1887

Chapter 10 : Innate Immunity and Fungal Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Innate Immunity and Fungal Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap10-2.gif

Abstract:

Innate immunity is central to host defense against fungi. For many types of fungal infections, innate immunity is solely responsible for host defense. However, even for fungal infections that require an adaptive immune response for clearance, innate immunity plays a key role in the effective development of adaptive immunity. Several broad effector mechanisms are induced early to combat a fungal infection. Complement, mannose binding protein (MBP), and surfactant proteins promote initial recognition (opsonization) of fungi. The complement pathways are an essential part of the innate response to fungi. Opsonization can also be mediated by MBP via recognition and binding to complex carbohydrates (e.g., D-mannose and N-acetylglucosamine) on fungal surfaces. During pulmonary infections, surfactant proteins may also opsonize fungi and participate in host defense. The cells of the innate immune system possess many immunoregulatory functions, along with potent antifungal effector mechanisms that can be activated by adaptive immunity. The cells of the innate immune system rapidly release cytokines in response to fungal products and binding of opsonized fungi. Fungal infections induce the production of both C-C and C-X-C chemokines. Dendritic cells are the most effective antigen-presenting cells (APC) for stimulating naive T cells and are probably key APC in initiating Th1-type cellmediated immunity against fungi. Fungal virulence factors and secreted or shed fungal products can interfere with a number of innate mechanisms, resulting in a dynamic interaction between microbe and host.

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10

Key Concept Ranking

Major Histocompatibility Complex Class II
0.42421108
0.42421108
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Functions and interplay of innate and adaptive immunity.

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Cytokine networks in the innate response to that promote adaptive T1-cell-mediated immunity. This is a working model of early signal generation in response to pulmonary infection. The solid arrows represent information proven experimentally, whereas the dashed arrows represent hypothesized interactions. IL-18, IL-1, and MIP-1α, which also drive Th1 responses to , are not included here.

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817978.chap10
1. Allendoerfer, R.,, and G. S. J. Deepe. 1997. Intrapulmonary response to Histoplasma capsulatum in gamma interferon knockout mice. Infect. Immun. 65:25642569.
2. Allendoerfer, R.,, and G. S. J. Deepe. 1998. Blockade of endogenous TNF-alpha exacerbates primary and secondary pulmonary histoplasmosis by differential mechanisms. J. Immunol. 160:60726082.
3. Aratani, Y.,, H. Koyama,, S. Nyui,, K. Suzuki,, F. Kura,, and N. Maeda. 1999. Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect. Immun. 67:18281836.
4. Balish, E.,, R. D. Wagner,, A. Vazquez-Torres,, C. Pierson,, and T. Warner. 1998. Candidiasis in interferon-gamma knockout (IFNgamma −/−) mice. J. Infect. Dis. 178:478487.
5. Cain, J. A.,, and G. S. J. Deepe. 1998. Evolution of the primary immune response to Histoplasma capsulatum in murine lung. Infect. Immun. 66:14731481.
6. Casadevall, A.,, and J. R. Perfect. 1998. Cryptococcus neoformans, p. 177222. American Society for Microbiology, Washington, D.C.
7. Cenci, E.,, A. Mencacci,, G. Del Sero,, A. Bacci,, C. Montagnoli,, C. F. d’Ostiani,, P. Mosci,, M. Bachmann,, F. Bistoni,, M. Kopf,, and L. Romani. 1999. Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type 1 responses. J. Infect. Dis. 180:19571968.
8. Cenci, E.,, A. Mencacci,, G. Del Sero,, C. F. d’Ostiani,, P. Mosci,, A. Bacci,, C. Montagnoli,, M. Kopf,, and L. Romani. 1998. IFNgamma is required for IL-12 responsiveness in mice with Candida albicans infection. J. Immunol. 161:35433550.
9. Cenci, E.,, A. Mencacci,, R. Spaccapelo,, L. Tonnetti,, P. Mosci,, K. H. Enssle,, P. Puccetti,, L. Romani,, and F. Bistoni. 1995. T helper cell type 1 (Th1) and Th2-like responses are present in mice with gastric candidiasis but protective immunity is associated with Th1 development. J. Infect. Dis. 171:12791288.
10. Cenci, E.,, S. Perito,, K. H. Enssle,, P. Mosci,, J. P. Latge,, L. Romani,, and F. Bistoni. 1997. Th1 and Th2 cytokines in mice with invasive aspergillosis. Infect. Immun. 65:564570.
11. Cenci, E.,, L. Romani,, A. Mencacci,, R. Spaccapelo,, E. Schiaffella,, P. Puccetti,, and F. Bistoni. 1993. Interleukin-4 and interleukin- 10 inhibit nitric oxide-dependent macrophage killing of Candida albicans. Eur. J. Immunol. 23:10341038.
12. Chen, G. H.,, J. L. Curtis,, C. H. Mody,, P. J. Christensen,, L. R. Armstrong,, and G. B. Toews. 1994. Effect of granulocytemacrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J. Immunol. 152:724734.
13. Chen, W.,, E. A. Havell,, and A. G. Harmsen. 1992. Importance of endogenous tumor necrosis factor alpha and gamma interferon in host resistance against Pneumocystis carinii infection. Infect. Immun. 60:12791284.
14. Collins, H. L.,, and G. J. Bancroft. 1991. Encapsulation of Cryptococcus neoformans impairs antigen-specific T-cell responses. Infect. Immun. 59:38833888.
15. Cross, C. E.,, and G. J. Bancroft. 1995. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and β-glucan receptors, resulting in cytokine production and enhanced phagocytosis of the encapsulated form. Infect. Immun. 63:26042611.
16. Cross, C. E.,, H. L. Collins,, and G. J. Bancroft. 1997. CR3- dependent phagocytosis by murine macrophages: different cytokines regulate ingestion of a defined CR3 ligand and complement-opsonized Cryptococcus neoformans. Immunology 91:289296.
17. Decken, K.,, G. Kohler,, K. Palmer-Lehmann,, A. Wunderlin,, F. Mattner,, J. Magram,, M. K. Gately,, and G. Alber. 1998. Interleukin- 12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect. Immun. 66:49945000.
18. Del Sero, G.,, A. Mencacci,, E. Cenci,, C. F. d’Ostiani,, C. Montagnoli,, A. Bacci,, P. Mosci,, M. Kopf,, and L. Romani. 1999. Antifungal type 1 responses are upregulated in IL-10-deficient mice. Microbes Infect. 1:11691180.
19. Dong, Z. M.,, and J. W. Murphy. 1996. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J. Clin. Investig. 97:689698.
20. Doyle, H. A.,, and J. W. Murphy. 1997. MIP-1 alpha contributes to the anticryptococcal delayed-type hypersensitivity reaction and protection against Cryptococcus neoformans. J. Leukoc. Biol. 61:147155.
21. Doyle, H. A.,, and J. W. Murphy. 1999. Role of the C-C chemokine, TCA3, in the protective anticryptococcal cell-mediated immune response. J. Immunol. 162:48244833.
22. Greenfield, R. A.,, V. L. Abrams,, D. L. Crawford,, and T. L. Kuhls. 1993. Effect of abrogation of natural killer cell activity on the course of candidiasis induced by intraperitoneal administration and gastrointestinal candidiasis in mice with severe combined immunodeficiency. Infect. Immun. 61:25202525.
23. Gross, N. T.,, K. Nessa,, P. Camner,, and C. Jarstrand. 1999. Production of nitric oxide by rat alveolar macrophages stimulated by Cryptococcus neoformans or Aspergillus fumigatus. Med. Mycol. 37:151157.
24. Gu, L.,, S. Tseng,, R. M. Hornoer,, C. Tam,, M. Loda,, and B. J. Rollins. 2000. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407411.
25. Hoag, K. A.,, M. F. Lipscomb,, A. A. Izzo,, and N. E. Street. 1997. IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant CB-17 mice. Am. J. Respir. Cell Mol. Biol. 17:733739.
26. Huffnagle, G. B.,, G. H. Chen,, J. L. Curtis,, R. A. McDonald,, R. M. Strieter,, and G. B. Toews. 1995a. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J. Immunol. 155:35073516.
27. Huffnagle, G. B.,, R. M. Strieter,, L. K. McNeil,, R. A. McDonald,, M. D. Burdick,, S. L. Kunkel,, and G. B. Toews. 1997. Macrophage inflammatory protein-1α (MIP-1α) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J. Immunol. 159:318327.
28. Huffnagle, G. B.,, R. M. Strieter,, T. J. Standiford,, R. A. Mc- Donald,, M. D. Burdick,, S. L. Kunkel,, and G. B. Toews. 1995b. The role of monocyte chemotactic protein-1 (MCP-1) in the recruitment of monocytes and CD4+ T cells during a pulmonary Cryptococcus neoformans infection. J. Immunol. 155:47904797.
29. Huffnagle, G. B.,, and G. B. Toews,. 1997. Mechanisms of macrophage recruitment into infected lungs, p. 373407. In M. F. Lipscomb, and S. W. Russell (ed.), Lung Macrophages and Dendritic Cells in Health and Disease. Marcel Dekker, Inc., New York, N.Y.
30. Huffnagle, G. B.,, G. B. Toews,, M. D. Burdick,, M. B. Boyd,, K. S. McAllister,, R. A. McDonald,, S. L. Kunkel,, and R. M. Strieter. 1996. Afferent phase production of TNF-α is required for the development of protective T cell immunity to Cryptococcus neoformans. J. Immunol. 157:45294536.
31. Jacobson, E. S.,, and S. B. Tinnell. 1993. Antioxidant function of fungal melanin. J. Bacteriol. 175:71027104.
32. Jiang, Y.,, T. R. Russell,, D. T. Graves,, H. Cheng,, S. H. Nong,, and S. M. Levitz. 1996. Monocyte chemoattractant protein 1 and interleukin-8 production in mononuclear cell stimulated by oral microorganisms. Infect. Immun. 64:44504455.
33. Jones-Carson, J.,, A. Vazques-Torres,, H. C. van der Heyde,, T. Warner,, R. D. Wagner,, and E. Balish. 1995. γδT cell-induced nitric oxide production enhances resistance to mucosal candidiasis. Nat. Med. 1:552557.
34. Kaposzta, R.,, P. Tree,, L. Marodi,, and S. Gordon. 1998. Characteristics of invasive candidiasis in gamma interferon- and interleukin- 4 deficient mice: role of macrophages in host defense against Candida albicans. Infect. Immun. 66:17081717.
35. Karpus, W. J.,, and K. J. Kennedy. 1997. MIP-1 alpha and MCP- 1 differentially regulate acute and relapsing autoimmune encephalomyelitis as well as Th1/Th2 lymphocyte differentiation. J. Leukoc. Biol. 62:681687.
36. Karpus, W. J.,, N. W. Lukacs,, K. J. Kennedy,, W. S. Smith,, S. D. Hurst,, and T. A. Barrett. 1997. Differential CC chemokineinduced enhancement of T helper cell cytokine production. J. Immunol. 158:41294136.
37. Kawakami, K.,, M. Hossain Qureshi,, T. Zhang,, Y. Koguchi,, Q. Xie,, M. Kurimoto,, and A. Saito. 1999a. Interleukin-4 weakens host resistance to pulmonary and disseminated cryptococcal infection caused by combined treatment with interferon-gammainducing cytokines. Cell. Immunol. 197:5561.
38. Kawakami, K.,, Y. Koguchi,, M. H. Qureshi,, Y. Kinjo,, S. Yara,, A. Miyazato,, M. Kurimoto,, K. Takeda,, S. Akira,, and A. Saito. 2000a. Reduced host resistance and Th1 response to Cryptococcus neoformans in interleukin-18 deficient mice. FEMS Microbiol. Lett. 186:121126.
39. Kawakami, K.,, X. Qifeng,, M. Tohyama,, M. H. Qureshi,, and A. Saito. 1996a. Contribution of tumor necrosis factor-alpha (TNF-alpha) in host defense mechanism against Cryptococcus neoformans. Clin. Exp. Immunol. 106:468474.
40. Kawakami, K.,, M. H. Qureshi,, T. Zhang,, Y. Koguchi,, K. Shibuya,, S. Naoe,, and A. Saito. 1999b. Interferon-gamma (IFN-gamma)- dependent protection and synthesis of chemoattractants for mononuclear leukocytes caused by IL-12 in the lungs of mice infected with Cryptococcus neoformans. Clin. Exp. Immunol. 117:113122.
41. Kawakami, K.,, M. H. Qureshi,, T. Zhang,, Y. Koguchi,, S. Yara,, K. Takeda,, S. Akira,, M. Kurimoto,, and A. Saito. 2000b. Involvement of endogenously synthesized interleukin-18 in the protective effects of IL-12 against pulmonary infection with Cryptococcus neoformans in mice. FEMS Immunol. Med. Microbiol. 27:191200.
42. Kawakami, K.,, M. H. Qureshi,, T. Zhang,, H. Okamura,, M. Kurimoto,, and A. Saito. 1997a. IL-18 protects mice against pulmonary and disseminated infection with Cryptococcus neoformans by inducing IFN-γ production. J Immunol. 159:55285534.
43. Kawakami, K.,, M. Tohyama,, X. Qifeng,, and A. Saito. 1997b. Expression of cytokines and inducible nitric oxide synthase mRNA in the lungs of mice infected with Cryptococcus neoformans: effects of interleukin-12. Infect. Immun. 65:13071312.
44. Kawakami, K.,, M. Tohyama,, K. Teruya,, N. Kudeken,, Q. Xie,, and A. Saito. 1996b. Contribution of interferon-gamma in protecting mice during pulmonary and disseminated infection with Cryptococcus neoformans. FEMS Immunol. Med. Microbiol. 13: 123130.
45. Kawakami, K.,, M. Tohyama,, Q. Xie,, and A. Saito. 1996c. IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin. Exp. Immunol. 104:208214.
46. Kawasaki, T. 1999. Structure and biology of mannan-binding protein, MBP, an important component of innate immunity. Biochim. Biophys. Acta 1473:186195.
47. Kozel, T. R. 1998. Complement activation by pathogenic fungi. Res. Immunol. 149:309320.
48. Kozel, T. R.,, and R. P. Mastroianni. 1976. Inhibition of phagocytosis by cryptococcal polysaccharide: dissociation of the attachment and ingestion phases of phagocytosis. Infect. Immun. 14:6267.
49. Kurup, V. P.,, H. Y. Choi,, P. S. Murali,, J. Q. Xia,, R. L. Coffman,, and J. N. Fink. 1999. Immune responses to Aspergillus antigen in IL-4−/− mice and the effect of eosinophil ablation. Allergy 54:420427.
50. Lavigne, L. M.,, L. R. Schopf,, C. L. Chung,, R. Maylor,, and J. P. Sypeck. 1998. The role of recombinant muring IL-12 and IFNgamma in the pathogenesis of a murine systemic Candida albicans infection. J. Immunol. 160:284292.
51. Levitz, S. M. 1991. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony- stimulation factor to inhibit Cryptococcus neoformans. Infect. Immun. 59:33933397.
52. Levitz, S. M.,, A. Tabuni,, S. H. Nong,, and D. T. Golenbock. 1996. Effects of interleukin-10 on human peripheral blood mononuclear cell responses to Cryptococcus neoformans, Candida albicans, and lipopolysaccharide. Infect. Immun. 64:945951.
53. Madan, T.,, K. B. Reid,, P. U. Sarma,, S. S. Aggrawal,, P. Strong,, U. Kishore,, and P. Eggleton. 1997. Binding of pulmonary surfactant proteins A and D to Aspergillus fumigatus conidia enhances phagocytosis and killing by human neutrophils and alveolar macrophages. Infect. Immun. 65:31713179.
54. Mehrad, B.,, R. M. Strieter,, T. A. Moore,, W. C. Tsai,, S. A. Lira,, and T. J. Standiford. 1999a. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J. Immunol. 163:60866094.
55. Mehrad, B.,, R. M. Strieter,, and T. J. Standiford. 1999b. Role of TNF-alpha in pulmonary host defense in murine invasive aspergillosis. J. Immunol. 162:16331640.
56. Mencacci, A.,, E. Cenci,, G. Del Sero,, C. F. d’Ostiani,, P. Mosci,, C. Montagnoli,, A. Bacci,, F. Bistoni,, V. F. J. Quesniaux,, B. Ryffel,, and L. Romani. 1998a. Defective co-stimulation and impaired Th1 development in tumor necrosis factor / lymphotoxin-α double-deficient mice infected with Candida albicans. Int. Immunol. 10:3748.
57. Mencacci, A.,, E. Cenci,, G. Del Sero,, C. F. d’Ostiani,, P. Mosci,, G. Trinchieri,, L. Adorini,, and L. Romani. 1998b. IL-10 is required for development of protective Th1 responses in IL-12-deficient mice upon Candida albicans infection. J. Immunol. 161:62286237.
58. Mody, C. H.,, C. L. Tyler,, R. G. Sitrin,, C. Jackson,, and G. B. Toews. 1991. Interferon-gamma activates rat alveolar macrophages for anticryptococcal activity. Am. J. Respir. Cell Mol. Biol. 5:1926.
59. Monari, C.,, C. Retini,, B. Palazzetti,, F. Bistoni,, and A. Vecchiarelli. 1997. Regulatory role of exogenous IL-10 in the development of immune response versus Cryptococcus neoformans. Clin. Exp. Immunol. 109:242247.
60. Murphy, J. W. 1989. Clearance of Cryptococcus neoformans from immunologically suppressed mice. Infect. Immun. 57:19461952.
61. Murphy, J. W.,, A. Zhou,, and S. C. Wong. 1997. Direct interactions of human natural killer cells with Cryptococcus neoformans inhibit granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha production. Infect. Immun. 65:45644571.
62. Nagai, H.,, J. Guo,, H. Choi,, and V. P. Kurup. 1995. Interferongamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J. Infect. Dis. 172:15541560.
63. Netea, M. G.,, L. J. van Tits,, J. H. Curfs,, F. Amiot,, J. F. Meis,, J. W. van der Meer,, and B. J. Kullberg. 1999. Increased susceptibility of TNF-alpha lymphotoxin-alpha double knockout mice to systemic candidiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J. Immunol. 163:14981505.
64. Neth, O.,, D. L. Jack,, A. W. Dodds,, H. Holzel,, N. J. Klein,, and M. W. Turner. 2000. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68:688693.
65. Olszewski, M. A.,, G. B. Huffnagle,, R. A. McDonald,, D. M. Lindell,, B. B. Moore,, D. N. Cook,, and G. B. Toews. 2000. The role of macrophage inflammatory protein 1α /CCL3 in regulation of T cell-mediated immunity to Cryptococcus neoformans infection. J. Immunol. 165:64296436.
66. O’Riordan, D. M.,, J. E. Standing,, K.-Y. Kwon,, D. Chang,, E. C. Crouch,, and A. H. Limper. 1995a. Surfactant protein D interacts with Pneumocystis carinii and mediates organism adherence to alveolar macrophages. J. Clin. Investig. 95:26992710.
67. O’Riordan, D. M.,, J. E. Standing,, and A. H. Limper. 1995b. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors. Infect. Immun. 63:779784.
68. Petkus, A. F. 1987. Natural killer cell inhibition of young spherules and endospores of Coccidioides immitis. J. Immunol. 139:31073111.
69. Pitzurra, L.,, R. Cherniak,, M. Giammarioli,, S. Perito,, F. Bistoni,, and A. Vecchiarelli. 2000. Early induction of IL-12 by human monocytes exposed to Cryptococcus neoformans mannoproteins. Infect. Immun. 68:558563.
70. Roilides, E.,, A. Anastasiou-Katsiardani,, A. Dimitiadou- Georgiadou,, I. Kadiltsoglou,, S. Tsaparidou,, C. Panteliadis,, and T. J. Walsh. 1998a. Suppressive effects of interleukin-10 on human mononuclear phagocyte function against Candida albicans and Staphylococcus aureus. J. Infect. Dis. 178:17341742.
71. Roilides, E.,, I. Kadiltsoglou,, A. Dimitiadou,, M. Hatzistilianou,, A. Manitsa,, J. Karpouzas,, P. A. Pizzo,, and T. J. Walsh. 1997. Interleukin- 4 suppresses antifungal activity of human mononuclear phagocytes against Candida albicans in association with decreased uptake of blastoconidia. FEMS Immunol. Med. Microbiol. 19:169180.
72. Roilides, E.,, H. Katsifa,, and T. J. Walsh. 1998b. Pulmonary host defences against Aspergillus fumigatus. Res. Immunol. 149:454465.
73. Romani, L.,, A. Mencacci,, E. Cenci,, G. Del Sero,, F. Bistoni,, and P. Puccetti. 1997. An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J. Immunol. 158:23562362.
74. Romani, L.,, A. Mencacci,, E. Cenci,, R. Spaccapelo,, E. Schiaffella,, L. Tonnetti,, P. Puccetti,, and F. Bistoni. 1993. Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect. Immun. 61:37693774.
75. Romani, L.,, A. Mencacci,, L. Tonnetti,, R. Spaccapelo,, E. Cenci,, P. Puccetti,, S. Wolf,, and F. Bistoni. 1994aa. IL-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. J. Immunol. 153:51675175.
76. Romani, L.,, A. Mencacci,, L. Tonnetti,, R. Spaccapelo,, E. Cenci,, S. Wolf,, P. Puccetti,, and F. Bistoni. 1994b. Interleukin-12 but not interferon-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis. Eur. J. Immunol. 24:909915.
77. Saavedra, M.,, B. Taylor,, N. Lukacs,, and P. L. J. Fidel. 1999. Local production of chemokines during experimental vaginal candidiasis. Infect. Immun. 67:58205826.
78. Salkowski, C. A.,, and E. Balish. 1991. Role of natural killer cells in resistance to systemic cryptococcosis. J. Leukoc. Biol. 50:151159.
79. Schelenz, S.,, R. Malhotra,, R. B. Sim,, U. Holmskov,, and G. J. Bancroft. 1995. Binding of host collectins to the pathogenic yeast Cryptococcus neoformans: human surfactant protein D acts as an agglutinin for acapsular yeast cells. Infect. Immun. 63:33603366.
80. Schelenz, S.,, D. A. Smith,, and G. J. Bancroft. 1999. Cytokine and chemokine responses following pulmonary challenge with Aspergillus fumigatus: obligatory role of TNF-alpha and GM-CSF in neutrophil recruitment. Med. Mycol. 37:183194.
81. Shahan, T. A.,, W. G. Sorenson,, J. D. Paulauskis,, R. Morey,, and D. M. Lewis. 1998. Concentration- and time-dependent upregulation and release of the cytokines MIP-2, KC, TNF, and MIP-1alpha in rat alveolar macrophages by fungal spores implicated in airway inflammation. Am. J. Respir. Cell Mol. Biol. 18:435440.
82. Tabona, P.,, A. Mellor,, and J. A. Summerfield. 1995. Mannose binding protein is involved in first-line host defence: evidence from transgenic mice. Immunology 85:153159.
83. Taramelli, D.,, M. G. Malabarba,, G. Sala,, N. Basilico,, and G. Cocuzza. 1996. Production of cytokines by alveolar and peritoneal macrophages stimulated by Aspergillus fumigatus conidia or hyphae. J. Med. Vet. Mycol. 34:4956.
84. Tonnetti, L.,, R. Spaccapelo,, E. Cenci,, A. Mencacci,, P. Puccetti,, R. L. Coffman,, F. Bistoni,, and L. Romani. 1995. Interleukin-4 and -10 exacerbate candidiasis in mice. Eur. J. Immunol. 25:15591565.
85. Traynor, T. R.,, and G. B. Huffnagle. 2001. Role of chemokines in fungal infections. Med. Mycol. 39:4150.
86. Traynor, T. R.,, W. A. Kuziel,, G. B. Toews,, and G. B. Huffnagle. 2000. CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 164:20212027.
87. Underhill, D. M.,, A. Ozinsky,, A. M. Hajjar,, A. Stevens,, C. B. Wilson,, M. Bassetti,, and A. Aderem. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401:811815.
88. Vazquez-Torres, A.,, and E. Balish. 1997. Macrophages in resistance to candidiasis. Microbiol. Mol. Biol. Rev. 61:170192.
89. Vazquez-Torres, A.,, J. Jones-Carson,, R. D. Wagner,, T. Warner,, and E. Balish. 1999. Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect. Immun. 67:670674.
90. Vecchiarelli, A.,, D. Pietrella,, M. Dottorini,, C. Monari,, C. Retini,, T. Todisco,, and F. Bistoni. 1994. Encapsulation of Cryptococcus neoformans regulates fungicidal activity and the antigen presentation process in human alveolar macrophages. Clin. Exp. Immunol. 98:217223.
91. Vecchiarelli, A.,, C. Retini,, C. Monari,, C. Tascini,, F. Bistoni,, and T. R. Kozel. 1996. Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect. Immun. 64:28462849.
92. Vecchiarelli, A.,, C. Retini,, D. Pietrella,, C. Monari,, C. Tascini,, T. Beccari,, and T. R. Kozel. 1995. Downregulation by cryptococcal polysaccharide of tumor necrosis factor alpha and interleukin- 1 beta secretion from human monocytes. Infect. Immun. 63:29192923.
93. Wang, Y.,, and A. Casadevall. 1994. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect. Immun. 62:30043007.
94. Warmington, K. S.,, L. Boring,, J. H. Ruth,, J. Sonstein,, C. M. Hogaboam,, J. L. Curtis,, S. L. Kunkel,, I. R. Charo,, and S. W. Chensue. 1999. Effect of C-C chemokine receptor 2 (CCR2) knockout on type-2 (schistosomal antigen-elicited) pulmonary granuloma formation: analysis of cellular recruitment and cytokine responses. Am. J. Pathol. 154:14071416.
95. Zhou, P.,, M. C. Sieve,, J. Bennett,, K. J. Kwon-Chung,, R. P. Tewari,, R. T. Gazzinelli,, A. Sher,, and R. A. Seder. 1995. IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-gamma. J. Immunol. 155:785795.

Tables

Generic image for table
Table 1.

Cells of the innate and adaptive immune response that are sources of signal molecules

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10
Generic image for table
Table 2.

Effect of signals from innate immunity on the development of adaptive immunity

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10
Generic image for table
Table 3.

Fungal virulence factors

Citation: Herring A, Huffnagle G. 2002. Innate Immunity and Fungal Infections, p 127-137. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error