1887

Chapter 1 : Overview of the Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Overview of the Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap01-2.gif

Abstract:

This chapter summarizes the most important findings on bacterial virulence factors and mechanisms of infection. Gastric infection by the gram-negative bacterium is associated with a number of clinical outcomes including gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and adenocarcinoma of the stomach. A number of gram-negative pathogenic bacteria have evolved specialized systems for the delivery of virulence factors directly into the host cytosol. One such system is the type III secretion system, in which bacterial proteins lacking a typical signal sequence are secreted directly from the bacteria into the cytosol of infected cells. Recent studies of the role of the locus for enterocyte effacement (LEE)-encoded secreted proteins in enteropathogenic (EPEC) pathogenesis have demonstrated the potential involvement of EspA, EspB, and EspD as structural components of the secretion apparatus. The invasion plasmid antigens (Ipa proteins) orchestrate the cytoskeletal rearrangements necessary for bacterial entry. These proteins also direct many of the other virulence properties of , including escape from the phagocytic vacuole and induction of apoptosis of macrophages and resulting inflammation. Apoptosis is normally viewed as an immunologically silent cell death process unaccompanied by inflammation. However, this is clearly not the case for the caspase-1-dependent apoptosis induced by . Obligate intracellular bacterial pathogens like , , and species are less well characterized than facultative intracellular pathogens. Finally, the chapter discusses recent progress in understanding the cell biology of infections.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1

Key Concept Ranking

Toxic Shock Syndrome Toxin 1
0.49060702
Bacterial Proteins
0.45628133
0.49060702
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model of type IV-mediated secretion of the virulence protein, CagA, into the eukaryotic cytosol by . (A and B) CagA is translocated into the host cytosol by the type IV secretion system (A), where it becomes phosphorylated on tyrosine residues by a host tyrosine kinase (B). (C) Phosphorylated CagA triggers cytoskeletal rearrangements, leading to pedestal formation. Reproduced from with permission of the National Academy of Sciences.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Electron micrograph of the type III secretion apparatus from . A negative stain of osmotically shocked is shown. Arrows point to type III secretons on the surface of the bacteria. The inset shows an individual secreton at higher magnification, revealing the tripartite nature of the apparatus: needle, neck, and bulb domains are clearly visible. Adapted from with permission of The Rockefeller University Press.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The intracellular life cycle (A) and virulence gene cluster (B) of (A) enters mammalian cells through interaction of the surface proteins InlA, InlB, and p60 with mammalian cell receptors. The phagosome is lysed by the action of the pore-forming cytolysin LLO and a phosphatidylinositol-specific phospholipase C (PlcA), and the cytosolic bacteria induce the polymerization of host cell actin filaments by their surface protein ActA. Moving bacteria induce the formation of protrusions, which invade neighboring cells. The secondary vacuole is lysed by the action of LLO and a lecithinase (PlcB). (B) Virulence gene cluster, containing the genes (encoding the positive regulatory factor A), (PlcA), (LLO), (encoding a metalloprotease involved in PlcB maturation), (ActA), and (PlcB). Reproduced from with permission of Plenum Press.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

phagosome maturation arrest. Accumulation of Rab5 and TfR demonstrates the early endosomal characteristic of the vacuole. The late endosomal markers Rab7, Lamp-1, Lamp-2, and M6PR are largely absent from the vacuole. Delivery of the proton pumping ATPase to the vacuole is also inhibited. Rab proteins control membrane trafficking within endosomal compartments. Rab5, endocytosis and fusion between early endosomes; Rab7, late endosome and mature phagosomes; Mtb, ; TfR, transferrin receptor; Lamp-1/2, glycoproteins; M6PR, mannose-6-phosphate receptor.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model for the molecular basis of interaction with Schwann cells. binds to the LNα2G domain of laminin-2. α-Dystroglycan forms a bridge between laminin-2 and the membrane protein β-dystroglycan, which could act as a signaling receptor by its connections to the actin cytoskeleton. Reproduced from with permission of Elsevier Science.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Diagram of the developmental cycle of . The small, dark structures represent infectious elementary bodies (EBs). The larger, grey structures represent replicative reticulate bodies (RBs). Reproduced from with permission of Elsevier Science.

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817978.chap1
1. Aktories, K. 1997. Bacterial toxins that target Rho proteins. J. Clin. Investig. 99:827829.
2. Arruda, S.,, G. Bomfim,, R. Knights,, T. Huima-Byron,, and L. W. Riley. 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:14541457.
3. Asahi, M.,, T. Azuma,, S. Ito,, Y. Ito,, H. Suto,, Y. Nagai,, M. Tsubokawa,, Y. Tohyama,, S. Maeda,, M. Omata,, T. Suzuki,, and C. Sasakawa. 2000. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191:593602.
4. Bannantine, J. P.,, R. S. Griffiths,, W. Viratyosin,, W. J. Brown,, and D. D. Rockey. 2000. A secondary structure motif predictive of protein localization to the chlamydial inclusion membrane. Cell. Microbiol. 2:3547.
5. Beatty, W. L.,, G. I. Byrne,, and R. P. Morrison. 1994. Repeated and persistent infection with Chlamydia and the development of chronic inflammation and disease. Trends Microbiol. 2:9498.
6. Bernardini, M. L.,, J. Mounier,, H. d’Hauteville,, M. Coquis- Rondon,, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intraand intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86:38673871.
7. Beuzón, C. R.,, G. Banks,, J. Deiwick,, M. Hensel,, and D. W. Holden. 1999. pH-dependent secretion of SseB, a product of the SPI-2 type III secretion system of Salmonella typhimurium. Mol. Microbiol. 33:806816.
8. Beuzón, C. R.,, S. Méresse,, K. E. Unsworth,, J. Ruiz-Albert,, S. Garvis,, S. Waterman,, T. A. Ryder,, E. Boucrot,, and D. W. Holden. 2000. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19:32353249.
9. Bliska, J. B. 2000. Yop effectors of Yersinia spp. and actin rearrangements. Trends Microbiol. 8:205208.
10. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. J. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147:683693.
11. Bourdet-Sicard, R.,, M. Rudiger,, B. M. Jockusch,, P. Gounon,, P. J. Sansonetti,, and G. T. Nhieu. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18:58535862.
12. Braun, L.,, B. Ghebrehiwet,, and P. Cossart. 2000. gC1q-R/ p32, a C1q-binding protein, is a novel receptor for Listeria monocytogenes. EMBO J. 19:14581466.
13. Burns, D. L. 1999. Biochemistry of type IV secretion. Curr. Opin. Microbiol. 2:2529.
14. Celli, J.,, W. Deng,, and B. B. Finlay. 2000. Enteropathogenic Escherichia coli (EPEC) attachment to epithelial cells: exploiting the host cell cytoskeleton from the outside. Cell. Microbiol. 2: 19.
15. Censini, S.,, C. Lange,, Z. Xiang,, J. E. Crabtree,, P. Ghiara,, M. Borodovsky,, R. Rappuoli,, and A. Covacci. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc. Natl. Acad. Sci. USA 93:1464814653.
16. Chen, Y.,, M. R. Smith,, K. Thirumalai,, and A. Zychlinsky. 1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15:38533860.
17. Cleary, P.,, and D. Retnoningrum. 1994. Group A streptococcal immunoglobulin-binding proteins: adhesins, molecular mimicry or sensory proteins? Trends Microbiol. 2:131136.
18. Clerc, P.,, A. Ryter,, J. Mounier,, and P. J. Sansonetti. 1987. Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect. Immun. 55:521527.
19. Cole, S. T.,, R. Brosch,, J. Parkhill, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
20. Cornelis, G. R.,, A. Boland,, A. P. Boyd,, C. Geuijen,, M. Iriarte,, C. Neyt,, M. P. Sory,, and I. Stainier. 1998 The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62:13151352.
21. Cornelis, G. R.,, and H. Wolf-Watz. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23:861867.
22. Cossart, P.,, and M. Lecuit. 1998. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 17:37973806.
23. Covacci, A.,, and R. Rappuoli. 2000. Tyrosine-phosphorylated bacterial proteins: Trojan horses for the host cell. J. Exp. Med. 191: 587592.
24. de Bernard, M.,, M. Moschioni,, G. Napolitani,, R. Rappuoli,, and C. Montecucco. 2000. The VacA toxin of Helicobacter pylori identifies a new intermediate filament-interacting protein. EMBO J. 19:4856.
25. Deretic, V.,, and R. A. Fratti. 1999. Mycobacterium tuberculosis phagosome. Mol. Microbiol. 31:16031609.
26. DeVinney, R.,, A. Gauthier,, A. Abe,, and B. B. Finlay. 1999. Enteropathogenic Escherichia coli: a pathogen that inserts its own receptor into host cells. Cell. Mol. Life Sci. 55:961976.
27. Dinges, M. M.,, P. M. Orwin,, and P. M. Schlievert. 2000. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13:1634.
28. Eaton, K. A.,, C. L. Brooks,, D. R. Morgan,, and S. Krakowka. 1991. Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun. 59:24702475.
29. Ebel, F.,, C. von Eichel-Streiber,, M. Rohde,, and T. Chakraborty. 1998. Small GTP-binding proteins of the Rho- and Rassubfamilies are not involved in the actin rearrangements induced by attaching and effacing Escherichia coli. FEMS Microbiol. Lett. 163:107112.
30. Ehlers, M. R.,, and M. Daffe. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 6:328335.
31. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136169.
32. Frankel, G.,, A. D. Phillips,, I. Rosenshine,, G. Dougan,, J. B. Kaper,, and S. Knutton. 1998. Enteropathogenic and enterohaemorrhagic Escherichia coli: more subversive elements. Mol. Microbiol. 30:911921.
33. Fu, Y.,, and J. E. Galán. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293297.
34. Galán, J. E. 1996. Molecular genetic bases of Salmonella entry into host cells. Mol. Microbiol. 20:263271.
35. Galán, J. E. 1999. Interaction of Salmonella with host cells through the centisome 63 type III secretion system. Curr. Opin. Microbiol. 2:4650.
36. Galán, J. E.,, and R. D. Curtiss. 1989. Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc. Natl. Acad. Sci. USA 86:63836387.
37. Garcia-del Portillo, F.,, M. B. Zwick,, K. Y. Leung,, and B. B. Finlay. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. USA 90:1054410548.
38. Ghayur, T.,, S. Banerjee,, M. Hugunin,, D. Butler,, L. Herzog,, A. Carter,, L. Quintal,, L. Sekut,, R. Talanian,, M. Paskind,, W. Wong,, R. Kamen,, D. Tracey,, and H. Allen. 1997. Caspase-1 processes IFN-γ-inducing factor and regulates LPS-induced IFN- production. Nature 386:619623.
39. Goebel, W.,, and M. Kuhn. 2000. Bacterial replication in the host cell cytosol. Curr. Opin. Microbiol. 3:4953.
40. Hacker, J.,, G. Blum-Oehler,, I. Mühldorfer,, and H. Tschäpe. 1997. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23:10891097.
41. Hackstadt, T.,, E. R. Fischer,, M. A. Scidmore,, D. D. Rockey,, and R. A. Heinzen. 1997. Origins and functions of the chlamydial inclusion. Trends Microbiol. 5:288293.
42. Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509514.
43. Harada, A.,, N. Sekido,, T. Akahoshi,, Y. Wada,, N. Mukaida,, and K. Matsushima. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammation. J. Leukoc. Biol. 56:559564.
44. Hardt, W. D.,, L. M. Chen,, K. E. Schuebel,, X. R. Bustelo,, and J. E. Galán. 1998. S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93:815826.
45. Hardt, W. D.,, H. Urlaub,, and J. E. Galán. 1998. A substrate of the centisome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc. Natl. Acad. Sci. USA 95:25742579.
46. Hayward, R. D.,, and V. Koronakis. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18:49264934.
47. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
48. Herrington, D. A.,, R. H. Hall,, G. Losonsky,, J. J. Mekalanos,, R. K. Taylor,, and M. M. Levine. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J. Exp. Med. 168:14871492.
49. Hilbi, H.,, J. E. Moss,, D. Hersh,, Y. Chen,, J. Arondel,, S. Banerjee,, R. A. Flavell,, J. Yuan,, P. J. Sansonetti,, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273:3289532900.
50. Hobbie, S.,, L. M. Chen,, R. J. Davis,, and J. E. Galan. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. J. Immunol. 159:55505559.
51. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:379433.
52. Ireton, K.,, B. Payrastre,, H. Chap,, W. Ogawa,, H. Sakaue,, M. Kasuga,, and P. Cossart. 1996. A role for phosphoinositide 3-kinase in bacterial invasion. Science 274:780782.
53. Johnson, E. A. 1999. Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins. Annu. Rev. Microbiol. 53:551575.
54. Kalman, D.,, O. D. Weiner,, D. L. Goosney,, J. W. Sedat,, B. B. Finlay,, A. Abo,, and J. M. Bishop. 1999. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell. Biol. 1:389391.
55. Kalman, S.,, W. Mitchell,, R. Marathe,, C. Lammel,, J. Fan,, R. W. Hyman,, L. Olinger,, J. Grimwood,, R. W. Davis,, and R. S. Stephens. 1999. Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat. Genet. 21:385389.
56. Kenny, B.,, R. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511520.
57. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17:21662176.
58. Krakauer, T. 1999. Immune response to staphylococcal superantigens. Immunol. Res. 20:163173.
59. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara- Tejero,, A. Sukhan,, J. E. Galan,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602605.
60. Kuhn, M.,, and W. Goebel,. 1999. Pathogenesis of Listeria monocytogenes, p. 97130. In E. T. Ryser, and E. H. Marth (ed.), Listeria, Listeriosis, and Food Safety, 2nd ed. Marcel Dekker, Inc., New York, N.Y.
61. Kuhn, M.,, and W. Goebel. 2000. Internalization of Listeria monocytogenes by nonprofessional and professional phagocytes. Subcell. Biochem. 33:411436.
62. Ladant, D.,, and A. Ullmann. 1999. Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol. 7:172176.
63. Lecuit, M.,, S. Dramsi,, C. Gottardi,, M. Fedor-Chaiken,, B. Gumbiner,, and P. Cossart. 1999. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J. 18:39563963.
64. Lesser, C. F.,, C. A. Scherer,, and S. I. Miller. 2000. Rac, ruffle and Rho: orchestration of Salmonella invasion. Trends Microbiol. 8:151152.
65. Liu, H. H. 1999. Antibiotic resistance in bacteria. A current and future problem. Adv. Exp. Med. Biol. 455:387396.
66. Matsumoto, A. 1982. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J. Bacteriol. 150:358364.
67. McDaniel, T. K.,, and J. B. Kaper. 1997. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol. Microbiol. 23:399407.
68. Ménard, R.,, P. J. Sansonetti,, and C. Parsot. 1994. The secretion of the Shigella flexneri Ipa invasins is induced by epithelial cells and controlled by IpaB and IpaD. EMBO J. 13:52935302.
69. Ménard, R.,, P. J. Sansonetti,, C. Parsot,, and T. Vasselon. 1994. Extracellular association and cytoplasmic partitioning of the IpaB and ipaC invasins of Shigella flexneri. Cell 79:515525.
70. Mengaud, J.,, H. Ohayon,, P. Gounon,, R.-M. Mege,, and P. Cossart. 1996. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923932.
71. Mills, S. D.,, A. Boland,, M. P. Sory,, P. van der Smissen,, C. Kerbourch,, B. B. Finlay,, and G. R. Cornelis. 1997. Yersinia enterocolitica induces apoptosis in macrophages by a process requiring functional type III secretion and translocation mechanisms and involving YopP, presumably acting as an effector protein. Proc. Natl. Acad. Sci. USA 94:1263812643.
72. Monack, D. M.,, J. Mecsas,, N. Ghori,, and S. Falkow. 1997. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc. Natl. Acad. Sci. USA 94:1038510390.
73. Moon, H. W.,, S. C. Whipp,, R. A. Argenzio,, M. M. Levine,, and R. A. Giannella. 1983. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect. Immun. 41:13401351.
74. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55:143190.
75. Nassif, X.,, C. Pujol,, P. Morand,, and E. Eugene. 1999. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol. Microbiol. 32:11241132.
76. Naumann, M.,, S. Wessler,, C. Bartsch,, B. Wieland,, A. Covacci,, R. Haas,, and T. F. Meyer. 1999. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J. Biol. Chem. 274:3165531662.
77. Niebuhr, K.,, N. Jouihri,, A. Allaoui,, P. Guonon,, P. J. Sansonetti,, and C. Parsot. 2000. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38:819.
78. Nordstrand, A.,, A. G. Barbour,, and S. Bergström. 2000. Borrelia pathogenesis research in the post-genomic and post-vaccine era. Curr. Opin. Microbiol. 3:8692.
79. Ochman, H.,, F. C. Soncini,, F. Solomon,, and E. A. Groisman. 1996. Identification of a pathogenicity island required for Sal monella survival in host cells. Proc. Natl. Acad. Sci. USA 93:78007804.
80. Odenbreit, S.,, J. Puls,, B. Sedlmaier,, E. Gerland,, W. Fischer,, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287:14971500.
81. Orth, K.,, L. E. Palmer,, Z. Q. Bao,, S. Stewart,, A. E. Rudolph,, J. B. Bliska,, and J. E. Dixon. 1999. Inhibition of the mitogenactivated protein kinase kinase superfamily by a Yersinia effector. Science 285:19201923.
82. Palmer, L. E.,, S. Hobbie,, J. E. Galan,, and J. B. Bliska. 1998. YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNF-α production and downregulation of the MAP kinases p38 and JNK. Mol. Microbiol. 27:953965.
83. Parsonnet, J.,, G. D. Friedman,, N. Orentreich,, and H. Vogelman. 1997. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40:297301.
84. Passador, L.,, and W. Iglewski. 1994. ADP-ribosylating toxins. Methods Enzymol. 235:617631.
85. Paton, J. C.,, P. W. Andrew,, G. J. Boulnois,, and T. J. Mitchell. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. Annu. Rev. Microbiol. 47:89115.
86. Persson, C.,, R. Nordfelth,, A. Holmstrom,, S. Hakansson,, R. Rosqvist,, and H. Wolf-Watz. 1995. Cell-surface-bound Yersinia translocate the protein tyrosine phosphatase YopH by a polarized mechanism into the target cell. Mol. Microbiol. 18:135150.
87. Pfeuffer, T.,, W. Goebel,, J. Laubinger,, M. Bachmann,, and M. Kuhn. 2000. LaXp180, a mammalian ActA-binding protein, identified with the yeast two-hybrid system colocalizes with intracellular Listeria monocytogenes. Cell. Microbiol. 2:101114.
88. Rambukkana, A. 2000. How does Mycobacterium leprae target the peripheral nervous system? Trends Microbiol. 8:2328.
89. Rambukkana, A.,, J. L. Salzer,, P. D. Yurchenco,, and E. I. Tuomanen. 1997. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin-α2 chain. Cell 88:811821.
90. Rambukkana, A.,, H. Yamada,, G. Zanazzi,, T. Mathus,, J. L. Salzer,, P. D. Yurchenco,, K. P. Campbell,, and V. A. Fischetti. 1998. Role of α-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282:20762079.
91. Ripio, M. T.,, K. Brehm,, M. Lara,, M. Suarez,, and J. A. Vazquez- Boland. 1997. Glucose-1-phosphate utilization by Listeria monocytogenes is PrfA dependent and coordinately expressed with virulence factors. J. Bacteriol. 179:71747180.
92. Rosenshine, I.,, M. S. Donnenberg,, J. B. Kaper,, and B. B. Finlay. 1992. Signal transduction between enteropathogenic Escherichia coli (EPEC) and epithelial cells: EPEC induces tyrosine phosphorylation of host cell proteins to initiate cytoskeletal rearrangement and bacterial uptake. EMBO J. 11:35513560.
93. Rouquette, C.,, C. de Chastellier,, S. Nair,, and P. Berche. 1998. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol. Microbiol. 27:12351245.
94. Rouquette, C.,, M. T. Ripio,, E. Pellegrini,, J. M. Bolla,, R. I. Tascon,, J.-A. Vazquez-Boland,, and P. Berche. 1996. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol. Microbiol. 21:977987.
95. Ruckdeschel, K.,, S. Harb,, A. Roggenkamp,, M. Hornef,, R. Zumbihl,, S. Köhler,, J. Heesemann,, and B. Rouot. 1998. Yersinia enterocolitica impairs activation of transcription factor NF-κB: involvement in the induction of programmed cell death and in the suppression of the macrophage tumor necrosis factor alpha production. J. Exp. Med. 187:10691079.
96. Ruckdeschel, K.,, J. Machold,, A. Roggenkamp,, S. Schubert,, J. Pierre,, R. Zumbihl,, J. P. Liautard,, J. Heesemann,, and B. Rouot. 1997. Yersinia enterocolitica promotes deactivation of macrophage mitogen-activated protein kinases extracellular signalregulated kinase-1 /2, p38, and c-Jun NH2-terminal kinase. Correlation with its inhibitory effect on tumor necrosis factoralpha production. J. Biol. Chem. 272:1592015927.
97. Sansonetti, P. J. 1991. Genetic and molecular basis of epithelial cell invasion by Shigella species. Rev. Infect. Dis. 13:S285S292.
98. Sansonetti, P. J.,, A. Phalipon,, J. Arondel,, K. Thirumalai,, S. Banerjee,, K. Takeda,, and A. Zychlinsky. 2000. Caspase-1 activation of IL-1β and IL-18 are essential for Shigella flexneri induced inflammation. Immunity 12:581590.
99. Sansonetti, P. J.,, G. Tran Van Nhieu,, and E. Egile. 1999. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin. Infect. Dis. 28:466475.
100. Satin, B.,, G. Del Giudice,, V. Della Bianca,, S. Dusi,, C. Laudanna,, F. Tonello,, D. Kelleher,, R. Rappuoli,, C. Montecucco,, and F. Rossi. 2000. The neutrophil-activating protein (HP-NAP) of Helicobacter pylori is a protective antigen and a major virulence factor. J. Exp. Med. 191:14671476.
101. Schesser, K.,, A. K. Spiik,, J. M. Dukuzumuremyi,, M. F. Neurath,, S. Pettersson,, and H. Wolf-Watz. 1998. The yopJ locus is required for Yersinia-mediated inhibition of NF- κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28:10671079.
102. Segal, E. D.,, J. Cha,, J. Lo,, S. Falkow,, and L. S. Tompkins. 1999. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 96:1455914564.
103. Segal, E. D.,, S. Falkow,, and L. S. Tompkins. 1996. Helicobacter pylori attachment to gastric cells induces cytoskeletal rearrangements and tyrosine phosphorylation of host cell proteins. Proc. Natl. Acad. Sci. USA 93:12591264.
104. Segal, E. D.,, C. Lange,, A. Covacci,, L. S. Tompkins,, and S. Falkow. 1997. Induction of host signal transduction pathways by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 94:75957599.
105. Shea, J. E.,, M. Hensel,, C. Gleeson,, and D. W. Holden. 1996. Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 93:25932597.
106. Shimoji, Y.,, V. Ng,, K. Matsumura,, V. A. Fischetti,, and A. Rambukkana. 1999. A 21-kDa surface protein of Mycobacterium leprae binds peripheral nerve laminin-2 and mediates Schwann cell invasion. Proc. Natl. Acad. Sci. USA 96:98579862.
107. Silverman, D. J.,, L. A. Santucci,, N. Meyers,, and Z. Sekeyova. 1992. Penetration of host cells by Rickettsia rickettsii appears to be mediated by a phospholipase of rickettsial origin. Infect. Immun. 60:27332740.
108. Skrzypek, E.,, C. Cowan,, and S. C. Straley. 1998. Targeting of the Yersinia pestis YopM protein into HeLa cells and intracellular trafficking to the nucleus. Mol. Microbiol. 30:10511065.
109. Sory, M. P.,, and G. R. Cornelis. 1994. Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol. Microbiol. 14:583594.
110. Stein, M. A.,, K. Y. Leung,, M. Zwick,, F. Garcia-del Portillo,, and B. B. Finlay. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151164.
111. Stein, M.,, R. Rappuoli,, and A. Covacci. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97:12631268.
112. Stephens, R. S. 1994. Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells. Trends Microbiol. 2:99101.
113. Stevens, D. L. 1997. The toxins of group A streptococcus, the flesh eating bacteria. Immunol. Invest. 26:129150.
114. Sturgill-Koszycki, S.,, P. H. Schlesinger,, P. Chakraborty,, P. L. Haddix,, H. L. Collins,, A. K. Fok,, R. D. Allen,, S. L. Gluck,, J. Heuser,, and D. G. Russell. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton- ATPase. Science 263:678681.
115. Tan, M. W.,, and F. M. Ausubel. 2000. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol. 3:2934.
116. Todd, W. J.,, and H. D. Caldwell. 1985. The interaction of Chlamydia trachomatis with host cells: ultrastructural studies of the mechanism of release of a biovar II strain from HeLa 229 cells. J. Infect. Dis. 151:10371044.
117. Tomb, J. F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, J. C. Venter, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
118. Tran Van Nhieu, G.,, A. Ben-Ze’ev,, and P. J. Sansonetti. 1997. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16:27172729.
119. Tran Van Nhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18:32493262.
120. Uchiya, K.,, M. A. Barbieri,, K. Funato,, A. H. Shah,, P. D. Stahl,, and E. A. Groisman. 1999. A Salmonella virulence protein that inhibits cellular trafficking. EMBO J. 18:39243933.
121. Via, L. E.,, D. Deretic,, R. J. Ulmer,, N. S. Hibler,, L. A. Huber,, and V. Deretic. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272:1332613331.
122. Vogel, J. P.,, and R. R. Isberg. 1999. Cell biology of Legionella pneumophilia. Curr. Opin. Microbiol. 2:3034.
123. Wachter, C.,, C. Beinke,, M. Mattes,, and M. A. Schmidt. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 31: 16951707.
124. Weinstock, G. M.,, J. M. Hardham,, M. P. McLeod,, E. J. Sodergren,, and S. J. Norris. 1998. The genome of Treponema pallidum: new light on the agent of syphilis. FEMS Micriobiol. Rev. 22:323332.
125. Wood, M. W.,, M. A. Jones,, P. R. Watson,, S. Hedges,, T. S. Wallis,, and E. E. Galyov. 1998. Identification of a pathogenicity island required for Salmonella enteropathogenicity. Mol. Microbiol. 29:883891.
126. Wooldridge, K. G.,, and J. M. Ketley. 1997. Campylobacter-host cell interactions. Trends Microbiol. 5:96102.
127. Zhang, J. P.,, and R. S. Stephens. 1992. Mechanism of C. trachomatis attachment to eukaryotic host cell. Cell 69:861869.
128. Zhou, D.,, M. S. Mooseker,, and J. E. Galan. 1999. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283:20922095.
129. Zumbihl, R.,, M. Aepfelbacher,, A. Andor,, C. A. Jacobi,, K. Ruckdeschel,, B. Rouot,, and J. Heesemann. 1999. The cytotoxin YopT of Yersinia enterocolitica induces modification and cellular redistribution of the small GTP-binding protein RhoA. J. Biol. Chem. 274:2928929293.
130. Zychlinsky, A.,, C. Fitting,, J. N. Cavaillon,, and P. J. Sansonetti. 1994. Interleukin 1 is released by macrophages during apoptosis induced by Shigella flexneri. J. Clin. Investig. 94:13281332.
131. Zychlinsky, A.,, B. Kenny,, R. Ménard,, M. C. Prevost,, I. B. Holland,, and P. J. Sansonetti. 1994. IpaB mediates macrophage apoptosis induced by Shigella flexneri. Mol. Microbiol. 11:619627.
132. Zychlinsky, A.,, M.-C. Prévost,, and P. J. Sansonetti. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167169.

Tables

Generic image for table
Table 1

Some characteristics of gram-negative human pathogens

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Generic image for table
Table 2

Some characteristics of gram-positive human pathogens

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1
Generic image for table
Table 3

Some characteristics of spirochetal human pathogens

Citation: Kuhn M, Goebel W, Philpott D, Sansonetti P. 2002. Overview of the Bacterial Pathogens, p 3-23. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error