1887

Chapter 50 : Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap50-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap50-2.gif

Abstract:

With the advent of genome sequencing projects, vast amounts of DNA sequence, from a wide variety of plant and animal species, have become available for analysis. Miniature inverted-repeat transposable elements (MITEs), with their high copy number, distinct structural features (target site duplications [TSDs] and terminal inverted repeats [TIRs]), and compact stature, are relatively easy to mine from DNA sequence databases. Comparison of the transposase-encoding Tc elements and the numerous MITE families suggested possible scenarios for the origin of MITEs in . Several groups independently discovered an abundant family of short (80-bp) palindromic elements, called or . The TIRs are 80 to 100% similar to those of -like elements (MLEs) that are dispersed in the genome. These were the first MLEs identified in mammals and were subsequently grouped into the family. Plant MITEs related to -like transposons have only been identified in . Phylogenetic analyses of over 100 plant MLE transposase sequences revealed the existence of multiple and divergent lineages of MLE transposases. Together these results provide an explanation for the proliferation, diversity, and success of MITEs in plant genomes. (PIF) is an active DNA element family first discovered as multiple mutagenic insertions into the maize gene. Several MITE families described from plants, animals, and fungi do not share any structural or sequence features with known DNA transposon families. The proliferation of nonautonomous elements has been hypothesized to lead to the extinction of the cognate autonomous element through titration of active transposase.

Citation: Feschotte C, Zhang X, Wessler S. 2002. Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons, p 1147-1158. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch50
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Similarities between -like elements and -like MITEs. Grey rectangles represent regions conserved between elements and related MITES (nucleotide homology shown in percentage). Black triangles represent element TIRs.

Citation: Feschotte C, Zhang X, Wessler S. 2002. Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons, p 1147-1158. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model for the origin and amplification of MITEs. See text for discussion. The circled T stands for the transposase. Transposase is known to mediate the formation of nonautonomous derivatives through mechanisms such as abortive gap repair (grey arrows) ( ). The subsequent amplification of one or a few deletion derivatives (i.e., MITE amplification [dashed grey arrows]) is likely to be mediated by the same transposase or those produced by a close relative (trans- or crossmobilization, respectively). The different patterns at the ends of the autonomous elements represent different subterminal sequences with identical or near-identical TIRs (black triangles).

Citation: Feschotte C, Zhang X, Wessler S. 2002. Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons, p 1147-1158. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch50
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap50
1. Adé, J.,, and F. J. Belzile. 1999. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. Plant J. 19:591597.
2. Besansky, N. J.,, O. Mukabayire,, J. A. Bedell,, and H. Lusz. 1996. Pegasus, a small terminal inverted repeat transposable element found in the white gene of Anopheles gambiae. Genetica 98:119129.
3. Braquart, C.,, V. Royer,, and H. Bouhin. 1999. DEC: a new miniature inverted-repeat transposable element from the genome of the beetle Tenebrio molitor. Insect Mol. Biol. 8: 571574.
4. Bureau, T. E.,, P. C. Ronald,, and S. R. Wessler. 1996. A com puter-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc. Natl. Acad. Sci. USA 93:85248529.
5. Bureau, T. E.,, and S. R. Wessler. 1994. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proc. Natl. Acad. Sci. USA 91: 14111415.
6. Bureau, T. E.,, and S. R. Wessler. 1994. Stowaway: a new family of inverted-repeat elements associated with genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907916.
7. Bureau, T. E.,, and S. R. Wessler. 1992. Tourist: a large family of inverted-repeat element frequently associated with maize genes. Plant Cell 4:12831294.
8. Capy, P.,, C. Bazin,, D. Higuet,, and T. Langin. 1998. Dynamics and Evolution of Transposable Elements. Springer-Verlag, Austin, Tex.
9. Casacuberta, E.,, J. M. Casacuberta,, P. Puigdomenech,, and A. Monfort. 1998. Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J. 16:7985.
10. Charrier, B.,, F. Foucher,, E. Kondorsi,, Y. d’Aubenton-Carafa,, C. Thermes,, and P. Ratet. 1999. Bigfoot, a new family of MITE elements characterized from the Medicago genus. Plant J. 18: 431441.
11. Chen, M. P.,, P. SanMiguel,, A. C. de Oliveira,, S. S. Woo,, H. Zhang,, R. A. Wing,, and J. L. Bennetzen. 1997. Microcolinearity in sh2-homologous regions of the maize, rice and sorghum genomes. Proc. Natl. Acad. Sci. USA 94:34313455.
12. Dreyfus, D. H.,, and S. W. Emmons. 1991.A transposon related palindromic repetitive sequence from C. elegans. Nucleic Acids Res. 19:18711877.
13. Durbin, M. L.,, A. L. Denton,, and M. T. Clegg. 2001. Dynamics of mobile element activity in chalcone synthase loci in the common morning glory (Ipomoea purpurea). Proc. Natl. Acad. Sci. USA 98:50845089.
14. Engels, W. R.,, D. M. Johnson-Schlitz,, W. B. Eggleston,, and J. Sved. 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62:515525.
15. Feschotte, C.,, and C. Mouche`s. 2000. Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. Mol. Biol. Evol. 17:730737.
16. Feschotte, C.,, and C. Mouchès. 2000. Recent amplification of miniature inverted-repeat transposable elements in the vector mosquito Culex pipiens: characterization of the Mimo family. Gene 250:109116.
17. Feschotte, C.,, and S. R. Wessler. Mariner-like transposases are widespread and diverse in flowering plants. Proc. Natl. Acad. Sci. USA, in press.
18. Fraser, M. J.,, T. Ciszczon,, T. Elick,, and C. Bauser. 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol. Biol. 5:141151.
19. Gerber-Huber, S.,, D. Nardelli,, J. A. Haefliger,, D. N. Cooper,, F. Givel,, J. E. Germond,, J. Engel,, N. M. Green,, and W. Wahli. 1987. Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of a Xenopus vitellogenin gene. Nucleic Acids Res. 15:47374760.
20. Hartl, D. L.,, A. R. Lohe,, and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31:337358.
21. Hsia, A. P.,, and P. S. Schnable. 1996. DNA sequence analyses support the role of interrupted gap repair in the origin of internal deletions of the maize transposon, MuDR. Genetics 142: 603618.
22. Hua-Van, A.,, J. M. Daviere,, F. Kaper,, T. Langin,, and M. J. Daboussi. 2000. Genome organization in Fusariumoxysporum: clusters of class II transposons. Curr. Genet. 37: 339347.
23. Hummel, S.,, W. Meyerhof,, E. Korge,, and W. Knochel. 1984. Characterization of highly and moderately repetitive 500 bp EcoRI fragments from Xenopus laevis. Nucleic Acids Res. 12: 49214938.
24. Inagaki, Y.,, Y. Johzuka-Hisatomi,, T. Mori,, S. Takahashi,, Y. Hayakawa,, S. Peyachoknagul,, Y. Ozeki,, and S. Iida. 1999. Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226:181188.
25. Izsvák, Z.,, Z. Ivics,, N. Shimoda,, D. Mohn,, H. Okamoto,, and P. B. Hackett. 1999. Short inverted-repeat transposable elements in teleost fish and implications for a mechanism of their amplification. J. Mol. Evol. 48:1321.
26. Jarvik, T.,, and K. G. Lark. 1998. Characterization of Soymar1, a mariner element in soybean. Genetics 149:15691574.
27. Jiang, N.,, and S. R. Wessler. 2001. Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13: 25532564.
28. Jurka, J. 2000. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16:418420.
29. Kapitonov, V. V.,, and J. Jurka. 1999. Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:2737.
30. Kapitonov, V. V.,, and J. Jurka. 2001. Rolling-circle transposons in eukaryotes. Proc. Natl. Acad. Sci. USA 98:87148719.
31. Le, Q. H.,, K. Turcotte,, and T. Bureau. 2001. Tc8, a Tourist-like transposon in Caenorhabditis elegans. Genetics 158: 10811088.
32. Le, Q. H.,, S. Wright,, Z. Yu,, and T. Bureau. 2000. Transposon diversity in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:73767381.
33. Lepetit, D.,, S. Pasquet,, M. Olive,, N. Theze,, and P. Thiebaud. 2000. Glider and Vision: two new families of miniature inverted- repeat transposable elements in Xenopus laevis genome. Genetica 108:163169.
34. Luckhart, S.,, and R. Rosenberg. 1999. Gene structure and polymorphism of an invertebrate nitric oxide synthase gene. Gene 232:2534.
35. Mao, L.,, T. C. Wood,, Y. Yu,, M. A. Budiman,, J. Tomkins,, S. Woo,, M. Sasinowski,, G. Presting,, D. Frisch,, S. Goff,, R. A. Dean,, and R. A. Wing. 2000. Rice transposable elements: a survey of 73,000 sequence-tagged-connectors. Genome Res. 10:982990.
36. Masson, P.,, R. Surosky,, J. A. Kingsbury,, and N. V. Fedoroff. 1987. Genetic and molecular analysis of the Spm-dependent a-m2 alleles of the maize a locus. Genetics 117:117137.
37. Miller, W. J.,, A. Nagel,, J. Bachmann,, and L. Bachmann. 2000. Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. Mol. Biol. Evol. 17: 15971609.
38. Morgan, G. T. 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254:15.
39. Morgan, G. T.,, and K. M. Middleton. 1990. Short interspersed repeats from Xenopus that contain multiple octamer motifs are related to known transposable elements. Nucleic Acids Res. 18:57815786.
40. Oosumi, T.,, W. R. Belknap,, and B. Garlick. 1995. Mariner transposons in humans. Nature 378:672.
41. Oosumi, T.,, B. Garlick,, and W. R. Belknap. 1995. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 92:88868890.
42. Oosumi, T.,, B. Garlick,, and W. R. Belknap. 1996. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J. Mol. Evol. 43:1118.
43. Pozueta-Romero, J.,, G. Houlné,, and R. Schantz. 1996. Nonautonomous inverted repeat Alien transposable elements are associated with genes of both monocotyledonous and dicotyledonous plants. Gene 171:147153.
44. Rezsohazy, R.,, H. G. A. M. van Luenen,, R. M. Durbin,, and R. H. A. Plasterk. 1997. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 25:40484054.
45. Rio, A.,, P. Puigdomenech,, and J. M. Casacuberta. 1996. Mrs, a new subfamily of Tourist transposable elements. Plant Mol. Biol. 32:12211226.
46. Robertson, H. M.,, and K. L. Zumpano. 1997. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205:203217.
47. Rubin, E.,, and A. A. Levy. 1997. Abortive gap repair: underlying mechanism for Ds element formation. Mol. Cell. Biol. 17: 62946302.
48. Schlubiger, J.-L.,, J.-E. Germond,, B. ten Heggler,, and W. Wahli. 1985. The Vi element. A transposon-like repeated DNA sequence interspersed in the vitellogenin locus of Xenopus laevis. J. Mol. Biol. 186:491503.
49. Simmen, M. W.,, and A. Bird. 2000. Sequence analysis of transposable elements in the sea squirt, Ciona intestinalis. Mol. Biol. Evol. 17:16851694.
50. Smit, A. F. 1999. Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr. Opin. Genet. Dev. 9:657663.
51. Smit, A. F. A.,, and A. D. Riggs. 1996. Tiggers and DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93:14431448.
52. Song, W.-Y.,, L.-Y. Pi,, T. E. Bureau,, and P. C. Ronald. 1998. Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol. Gen. Genet. 258: 449456.
53. Surzycki, S. A.,, and W. R. Belknap. 1999. Characterization of repetitive DNA elements in Arabidopsis. J. Mol. Evol. 48: 684691.
54. Surzycki, S. A.,, and W. R. Belknap. 2000. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc. Natl. Acad. Sci. USA 97:245249.
55. Tarchini, R.,, P. Biddle,, R. Wineland,, S. Tingey,, and A. Rafalski. 2000. The complete sequence of 340 kb of DNA around the rice Adh1-adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381391.
56. Tu, Z. 2001. Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 98: 16991704.
57. Tu, Z. 2000. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 17:13131325.
58. Tu, Z. 1997. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 94: 74757480.
59. Tu, Z.,, and S. P. Orphanidis. 2001. Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): transposition without terminal inverted repeats. Mol. Biol. Evol. 18:893895.
60. Tudor, M.,, M. Lobocka,, M. Goodwell,, J. Pettitt,, and K. O’Hare. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232:126134.
61. Turcotte, K.,, S. Srinivasan,, and T. Bureau. 2001. Survey of transposable elements from rice genomic sequences. Plant J. 25:169179.
62. Unsal, K.,, and G. T. Morgan. 1995. A novel group of families of short interspersed repetitive elements (SINEs) in Xenopus: evidence of a specific target site for DNA-mediated transposition of inverted-repeat SINEs. J. Mol. Biol. 248:812823.
63. Walker, E. L.,, W. B. Eggleston,, D. Demopulos,, J. Kermicle,, and S. L. Dellaporta. 1997. Insertions of a novel class of transposable elements with a strong target site preference at the r locus of maize. Genetics 146:681693.
64. Wessler, S. R.,, T. E. Bureau,, and S. E. White. 1995. LTR retrotransposons and MITEs: important players in the evolution of plant genomes. Curr. Opin. Genet. Dev. 5:814821.
65. Yan, X.,, I. M. Martinez-Ferez,, S. Kavchok,, and H. K. Dooner. 1999. Origination of Ds elements from Ac elements in maize: evidence for rare repair synthesis at the site of Ac excision. Genetics 152:17331740.
66. Yeadon, P. J.,, and D. E. Catcheside. 1995. Guest: a 98 bp inverted repeat transposable element in Neurospora crassa. Mol. Gen. Genet. 247:105109.
67. Zhang, Q.,, J. Arbuckle,, and S. R. Wessler. 2000. Recent, extensive and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker (Hbr) into genic regions of maize. Proc. Natl. Acad. Sci. USA 97:11601165.
68. Zhang, X.,, C. Feschotte,, Q. Zhang,, N. Jiang,, W. B. Eggleston,, and S. R. Wessler. 2001. P Instability Factor: an active maize transposon system associated with the amplification of Tourist- like MITEs and a new superfamily of transposases. Proc. Natl. Acad. Sci. USA 98:1257212577.

Tables

Generic image for table
Table 1

Classification of MITEs

Citation: Feschotte C, Zhang X, Wessler S. 2002. Miniature Inverted-Repeat Transposable Elements and Their Relationship to Established DNA Transposons, p 1147-1158. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch50

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error