1887

Chapter 47 : Mobile Elements in Animal and Plant Genomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Mobile Elements in Animal and Plant Genomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap47-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap47-2.gif

Abstract:

This chapter discusses the different classes of mobile elements seen in some of the best-characterized animal genome and plant genome. It talks about the some of the general concepts behind the colonization of genomes by mobile elements. There are basically three classes of autonomous mobile elements, all three of which can be found to various extents in different genomes of all animals and plants. These are the DNA transposons, the long terminal repeat (LTR) retrotransposons, and the non-LTR retrotransposons. DNA transposons are very common in the genome, as well as several relatively high-copy-number families of their nonautonomous relatives, miniature inverted-repeat transposable elements (MITEs). Other site-specific mobile elements are the HetA and TART elements that make up the telomeres in . Only sporadic data are available on mobile elements in reptiles, amphibians, and fish. Almost all the classes of mobile elements are present to some degree in almost all animal and plant genomes. The density of mobile elements has also been shown to extend into the centromeric region in . Not only is the impact of mobile elements on their genome a direct result of insertional mutagenesis, but there are also a series of secondary impacts on the genome including recombination and many more subtle changes that may alter the stability or evolution of an organism’s genome. Retrotransposition has also given rise to gene duplications or other useful gene modifications that allowed evolution to new function.

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47

Key Concept Ranking

RNA Polymerase III
0.50179
0.50179
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Major classes of autonomous mobile elements in animals and plants. Schematic diagrams for the three major classes of mobile elements are shown. The DNA transposons have two or three open reading frames coding for enzymes involved in the transposition process. They are also flanked by inverted repeats (arrowheads) at the ends that act as -acting elements in the integration process. The transposition process involves direct integration through DNA intermediates. Both the LTRretrotransposons and the non-LTRretrotransposons use anRNA intermediate in the amplification process. They generally encode two open reading frames coding for RNA-binding proteins and enzymes involved in reverse transcription and endonuclease cleavage at the site of integration. The LTRretrotransposons have LTRs that contain signals for transcription of the elements and are involved in the integration process. The non-LTRretrotransposons use a promoter region found in the 5′ noncoding region of the RNA and terminate in a poly(A) tract like a typical mRNA.

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Genomic patterns for mobile elements. The patterns show schematically some of the basic density patterns found for mobile elements in animal and plant genomes. These include elements that are distributed fairly randomly, some showing either a combined centromeric/telomeric preference, and many with a preference for the juxtacentromeric region. In more complex genomes, it is typical to see a complex series of clusters spread throughout the genome. There are also classes of mobile elements with a very high degree of specificity for very specific gene or chromosomal regions.

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Schematic of evolutionary peaks of mobile element amplification. Each of the different line types represents a theoretical amplification rate versus evolutionary time for a different mobile element. These simply show the concept that when a mobile element enters or is activated in a naïve genome, they often amplify efficiently and reach a peak amplification rate. Processes such as mobile elements regulating their own amplification, development of genomic suppression mechanisms, or simply negative selection due to the damage caused by the elements, eventually lead most elements to greatly decrease or lose all amplification capability. Because very few elements are actively removed from the genome, the modern genome will be littered with pseudogene copies of the older elements, as well as members of any active families of elements. Also, some of the highest-copy-number elements are nonautonomous and therefore only amplify in conjunction with an active, autonomous family of elements. The modern genome is littered with both the elements that amplified earlier in evolution and families of currently active elements.

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap47
1. Adams, M. D.,, S. E. Celniker,, R. A. Holt,, C. A. Evans,, J. D. Gocayne,, P. G. Amanatides,, S. E. Scherer,, P. W. Li,, R. A. Hoskins,, R. F. Galle,, R. A. George,, S. E. Lewis,, S. Richards,, M. Ashburner,, S. N. Henderson,, G. G. Sutton,, J. R. Wortman,, M. D. Yandell,, Q. Zhang,, L. X. Chen,, R. C. Brandon,, Y. H. Rogers,, R. G. Blazej,, M. Champe,, B. D. Pfeiffer,, K. H. Wan,, C. Doyle,, E. G. Baxter,, G. Helt,, C. R. Nelson,, G. L. Gabor Miklos,, J. F. Abril,, A. Agbayani,, H. J. An,, C. Andrews- Pfannkoch,, D. Baldwin,, R. M. Ballew,, A. Basu,, J. Baxendale,, L. Bayraktaroglu,, E. M. Beasley,, K. Y. Beeson,, P. V. Benos,, B. P. Berman,, D. Bhandari,, S. Bolshakov,, D. Borkova,, M. R. Botchan,, J. Bouck,, P. Brokstein,, P. Brottier,, K. C. Burtis,, D. A. Busam,, H. Butler,, E. Cadieu,, A. Center,, I. Chandra,, J. M. Cherry,, S. Cawley,, C. Dahlke,, L. B. Davenport,, P. Davies,, B. de Pablos,, A. Delcher,, Z. Deng,, A. D. Mays,, I. Dew,, S. M. Dietz,, K. Dodson,, L. E. Doup,, M. Downes,, S. Dugan- Rocha,, B. C. Dunkov,, P. Dunn,, K. J. Durbin,, C. C. Evangelista,, C. Ferraz,, S. Ferriera,, W. Fleischmann,, C. Fosler,, A. E. Gabrielian,, N. S. Garg,, W. M. Gelbart,, K. Glasser,, A. Glodek,, F. Gong,, J. H. Gorrell,, Z. Gu,, P. Guan,, M. Harris,, N. L. Harris,, D. Harvey,, T. J. Heiman,, J. R. Hernandez,, J. Houck,, D. Hostin,, K. A. Houston,, T. J. Howland,, M. H. Wei,, C. Ibegwam,, M. Jalali,, F. Kalush,, G. H. Karpen,, Z. Ke,, J. A. Kennison,, K. A. Ketchum,, B. E. Kimmel,, C. D. Kodira,, C. Kraft,, S. Kravitz,, D. Kulp,, Z. Lai,, P. Lasko,, Y. Lei,, A. A. Levitsky,, J. Li,, Z. Li,, Y. Liang,, X. Lin,, X. Liu,, B. Mattei,, T. C. McIntosh,, M. P. McLeod,, D. McPherson,, G. Merkulov,, N. V. Milshina,, C. Mobarry,, J. Morris,, A. Moshrefi,, S. M. Mount,, M. Moy,, B. Murphy,, L. Murphy,, D. M. Muzny,, D. L. Nelson,, D. R. Nelson,, K. A. Nelson,, K. Nixon,, D. R. Nusskern,, J. M. Pacleb,, M. Palazzolo,, G. S. Pittman,, S. Pan,, J. Pollard,, V. Puri,, M. G. Reese,, K. Reinert,, K. Remington,, R. D. Saunders,, F. Scheeler,, H. Shen,, B. C. Shue,, I. Siden- Kiamos,, M. Simpson,, M. P. Skupski,, T. Smith,, E. Spier,, A. C. Spradling,, M. Stapleton,, R. Strong,, E. Sun,, R. Svirskas,, C. Tector,, R. Turner,, E. Venter,, A. H. Wang,, X. Wang,, Z. Y. Wang,, D. A. Wassarman,, G. M. Weinstock,, J. Weissenbach,, S. M. Williams,, T. Woodage,, K. C. Worley,, D. Wu,, S. Yang,, Q. A. Yao,, J. Ye,, R. F. Yeh,, J. S. Zaveri,, M. Zhan,, G. Zhang,, Q. Zhao,, L. Zheng,, X. H. Zheng,, F. N. Zhong,, W. Zhong,, X. Zhou,, S. Zhu,, X. Zhu,, H. O. Smith,, R. A. Gibbs,, E. W. Myers,, G. M. Rubin,, and J. C. Venter. 2000. The genome sequence of Drosophila melanogaster. Science 287: 2185 2195.
2. Bailey, J. A.,, L. Carrel,, A. Chakravarti,, and E. E. Eichler. 2000. From the cover: molecular evidence for a relationship between LINE-1 elements and X chromosome inactivation: the Lyon repeat hypothesis. Proc. Natl. Acad. Sci. USA 97: 6634 6639.
3. Bennetzen, J. L. 2000. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42: 251 269.
4. Biemont, C.,, and C. Terzian. 1988. Mdg-1 mobile element polymorphism in selected Drosophila melanogaster populations. Genetica 76: 7 14.
5. Biemont, C.,, C. Vieira,, C. Hoogland,, G. Cizeron,, C. Loevenbruck,, C. Arnault,, and J. P. Carante. 1997. Maintenance of transposable element copy number in natural populations of Drosophila melanogaster and D. simulans. Genetica 100: 161 166.
6. Biessmann, H.,, and J. M. Mason. 1997. Telomere maintenance without telomerase. Chromosoma 106: 63 69.
7. Birchler, J. A.,, M. P. Bhadra,, and U. Bhadra. 2000. Making noise about silence: repression of repeated genes in animals. Curr. Opin. Genet. Dev. 10: 211 216.
8. Boeke, J. D. 1997. LINEs and Alus—the polyA connection. Nat. Genet. 16: 6 7.
9. Britten, R. J. 1995. Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92: 599 601.
10. Britten, R. J. 1997. Mobile elements inserted in the distant past have taken on important functions. Gene 205: 177 182.
11. Brosius, J.,, and H. Tiedge. 1995. Reverse transcriptase: mediator of genomic plasticity. Virus Genes 11: 163 179.
12. Bucci, S.,, M. Ragghianti,, G. Mancino,, G. Petroni,, F. Guerrini,, and S. Giampaoli. 1999. Rana/Pol III: a family of SINElike sequences in the genomes of western Palearctic water frogs. Genome 42: 504 511.
13. Bureau, T. E.,, S. E. White,, and S. R. Wessler. 1994. Transduction of a cellular gene by a plant retroelement. Cell 77: 479 480.
14. Burke, W. D.,, H. S. Malik,, J. P. Jones,, and T. H. Eickbush. 1999. The domain structure and retrotransposition mechanism of R2 elements are conserved throughout arthropods. Mol. Biol. Evol. 16: 502 511.
15. Capy, P.,, T. Langin,, Y. Bigot,, F. Brunet,, M. J. Daboussi,, G. Periquet,, J. R. David,, and D. L. Hartl. 1994. Horizontal transmission versus ancient origin: mariner in the witness box. Genetica 93: 161 170.
16. Capy, P.,, R. Vitalis,, T. Langin,, D. Higuet,, and C. Bazin. 1996. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J. Mol. Evol. 42: 359 368.
17. Casavant, N. C.,, L. Scott,, M. A. Cantrell,, L. E. Wiggins,, R. J. Baker,, and H. A. Wichman. 2000. The end of the LINE? Lack of recent 11 activity in a group of South American rodents. Genetics 154: 1809 1817.
18. The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 20122018. (Errata, 283:35, 1999; 283:2103, 1999; 285:1493, 1999.)
19. Chang, D. Y.,, N. Sasaki-Tozawa,, L. K. Green,, and R. J. Maraia. 1995. A trinucleotide repeat-associated increase in the level of Alu RNA-binding protein occurred during the same period as the major Alu amplification that accompanied anthropoid evolution. Mol. Cell. Biol. 15: 2109 2116.
20. Cost, G. J.,, and J. D. Boeke. 1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37: 18081 18093.
21. Csink, A. K.,, and J. F. McDonald. 1990. copia expression is variable among natural populations of Drosophila. Genetics 126: 375 385.
22. D’Andrea, A. D.,, U. Tantravahi,, M. Lalande,, M. A. Perle,, and S. A. Latt. 1983. High resolution analysis of the timing of replication of specific DNA sequences during S phase of mammalian cells. Nucleic Acids Res. 11: 4753 4774.
23. Daniels, G.,, and P. Deininger. 1985. Repeat sequence families derived from mammalian tRNA genes. Nature 317: 819 822.
24. Danilevskaya, O. N.,, K. Lowenhaupt,, and M. L. Pardue. 1998. Conserved subfamilies of the Drosophila HeT-A telomere- specific retrotransposon. Genetics 148: 233 242.
25. Deininger, P. L.,, and M. A. Batzer. 1999. Alu repeats and human disease. Mol. Genet. Metab. 67: 183 193.
26. Deininger, P.,, and M. A. Batzer. 1993. Evolution of retroposons. Evol. Biol. 27: 157 196.
27. Deininger, P.,, and M. Batzer,. 1995. SINE master genes and population biology, p. 43 60. In R. Maraia (ed.), The Impact of Short, Interspersed Elements (SINEs) on the Host Genome. R. G. Landes, Georgetown, Tex.
28. Deininger, P.,, M. Batzer,, I. C. Hutchison,, and M. Edgell. 1992. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8: 307 312.
29. Deininger, P.,, and G. Daniels. 1986. The recent evolution of mammalian repetitive DNA elements. Trends Genet. 2: 76 80.
30. Dunham, I.,, N. Shimizu,, B. A. Roe,, S. Chissoe,, A. R. Hunt,, J. E. Collins,, R. Bruskiewich,, D. M. Beare,, M. Clamp,, L. J. Smink,, R. Ainscough,, J. P. Almeida,, A. Babbage,, C. Bagguley,, J. Bailey,, K. Barlow,, K. N. Bates,, O. Beasley,, C. P. Bird,, S. Blakey,, A. M. Bridgeman,, D. Buck,, J. Burgess,, W. D. Burrill,, and K. P. O’Brien. 1999. The DNA sequence of human chromosome 22. Nature 402: 489 495. (Erratum, 404:904, 2000.)
31. Elgar, G.,, M. S. Clark,, S. Meek,, S. Smith,, S. Warner,, Y. J. Edwards,, N. Bouchireb,, A. Cottage,, G. S. Yeo,, Y. Umrania,, G. Williams,, and S. Brenner. 1999. Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res. 9: 960 971.
32. Emmons, S. W.,, S. Roberts,, and K. S. Ruan. 1986. Evidence in a nematode for regulation of transposon excision by tissuespecific factors. Mol. Gen. Genet. 202: 410 415.
33. Engels, W. R. 1992. The origin of P elements in Drosophila melanogaster. Bioessays 14: 681 686.
34. Feng, Q.,, J. V. Moran,, H. H. Kazazian, Jr.,, and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87: 905 916.
35. Flavell, A. J.,, V. Jackson,, M. P. Iqbal,, I. Riach,, and S. Waddell. 1995. Ty1-copia group retrotransposon sequences in amphibia and reptilia. Mol. Gen. Genet. 246: 65 71.
36. Garrett, J. E.,, D. S. Knutzon,, and D. Carroll. 1989. Composite transposable elements in the Xenopus laevis genome. Mol. Cell. Biol. 9: 3018 3027.
37. Gaut, B. S.,, D. E. Le Thierry,, A. S. Peek,, and M. C. Sawkins. 2000. Maize as a model for the evolution of plant nuclear genomes. Proc. Natl. Acad. Sci. USA 97: 7008 7015.
38. Gebow, D.,, N. Miselis,, and H. L. Liber. 2000. Homologous and nonhomologous recombination resulting in deletion: effects of p53 status, microhomology, and repetitive DNA length and orientation. Mol. Cell. Biol. 20: 4028 4035.
39. Goldman, M. A.,, G. P. Holmquist,, M. C. Gray,, L. A. Caston,, and A. Nag. 1984. Replication timing of genes and middle repetitive sequences. Science 224: 686 692.
40. Goodier, J. L.,, and W. S. Davidson. 1994. Tc1 transposonlike sequences are widely distributed in salmonids. J. Mol. Biol. 241: 26 34.
41. Goodier, J. L.,, E. M. Ostertag,, and H. H. Kazazian, Jr. 2000. Transduction of 3'-flanking sequences is common in L1 retrotransposition. Hum. Mol. Genet. 9: 653 657.
42. Hagemann, S.,, W. J. Miller,, E. Haring,, and W. Pinsker. 1998. Nested insertions of short mobile sequences in Drosophila P elements. Chromosoma 107: 6 16.
43. Hattori, M.,, A. Fujiyama,, T. D. Taylor,, H. Watanabe,, T. Yada,, H. S. Park,, A. Toyoda,, K. Ishii,, Y. Totoki,, D. K. Choi,, E. Soeda,, M. Ohki,, T. Takagi,, Y. Sakaki,, S. Taudien,, K. Blechschmidt,, A. Polley,, U. Menzel,, J. Delabar,, K. Kumpf,, R. Lehmann,, D. Patterson,, K. Reichwald,, A. Rump,, M. Schillhabel,, and A. Schudy. 2000. The DNA sequence of human chromosome 21. The chromosome 21 mapping and sequencing consortium. Nature 405: 311 319.
44. Heslop-Harrison, J. S.,, M. Murata,, Y. Ogura,, T. Schwarzacher,, and F. Motoyoshi. 1999. Polymorphisms and genomic organization of repetitive DNA from centromeric regions of Arabidopsis chromosomes. Plant Cell 11: 31 42.
45. Hiom, K.,, M. Melek,, and M. Gellert. 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94: 463 470.
46. Izsvak, Z.,, Z. Ivics,, D. Garcia-Estefania,, S. C. Fahrenkrug,, and P. B. Hackett. 1996. DANA elements: a family of composite, tRNA-derived short interspersed DNA elements associated with mutational activities in zebrafish (Danio rerio). Proc. Natl. Acad. Sci. USA 93: 1077 1081.
47. Jensen, S.,, M. P. Gassama,, and T. Heidmann. 1999. Taming of transposable elements by homology-dependent gene silencing. Nat. Genet. 21: 209 212.
48. Johnson, W. E.,, and J. M. Coffin. 1999. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl. Acad. Sci. USA 96: 10254 10260.
49. Junakovic, N.,, A. Terrinoni,, C. Di Franco,, C. Vieira,, and C. Loevenbruck. 1998. Accumulation of transposable elements in the heterochromatin and on the Y chromosome of Drosophila simulans and Drosophila melanogaster. J. Mol. Evol. 46: 661 668.
50. Jurka, J. 1997. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc. Natl. Acad. Sci. USA 94: 1872 1877.
51. Jurka, J. 1998. Repeats in genomic DNA: mining and meaning. Curr. Opin. Struct. Biol. 8: 333 337.
52. Kass, D. H.,, J. Kim,, and P. L. Deininger. 1996. Sporadic amplification of ID elements in rodents. J. Mol. Evol. 42: 7 14.
53. Kawakami, K.,, and A. Shima. 1999. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene 240: 239 244.
54. Kazazian, H. H. J. 1998. Mobile elements and disease. Curr. Opin. Genet. Dev. 8: 343 350.
55. Kazazian, H. H. J.,, and J. V. Moran. 1998. The impact of L1 retrotransposons on the human genome. Nat. Genet. 19: 19 24.
56. Koga, A.,, M. Suzuki,, H. Inagaki,, Y. Bessho,, and H. Hori. 1996. Transposable element in fish. Nature 383: 30.
57. Korenberg, J. R.,, and M. C. Rykowski. 1988. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53: 391 400.
58. Kotani, H.,, T. Hosouchi,, and H. Tsuruoka. 1999. Structural analysis and complete physical map of Arabidopsis thaliana chromosome 5 including centromeric and telomeric regions. DNA Res. 6: 381 386.
59. Kumar, A.,, and J. L. Bennetzen. 1999. Plant retrotransposons. Annu. Rev. Genet. 33: 479 532.
60. Labrador, M.,, M. Farre,, F. Utzet,, and A. Fontdevila. 1999. Interspecific hybridization increases transposition rates of Osvaldo. Mol. Biol. Evol. 16: 931 937.
61. Lam, W. L.,, T. S. Lee,, and W. Gilbert. 1996. Active transposition in zebrafish. Proc. Natl. Acad. Sci. USA 93: 10870 10875.
62.. Leeton, P. R.,, and D. R. Smyth. 1993. An abundant LINElike element amplified in the genome of Lilium speciosum. Mol. Gen. Genet. 237: 97 104.
63. Levis, R. W.,, R. Ganesan,, K. Houtchens,, L. A. Tolar,, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75: 1083 1093.
64. Lin, X.,, S. Kaul,, S. Rounsley,, T. P. Shea,, M. I. Benito,, C. D. Town,, C. Y. Fujii,, T. Mason,, C. L. Bowman,, M. Barnstead,, T. V. Feldblyum,, C. R. Buell,, K. A. Ketchum,, J. Lee,, C. M. Ronning,, H. L. Koo,, K. S. Moffat,, L. A. Cronin,, M. Shen,, G. Pai,, S. Van Aken,, L. Umayam,, L. J. Tallon,, J. E. Gill,, and J. C. Venter. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761 768.
65. Lobachev, K. S.,, J. E. Stenger,, O. G. Kozyreva,, J. Jurka,, D. A. Gordenin,, and M. A. Resnick. 2000. Inverted Alu repeats unstable in yeast are excluded from the human genome. EMBO J. 19: 3822 3830.
66. Lozovskaya, E. R.,, D. L. Hartl,, and D. A. Petrov. 1995. Genomic regulation of transposable elements in Drosophila. Curr. Opin. Genet. Dev. 5: 768 773.
67. Luan, D. D.,, M. H. Korman,, J. L. Jakubczak,, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72: 595 605.
68. Lueders, K. K.,, and W. N. Frankel. 1994. Mapping of mouse intracisternal A-particle proviral markers in an interspecific backcross. Mamm. Genome 5: 473 478.
69. Malik, H. S.,, and T. H. Eickbush. 1998. The RTE class of non-LTRretrotransposons is widely distributed in animals and is the origin of many SINEs. Mol. Biol. Evol. 15: 1123 1134.
70. Marracci, S.,, R. Batistoni,, G. Pesole,, L. Citti,, and I. Nardi. 1996. Gypsy/Ty3-like elements in the genome of the terrestrial Salamander hydromantes (Amphibia, Urodela). J. Mol. Evol. 43: 584 593.
71. Maside, X.,, S. Assimacopoulos,, and B. Charlesworth. 2000. Rates of movement of transposable elements on the second chromosome of Drosophila melanogaster. Genet. Res. 75: 275 284.
72. Mayer, K.,, C. Schuller,, R. Wambutt,, G. Murphy,, G. Volckaert,, T. Pohl,, A. Dusterhoft,, W. Stiekema,, K. D. Entian,, N. Terryn,, B. Harris,, W. Ansorge,, P. Brandt,, L. Grivell,, M. Rieger,, M. Weichselgartner,, V. de Simone,, B. Obermaier,, R. Mache,, M. Muller,, M. Kreis,, M. Delseny,, P. Puigdomenech,, M. Watson,, W. R. McCombie, et al. 1999. Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402: 769 777.
73. McCarron, M.,, A. Duttaroy,, G. Doughty,, and A. Chovnick. 1994. Drosophila P element transposase induces male recombination additively and without a requirement for P element excision or insertion. Genetics 136: 1013 1023.
74. Medstrand, P.,, and D. L. Mager. 1998. Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 72: 9782 9787.
75. Mochizuki, K.,, M. Umeda,, H. Ohtsubo,, and E. Ohtsubo. 1992. Characterization of a plant SINE, p-SINE1, in rice genomes. Jpn. J. Genet. 67: 155 166.
76. Moran, J. V.,, R. J. DeBerardinis,, and H. H. Kazazian, Jr. 1999. Exon shuffling by L1 retrotransposition. Science 283: 1530 1534.
77. Morgan, G. T. 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254: 1 5.
78. Murata, S.,, N. Takasaki,, M. Saitoh,, and N. Okada. 1993. Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. Proc. Natl. Acad. Sci. USA 90: 6995 6999.
79. Nakamura, T. M.,, and T. R. Cech. 1998. Reversing time: origin of telomerase. Cell 92: 587 590.
80. Noma, K.,, E. Ohtsubo,, and H. Ohtsubo. 1999. Non-LTR retrotransposons (LINEs) as ubiquitous components of plant genomes. Mol. Gen. Genet. 261: 71 79.
81. Norris, J.,, D. Fan,, C. Aleman,, J. R. Marks,, P. A. Futreal,, R. W. Wiseman,, J. D. Iglehart,, P. L. Deininger,, and D. P. McDonnell. 1995. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptor-dependent transcriptional enhancers. J. Biol. Chem. 270: 22777 22782.
82. Ohshima, K.,, M. Hamada,, Y. Terai,, and N. Okada. 1996. The 3' ends of tRNA-derived short interspersed repetitive elements are derived from the 3' ends of long interpersed repetitive elements. Mol. Cell. Biol. 16: 3756 3764.
83. Pickeral, O. K.,, W. Makaowski,, M. S. Boguski,, and J. D. Boeke. 2000. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 10: 411 415.
84. Plasterk, R. H. 1991. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 10: 1919 1925.
85. Poulter, R.,, and M. Butler. 1998. A retrotransposon family from the pufferfish (fugu) Fugu rubripes. Gene 215: 241 249.
86. Poulter, R.,, M. Butler,, and J. Ormandy. 1999. A LINE element from the pufferfish (fugu) Fugu rubripes which shows similarity to the CR1 family of non-LTR retrotransposons. Gene 227: 169 179.
87. Rezsohazy, R.,, H. G. van Luenen,, R. M. Durbin,, and R. H. Plasterk. 1997. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 25: 4048 4054.
88. Rudiger, N. S.,, N. Gregersen,, and M. C. Kielland-Brandt. 1995. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 23: 256 260.
89. Ruiz, F.,, L. Vayssie,, C. Klotz,, L. Sperling,, and L. Madeddu. 1998. Homology-dependent gene silencing in Paramecium. Mol. Biol. Cell 9: 931 943.
90. SanMiguel, P.,, B. S. Gaut,, A. Tikhonov,, Y. Nakajima,, and J. L. Bennetzen. 1998. The paleontology of intergene retrotransposons of maize. Nat. Genet. 20: 43 45.
91. SanMiguel, P.,, A. Tikhonov,, Y. K. Jin,, N. Motchoulskaia,, D. Zakharov,, A. Melake-Berhan,, P. S. Springer,, K. J. Edwards,, M. Lee,, Z. Avramova,, and J. L. Bennetzen. 1996. Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765 768.
92. Sassaman, D. M.,, B. A. Dombroski,, J. V. Moran,, M. L. Kimberland,, T. P. Naas,, R. J. DeBerardinis,, A. Gabriel,, G. D. Swergold,, and H. H. Kazazian, Jr. 1997. Many human L1 elements are capable of retrotransposition. Nat. Genet. 16: 37 43.
93. Shackleford, G. M.,, C. A. MacArthur,, H. C. Kwan,, and H. E. Varmus. 1993. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc. Natl. Acad. Sci. USA 90: 740 744.
94. Shen, M.,, M. Batzer,, and P. Deininger. 1991. Evolution of the Master Alu Gene(s). J. Mol. Evol. 33: 311 320.
95. Slagel, V.,, E. Flemington,, V. Traina-Dorge,, H. Bradshaw,, and P. Deininger. 1987. Clustering and sub-family relationships of the Alu family in the human genome. Mol. Biol. Evol. 4: 19 29.
96. Smit, A. F. 1993. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res. 21: 1863 1872.
97. Smit, A. F. 1996. The origin of interspersed repeats in the human genome. Curr. Opin. Genet. Dev. 6: 743 748.
98. Smit, A. F. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9: 657 663.
99. Smit, A. F.,, G. Toth,, A. D. Riggs,, and J. Jurka. 1995. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J. Mol. Biol. 246: 401 417.
100. Surzycki, S. A.,, and W. R. Belknap. 2000. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc. Natl. Acad. Sci. USA 97: 245 249.
101. Takasaki, N.,, L. Park,, M. Kaeriyama,, A. J. Gharrett,, and N. Okada. 1996. Characterization of species-specifically amplified SINEs in three salmonid species—chum salmon, pink salmon, and kokanee: the local environment of the genome may be important for the generation of a dominant source gene at a newly retroposed locus. J. Mol. Evol. 42: 103 116.
102. Tchenio, T.,, J. F. Casella,, and T. Heidmann. 2000. Members of the SRY family regulate the human LINE retrotransposons. Nucleic Acids Res. 28: 411 415.
103. Terrinoni, A.,, C. D. Franco,, P. Dimitri,, and N. Junakovic. 1997. Intragenomic distribution and stability of transposable elements in euchromatin and heterochromatin of Drosophila melanogaster: non-LTRretrotransposon. J. Mol. Evol. 45: 145 153.
104. Terzian, C.,, and C. Biemont. 1988. The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster. Genetica 76: 53 63.
105. Tikhonov, A. P.,, P. J. SanMiguel,, Y. Nakajima,, N. M. Gorenstein,, J. L. Bennetzen,, and Z. Avramova. 1999. Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc. Natl. Acad. Sci. USA 96: 7409 7414.
106. Tudor, M.,, M. Lobocka,, M. Goodell,, J. Pettitt,, and K. O’Hare. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232: 126 134.
107. Turcich, M. P.,, A. Bokharririza,, D. A. Hamilton,, C. P. He,, W. Messier, et al. 1996. PREM-2, a copia-type retroelement in maize is expressed preferentially in early microspores. Sex. Plant Reprod. 9: 65 74.
108. Unsal, K.,, and G. T. Morgan. 1995. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs. J. Mol. Biol. 248: 812 823.
109. Vansant, G.,, and W. F. Reynolds. 1995. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc. Natl. Acad. Sci. USA 92: 8229 8233.
110. Varmus, H.,, and J. M. Bishop. 1986. Biochemical mechanisms of oncogene activity: proteins encoded by oncogenes. Introduction. Cancer Surv. 5: 153 158.
111. Vieira, C.,, D. Lepetit,, S. Dumont,, and C. Biemont. 1999. Wake up of transposable elements following Drosophila simulans worldwide colonization. Mol. Biol. Evol. 16: 1251 1255.
112. Weiner, A.,, P. Deininger,, and A. Efstratiadis. 1986. The reverse flow of genetic information: pseudogenes and transposable elements derived from nonviral cellular RNA. Annu. Rev. Biochem. 55: 631 661.
113. Williamson, V. M.,, D. Cox,, E. T. Young,, D. W. Russell,, and M. Smith. 1983. Characterization of transposable elementassociated mutations that alter yeast alcohol dehydrogenase II expression. Mol. Cell. Biol. 3: 20 31.
114. Wright, D. A.,, N. Ke,, J. Smalle,, B. M. Hauge,, H. M. Goodman,, and D. F. Voytas. 1996. Multiple non-LTRretrotransposons in the genome of Arabidopsis thaliana. Genetics 142: 569 578.
115. Xiong, Y.,, and T. H. Eickbush. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9: 3353 3362.
116. Yoder, J. A.,, C. P. Walsh,, and T. H. Bestor. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13: 335 340.
117. Yoshioka, Y.,, S. Matsumoto,, S. Kojima,, K. Ohshima,, N. Okada,, and Y. Machida. 1993. Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. Proc. Natl. Acad. Sci. USA 90: 6562 6566.
118. Zelentsova, H.,, H. Poluectova,, L. Mnjoian,, G. Lyozin,, V. Veleikodvorskaja,, L. Zhivotovsky,, M. G. Kidwell,, and M. B. Evgen’ev. 1999. Distribution and evolution of mobile elements in the virilis species group of Drosophila. Chromosoma 108: 443 456.

Tables

Generic image for table
Table 1

Abundance of human mobile elements on chromosomes 21, 22, and X

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47
Generic image for table
Table 2

Species and population variation in mobile elements

Citation: Deininger P, Roy-Engel A. 2002. Mobile Elements in Animal and Plant Genomes, p 1074-1092. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch47

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error