenk,, K. E. Nelson,, and C. M. Fraser. 2000. A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267: 252 266.
9. Barns, S. A.,, C. F. Delwiche,, J. D., Palmer,, and N. R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188 9193.
9a.. Blum, H.,, W. Zillig,, S. Mallok,, H. Domdey,, and D. Prangishvili. 2001. The genome of the archaeal virus SIRV1 has features in common with genomes of eukaryal viruses. Virology 281: 6 9.
10. Bult, C. J.,, O. White,, G. J. Olsen,, L. Zhou,, R. D. Fleischmann,, G. G. Sutton,, J. A. Blake,, L. M. FitzGerald,, R. A. Clayton,, J. D. Gocayne,, A. R. Kerlavage,, B. A. Dougherty,, J. F. Tomb,, M. D. Adams,, C. I. Reich,, R. Overbeek,, E. F. Kirkness,, K. G. Weinstock,, J. M. Merrick,, A. Glodek,, J. L. Scott,, N. S. M. Geoghagen,, and J. C. Venter. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273: 1058 1073.
11. Burggraf, S.,, N. Larsen,, C. R. Woese,, and K. O. Stetter. 1993. An intron within the 16S rRNA gene of the archaeon Pyrobaculum aerophilum. Proc. Natl. Acad. Sci. USA 90: 2547 2550.
12. Cannio, R. P.,, P. Contursi,, M. Rossi,, and S. Bartolucci. 1998. An autonomously replicating transforming vector for Sulfolobus solfataricus. J. Bacteriol. 180: 3237 3240.
13. Chandler, M.,, and O. Fayet. 1993. Translational frameshifting in the control of transposition in bacteria. Mol. Microbiol. 7: 497 503.
14. Charlebois, R. L.,, and W. F. Doolittle,. 1989. Transposable elements and genome structure in Halobacteria, p. 297 308. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
15. Collis, C. M.,, M. J. Kim,, H. W. Stokes,, and R. M. Hall. 1998. Nucleotide binding of the purified integron DNA integrase Intl1 to integron- and cassette-associated recombination sites. Mol. Microbiol. 29: 477 490.
16. Dalgaard, J. Z.,, and R. A. Garrett. 1992. Protein-coding introns from the 23S rRNA-encoding gene from stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene 121: 103 110.
17. Dalgaard, J. Z.,, R. A. Garrett,, and M. Belfort. 1993. A sitespecific endonuclease encoded by a typical archaeal intron. Proc. Natl. Acad. Sci. USA 90: 5414 5417.
18. DeLong, E. F. 1998. Everything in moderation: archaea as ‘non-extremophiles.’ Curr. Opin. Genet. Dev. 8: 649 654.
19. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin,, and R. V. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695 697.
20. Diener, J. L.,, and P. B. Moore. 1998. Solution structure for the archaeal pre-tRNA splicing endonucleases: the bulge-helixbulge motif. Mol. Cell 1: 883 894.
21. Erauso, G.,, S. Marsin,, N. Benbouzid-Rollet,, M. F. Baucher,, T. Barbeyron,, Y. Zivanovic,, D. Prieur,, and P. Forterre. 1996. Sequence of plasmid pGT5 from the archaeon Pyrococcus abyssi: evidence for rolling-circle replication in a hyperthermophile. J. Bacteriol. 178: 3232 3237.
22. Fedoroff, N. V., 1989. Maize transposable elements, p. 375 413. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
23. Graham, D. E.,, R. Overbeek,, G. J. Olsen,, and C. Woese. 2000. An archaeal genomic signature. Proc. Natl. Acad. Sci. USA 97: 3304 3308.
24. Grainge, I.,, and M. Jayaram. 1999. The integrase family of recombinase: organization and function of the active site. Mol. Microbiol. 33: 449 456.
25. Grogan, D. W. 1996. Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 178: 3207 3211.
26. Hall, R. M.,, C. M. Collis,, M. J. Kim,, S. R. Partridge,, G. D. Recchia,, and H. W. Stokes. 1998. Mobile gene cassettes and integrons in evolution. Ann. N. Y. Acad. Sci. 870: 68 80.
27. Itoh, T.,, K. Suzuki,, and T. Nakase. 1998. Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus. Arch. Microbiol. 170: 151 166.
28. Janekovic, D.,, S. Wunderl,, I. Holz,, W. Zillig,, A. Gierl,, and H. Neumann. 1983. TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic sulfur reducing archaebacterium Thermoproteus tenax. Mol. Gen. Genet. 192: 39 45.
29. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, S. Yamazaki,, Y. Haikawa,, K. Jin-no,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, H. Nakazawa,, M. Takamiya,, S. Masuda,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, K. Kubota,, Y. Nakamura,, N. Nomura,, Y. Sako,, and H. Kikuchi. 1999. Complete genome sequence of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6: 83 101.
30. Kawarabayasi, Y.,, M. Sawada,, H. Horikawa,, Y. Haikawa,, Y. Hino,, S. Yamamoto,, M. Sekine,, S. Baba,, H. Kosugi,, A. Hosoyama,, Y. Nagai,, M. Sakai,, K. Ogura,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Ohfuku,, T. Funahashi,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, and H. Kikuchi. 1998. Complete sequence and gene organization of the genome of a hyperthermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5: 55 76.
30a.. Kawarabayasi, Y.,, Y. Hino,, H. Horikawa,, K. Jin-no,, M. Takahashi,, M. Sekine,, S. Baba,, A. Ankai,, H. Kosugi,, A. Hosoyama,, S. Fukui,, Y. Nagai,, K. Nishijima,, R. Otsuka,, H. Nakazawa,, M. Takamiya,, Y. Kato,, T. Yoshizawa,, T. Tanaka,, Y. Kudoh,, J. Yamazaki,, N. Kushida,, A. Oguchi,, K. Aoki,, S. Masuda,, M. Yanagii,, M. Nishimura,, A. Yamagishi,, T. Oshima,, and H. Kikuchi. 2001. Complete genome sequence of an aerobic thermoacidophilic crenarchaeon, Sulfolobus tokodaii strain 7. DNA Res. 8: 123 140.
30b.. Kawashima, T.,, N. Aman,, H. Koike,, S. Makino,, S. Higuchi,, Y. Kawashima-Ohya,, K. Watanabe,, M. Yamazaki,, K. Kanehori,, T. Kawamoto,, T. Nunoshiba,, Y. Yamamoto,, H. Aramaki,, K. Makino,, and M. Suzuki. 2000. Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc. Natl. Acad. Sci. USA 97: 14257 14262.
31. Keeling, P. J.,, H. P. Klenk,, R. K. Singh,, M. E. Schenk,, C. W. Sensen,, W. Zillig,, and W. F. Doolittle. 1998. Sulfolobus islandicus plasmid pRN1 and pRN2 share distant but common evolutionary distance. Extremophiles 2: 391 393.
32. Kjems, J.,, and R. A. Garrett. 1985. An intron in the 23S rRNA gene of the archaebacterium Desulfurococcus mobilis. Nature 318: 675 677.
33. Kjems, J.,, and R. A. Garrett. 1991. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. Proc. Natl. Acad. Sci. USA 88: 439 443.
34. Klenk, H. P.,, R. A. Clayton,, J. F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleischmann,, J. Quackenbush,, N. H. Lee,, G. G. Sutton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate- reducing archaeon Archaeoglobus fulgidus. Nature 390: 364 370.
35. Kletzin, A.,, A. Lieke,, T. Urich,, R. L. Charlebois,, and C. W. Sensen. 1999. Molecular analysis of pDL10 from Acidianus ambivalens reveals a family of related plasmids from extremely thermophilic and acidophilic archaea. Genetics 152: 1307 1314.
36. Koonin, E. V.,, A. R. Mushegian,, M. Y. Galperin,, and D. R. Walker. 1997. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol. Microbiol. 25: 619 637.
37. Lanka, E.,, and B. Wilkins. 1995. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64: 141 169.
38. Lessl, M.,, D. Balzer,, W. Pansegrau,, and E. Lanka. 1992. Sequence similarities between the RP4 Tra2 and the Ti VirB region strongly support the conjugation model for T-DNA transfer. J. Biol. Chem. 267: 20471 20480.
39. Lessl, M.,, W. Pansegrau,, and E. Lanka. 1992. Relationship of DNA-transfer-systems: essential transfer factors of plasmids RP4, Ti and F share common sequences. Nucleic Acids Res. 20: 6099 6100.
40. Leisinger, T.,, and L. Meile,. 1992. Plasmids, phages, and gene transfer in methanogenic bacteria. In M. Sebald (ed.), Genetics and Molecular Biology of Anaerobic Bacteria. Springer-Verlag, New York, N.Y.
41. Li, H.,, C. R. Trotta,, and J. Abelson. 1998. Crystal structure and evolution of a tRNA splicing enzyme. Science 280: 279 284.
42. Lykke-Andersen, J.,, C. Aagaard,, M. Semionenkov,, and R. A. Garrett. 1997. Archaeal introns: splicing, intercellular mobility and evolution. Trends Biochem. Sci. 22: 326 331.
43. Lykke-Andersen, J.,, and R. A. Garrett. 1994. Structural characteristics of the stable RNA introns of archaeal hyperther mophiles and their splicing junctions. J. Mol. Biol. 243: 846 855.
44. Lykke-Andersen, J.,, and R. A. Garrett. 1997. RNA-protein interactions of an archaeal homotetrameric splicing endonuclease with an exceptional evolutionary history. EMBO J. 16: 6290 6300.
45. Lykke-Andersen, J.,, R. A. Garrett,, and J. Kjems. 1996. Protein footprinting approach to mapping DNA binding sites of two archaeal homing endonucleases: evidence for a two domain protein structure. Nucleic Acids Res. 24: 3982 3989.
46. Lykke-Andersen, J.,, R. A. Garrett,, and J. Kjems. 1997. Mapping metal ions at the catalytic centres of two intron-encoded endonucleases. EMBO J. 16: 3272 3281.
47. Lykke-Andersen, J.,, H. Phan Thi-Ngoc,, and R. A. Garrett. 1994. DNA substrate specificity and cleavage kinetics of an archaeal homing-type endonuclease from Pyrobaculum organotrophum. Nucleic Acids Res. 22: 4583 4590.
48. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62: 725 774.
49. Makino, S.,, N. Amano,, H. Koike,, and M. Suzuki. 1999. Prophages inserted in archaebacterial genomes. Proc. Jpn. Acad. 75: 166 171.
50. Martusewitsch, E.,, C. W. Sensen,, and C. Schleper. 2000. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. J. Bacteriol. 182: 2574 2581.
51. Massana R.,, A. E. Murray,, C. M. Preston,, and E. F. DeLong. 1997. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl. Environ. Microbiol. 63: 50 56.
52. Mazel D.,, B. Dychinco,, V. A. Webb,, and J. Davies. 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605 608.
53. Muskhelishvili, G.,, P. Palm,, and W. Zillig. 1993. SSV1-encoded site-specific recombination system in Sulfolobus shibatae. Mol. Gen. Genet. 237: 334 342.
54. Ng, W. V.,, S. A. Ciufo,, T. M. Smith,, R. E. Bumgarner,, D. Baskin,, J. Faust,, B. Hall,, C. Loretz,, J. Seto,, J. Slagel,, L. Hood,, and S. DasSarma. 1998. Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome? Genome Res. 8: 1131 1141.
55. Ng, W. L.,, and S. DasSarma. 1993. Minimal replication origin of the 200-kilobase Halobacterium plasmid pNRC100. J. Bacteriol. 175: 4584 4596.
56. Ng, W. V.,, S. P. Kennedy,, G. G. Mahairas,, B. Berquist,, M. Pan,, H. D. Shukla,, S. R. Lasky,, N. Baliga,, V. Thorsson,, J. Sbrogna,, S. Swartzell,, D. Weir,, J. Hall,, T. A. Dahl,, R. Welti,, Y. A. Goo,, B. Leithauser,, K. Keller,, R. Cruz,, M. J. Danson,, D. W. Hough,, D. G. Maddocks,, P. E. Jablonski,, M. P. Krebs,, C. M. Angevine,, H. Dale,, T. A. Isenbarger,, R. F. Peck,, M. Pohlschrod,, J. L. Spudich,, K.-H. Jung,, M. Alam,, T. Freitas,, S. Hou,, C. J. Daniels,, P. P. Dennis,, A. D. Omer,, H. Ebhardt,, T. M. Lowe,, P. Liang,, M. Riley,, L. Hood,, and S. DasSarma. 2000. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 97: 12176 12181.
57. Nölling, J.,, A. Groffen,, and W. M. De Vos. 1993. ϕF1 and ϕF3, two novel virulent phages infecting thermophilic strains of the genus M. thermoautotrophicum. J. Gen. Microbiol. 139: 2511 2516.
58. Nomura, N.,, Y. Sako,, and A. Uchida. 1998. Molecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1. J. Bacteriol. 180: 3635 3643.
59. Nunes-Duby, S. E.,, H. J. Kwon,, R. S. Tirumalai,, T. Ellenberger,, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26: 391 406.
60. Nutall, S. D.,, and M. L. Dyall-Smith. 1993. HF1 and HF2: novel bacteriophages of halophilic archaea. Virology 197: 678 684.
61. Okada, N.,, M. Hamada,, I. Ogiwara,, and K. Ohshima. 1997. SINEs and LINEs share common 3' sequences: a review. Gene 205: 229 243.
62. Oosumi, T.,, B. Garlick,, and W. R. Belknap. 1996. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J. Mol. Evol. 43: 11 18.
63. Pansegrau, W.,, and E. Lanka. 1996. Enzymology of DNA transfer by conjugative mechanisms. Prog. Nucleic Acids Res. Mol. Biol. 54: 197 251.
64. Peng, X.,, I. Holz,, W. Zillig,, R. A. Garrett,, and Q. She. 2000. Evolution of the family of pRN plasmids and their integrasemediated insertion into the chromosome of the crenarchaeon Sulfolobus solfataricus. J. Mol. Biol. 303: 449 454.
64a.. Peng, X.,, H. Blum,, Q. She,, H. Domdey,, S. Mallok,, K. Brügger,, R. A. Garrett,, W. Zillig,, and D. Prangishvili. Sequences and replication of the archaeal rudiviruses SIRV1 and SIRV2: relationships to the archaeal lipothrixvirus SIFV and some eukaryal viruses: similarities between rudiviruses SIRV1 and SIRV2 which infect the extremely thermophilic crenarchaeon Sulfolobus and eukaryal pox viruses. Virology, in press.
65. Pfeifer, F.,, and P. Ghahraman. 1993. Plasmid pHH1 of Halobacterium salinarium: characterization of the replicon region, the gas vesicle gene cluster and insertion elements. Mol. Gen. Genet. 238: 193 200.
66. Pfister, P.,, A. Wasserfallen,, R. Stettler,, and T. Leisinger. 1998. Molecular analysis of Methanobacterium phage ψM2. Mol. Microbiol. 30: 233 244.
67. Prangishvili, D.,, S.-V. Albers,, I. Holz,, H. P. Arnold,, K. Stedman,, T. Klein,, H. Singh,, J. Hiort,, A. Schweier,, J. K. Kristjansson,, and W. Zillig. 1998. Conjugation in archaea: frequent occurrence of conjugative plasmids in Sulfolobus. Plasmid 40: 190 202.
68. Prangishvili, D.,, H. P. Arnold,, D. Götz,, U. Ziese,, I. Holz,, J. K. Kristjansson,, and W. Zillig. 1999. A novel virus family, the Rudiviridae: structure, virus-host interactions and genome variability of the Sulfolobus viruses SIRV1 and SIRV2. Genetics 152: 1387 1396.
69. Redder, P.,, Q. She,, and R. A. Garrett. 2001. Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus. J. Mol. Biol. 306: 1 6.
70. Reiter, W.-D.,, P. Palm,, and S. Yeats. 1989. tRNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 17: 1907 1914.
71. Rosenshine, I.,, R. Tchelet,, and M. Mevarech. 1989. The mechanism of DNA transfer in the mating system of an archaebacterium. Science 245: 1387 1389.
72. Rowe-Magnus, D. A.,, A. M. Guerout,, and D. Mazel. 1999. Super-integrons. Res. Microbiol. 150: 641 651.
73. Ruepp, A.,, W. Graml,, M.-L. Santos-Martinez,, K. K. Koretke,, C. Volker,, H. W. Mewes,, D. Frishman,, S. Stocker,, A. N. Lupas,, and W. Baumeister. 2000. The genome sequence of the thermacidophilic scavenger Thermoplasma acidophilum. Nature 407: 508 513.
74. Schmidt, K. J.,, K. E. Beck,, and D. W. Grogan. 1999. UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Genetics 152: 1407 1415.
75. She, Q.,, R. K. Singh,, F. Confalonieri,, Y. Zivanovic,, P. Gordon,, G. Allard,, M. J. Awayez,, C.-Y. Chan-Weiher,, I. G. Clausen,, B. Curtis,, A. De Moors,, G. Erauso,, C. Fletcher,, P. M. K. Gordon,, I. Heidekamp deJong,, A. Jeffries,, C. J. Kozera,, N. Medina,, X. Peng,, H. Phan Thi-Ngoc,, P. Redder,, M. E. Schenk,, C. Theriault,, N. Tolstrup,, R. L. M. Charlebois,, W. F. Doolittle,, M. Duguet,, T. Gaasterland,, R. A. Garrett,, M. Ragan,, C. W. Sensen,, and J. Van der Oost. 2001. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proc. Natl. Acad. Sci. USA 98: 7835 7840.
76. She, Q.,, X. Peng,, W. Zillig,, and R. A. Garrett. 2001. Gene capture events in archaeal chromosomes. Nature 409: 478.
77.. She, Q.,, H. Phan,, R. A. Garrett,, S.-V. Albers,, K. M. Stedman,, and W. Zillig. 1998. Genetic profile of pNOB8 from Sulfolobus: the first conjugative plasmid from an archaeon. Extremophiles 2: 417 425.
78. Silva, G. H.,, J. Z. Dalgaard,, M. Belfort,, and P. Van Roey. 1999. Crystal structure of the thermostable archaeal intronencoded endonuclease I- DmoI. J. Mol. Biol. 286: 1123 1136.
79. Smith, D. R.,, L. A. Doucette-Stamm,, C. Deloughery,, H. Lee,, J. Dubois,, T. Aldredge,, R. Bashirzadeh,, D. Blakely,, R. Cook,, K. Gilbert,, D. Harrison,, L. Hoang,, P. Keagle,, W. Lumm,, B. Pothier,, D. Qiu,, R. Spadafora,, R. Vicaire,, Y. Wang,, J. Wierzbowski,, R. Gibson,, N. Jiwani,, A. Caruso,, D. Bush,, H. Safer,, D. Patwell,, S. Prabhakar,, S. McDougall,, G. Shimer,, A. Goyal,, S. Pietrokovski,, G. M. Church,, C. J. Daniels,, J.-I. Mao,, P. Rice,, J. Nölling,, and J. N. Reeve. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum ΔH: functional analysis and comparative genomics. J. Bacteriol. 179: 7135 7155.
80. Stedman, K. M.,, C. Schleper,, E. Rumpf,, and W. Zillig. 1999. Genetic requirements for viral function in the extremely thermophilic archaeon Sulfolobus solfataricus: construction and testing of viral shuttle vectors. Genetics 152: 1397 1405.
81. Stedman, K. M.,, Q. She,, H. Phan,, I. Holz,, H. Singh,, D. Prangishvili,, R. Garrett,, and W. Zillig. 2000. pING family of conjugative plasmids from the extremely thermophilic archaeon Sulfolobus islandicus: insights into recombination and conjugation in crenarchaeota. J. Bacteriol. 182: 7014 7020.
82. Stetter, K. O.,, G. Fiala,, G. Huber,, R. Huber,, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75: 117 124.
83. Takai, K.,, and K. Horikoshi. 1999. Molecular phylogenetic analysis of archaeal intron-containing genes coding for rRNA obtained from a deep-subsurface geothermal water pool. Appl. Environ. Microbiol. 65: 5586 5589.
84. Varmus, H.,, and P. Brown,. 1989. Retroviruses, p. 53 109 In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
84a.. Watanabe, Y.,, S. Yokobori,, T. Inaba,, A. Yamagishi,, T. Oshima,, Y. Kawarabayasi,, H. Kikuchi,, and K. Kita. Introns in protein- coding genes in Archaea. FEBS Lett., in press.
85. Wessler, S. R.,, T. E. Bureau,, and S. E. White. 1995. LTRretrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5: 814 821.
86. Witte, A.,, U. Baranyi,, R. Klein,, M. Sulzner,, C. Luo,, G. Wanner,, D. H. Kruger,, and W. Lubitz. 1997. Characterization of Natronobacterium magadii phage ϕCh1, a unique phage containing DNA and RNA. Mol. Microbiol. 23: 603 616.
87. Woese, C. R.,, and G. E. Fox. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74: 5088 5090.
88. Woese, C. R.,, D. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576 4579.
89. Wood, A. G.,, W. B. Whitman,, and J. Koniski. 1989. Isolation and characterization of an archaebacterial virus-like particle from Methanococcus voltae A3. J. Bacteriol. 171: 93 98.
90. Xiong, Y.,, and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353 3362.
91. Zillig, W.,, H. P. Arnold,, I. Holz,, D. Prangishvili,, A. Schweier,, K. Stedman,, Q. She,, H. Phan,, R. Garrett,, and J. K. Kristjansson. 1998. Genetic elements in the extremely thermophilic archaeon Sulfolobus. Extremophiles 2: 131 140.
92. Zillig, W.,, A. Kletzin,, C. Schleper,, I. Holz,, D. Janekovic,, J. Hain,, M. Lanzendorfer,, and J. K. Kristjansson. 1994. Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst. Appl. Microbiol. 16: 609 628.
93. Zillig, W.,, W. D. Reiter,, P. Palm,, F. Gropp,, H. Neumann,, and M. Rettenberger,. 1988. Viruses of archaebacteria, p. 517 568. In R. Calendar (ed.), The Bacteriophages, vol. 1. Plenum Press, New York, N.Y. 16: 609 628

Tables

Generic image for table
Table 1

Euryarchaeal viruses

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 2

Crenarchaeal viruses

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 3

Crenarchaeal pRN plasmids

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 4

Crenarchaeal conjugative plasmids

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 6

Summary of the IS elements in the genome

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 7

SM elements found in the genome

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 5

Summary of IS elements and MITEs found in archaeal genomes

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46
Generic image for table
Table 8

Archaeal rRNA introns

Citation: Redder P, Brügger K, She Q, Garrett R, Faguy D. 2002. Archaeal Mobile DNA, p 1060-1073. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch46

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error