1887

Chapter 13 : Immunological Memory and Infection

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Immunological Memory and Infection, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap13-2.gif

Abstract:

This chapter focuses on the principles of immune memory. It is divided into four parts: (i) a historical perspective of vaccination, (ii) an overview of protective immunity to microbes, (iii) a discussion of the current models of memory T- and B-cell differentiation, and (iv) an overview of the mechanisms involved in maintaining immunological memory. Microbial infections usually induce both T- and B-cell long-term memory. The kinetics and anatomic location of antibody production after an acute viral infection are shown. In summary, immunological memory in the B-cell compartment consists of memory B cells and plasma cells: two distinct cell types with different anatomic locations and very different functions. The rapid rise in antibody levels on reinfection is the result of memory B-cell differentiation into new antibody-secreting plasma cells. Since preexisting antibody provides the first line of defense against infection by microbial pathogens, the importance of plasma cells in protective immunity cannot be overstated. In fact, it could be argued that plasma cells may be the single most important cell type in protective immunity to infections. In conclusion, in this chapter an attempt has been made to give an overview of the principles of immunological memory to infection. This remains one of the most exciting areas of immunology and infectious diseases, and there are many challenges ahead.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13

Key Concept Ranking

Memory B Cell
0.7560466
Plasma Cell
0.71702045
Immune Systems
0.68394804
B Cells
0.6478645
Infection and Immunity
0.5791873
0.7560466
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The natures of effector T- and B-cell responses are different. Most microbial infections induce prolonged serum antibody responses that can persist for months or years after resolution of the infection. In contrast, effector T-cell responses (i.e., active killer cells and cytokine producers) are short-lived and are seen only during the acute phase of infection.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model of memory B-cell differentiation. Following antigenic stimulation, naïve B cells differentiate along separate pathways into memory B cells and plasma cells (PC). In this model, low-affinity B cells differentiate into short-lived plasma cells whereas high-affinity B cells give rise to long-lived plasma cells. Memory B cells, in general, are extremely long-lived and, on reencountering antigen (Ag), can rapidly differentiate into plasma cells and also proliferate to generate more memory B cells. Plasma cells are terminally differentiated effector cells that can neither divide in response to antigen nor revert to memory B cells.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Kinetics and anatomic site of antibody production after infection. Initial antibody production is by plasma cells within GCs in the spleen and lymph nodes, but after the infection is resolved, the bone marrow becomes the site of long-term antibody production. On secondary infection, the spleen and lymph nodes mount a rapid but transient antibody response, and after a return to homeostasis, the bone marrow is again the predominant source of antigen-specific plasma cells.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Antiviral CD8 and CD4 T-cell responses. The three phases of the immune response are indicated at the top. The increase in cell number during the expansion phase is due to clones of T cells undergoing cell division. Soon after the virus is cleared, there is a death phase, characterized by decreasing numbers of virus-specific T cells due to apoptosis. Following the death phase, the number of virus-specific T cells stabilizes and can be maintained for extended periods (the memory phase). The CD4 T-cell response is similar to the CD8 T-cell response, except that the magnitude of the CD4 response is lower and the death phase can be more protracted than the CD8 response.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

The size of the memory T-cell pool is determined by the clonal burst size during the expansion phase. In this figure, lines 1, 2, and 3 represent the T-cell responses induced by three different vaccines. Vaccine 1 induces the largest expansion of T cells and hence generates the largest pool of memory T cells; vaccine 2 is next; and vaccine 3 is the weakest. The asterisk denotes the minimum number of antigen-specific T cells required for protective immunity. In this scenario, vaccines 1 and 2 will confer long-term immunity whereas protective immunity induced by vaccine 3 will be of short duration. The main reason for the failure of vaccine 3 is a smaller burst size during the expansion phase. Note that the maintenance of the memory T cell pool is similar for all three vaccines.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Models of memory T-cell differentiation. Model 1 represents the B-cell paradigm of dichotomy in memory and effector pathways. Model 2 is the more traditional view of memory T-cell differentiation representing a linear-differentiation pathway. Model 3 is a variation of model 2 and takes into account the finding that only 5 to 10% of the effector cells survive to become memory T cells. In this model, progress toward terminal differentiation (driven by antigen [Ag]) is accompanied by increased susceptibility to apoptosis and a decreased potential for memory cell development. In all of these models the effector cells represent a transient population whereas the memory cells survive for long periods. On reexposure to antigen, the memory T cells can develop into effector cells and can also generate more memory cells.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Model of memory T-cell differentiation incorporating the development of central and effector memory T cells. In this model, a short duration of antigenic (Ag) stimulation favors the development of central memory cells whereas a longer duration favors differentiation to effector memory T cells.

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817978.chap13
1. Ahmed, R.,, and C. A. Biron,. 1999. Immunity to viruses, p. 1295 1335. In W. E. Paul (ed.), Fundamental Immunology. Lippincott-Raven, Philadelphia, Pa.
2. Ahmed, R.,, and D. Gray. 1996. Immunological memory and protective immunity: understanding their relation. Science 272: 54 60.
3. Altman, J. D.,, P. A. Moss,, P. J. Goulder,, D. H. Barouch,, M. G. McHeyzer-Williams,, J. I. Bell,, A. J. McMichael,, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94 96.
4. Bachmann, M. F.,, M. Barner,, A. Viola,, and M. Kopf. 1999a. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29: 291 299.
5. Bachmann, M. F.,, A. Gallimore,, S. Linkert,, V. Cerundolo,, A. Lanzavecchia,, M. Kopf,, and A. Viola. 1999b. Developmental regulation of Lck targeting to the CD8 coreceptor controls signaling in naive and memory T cells. J. Exp. Med. 189: 1521 1530.
6. Badovinac, V. P.,, G. A. Corbin,, and J. T. Harty. 2000. Cutting edge: OFF cycling of TNF production by antigen-specific CD8+ T cells is antigen independent. J. Immunol. 165: 5387 5391.
7. Berek, C.,, G. M. Griffiths,, and C. Milstein. 1985. Molecular events during maturation of the immune response to oxazolone. Nature 316: 412 418.
8. Buchmeier, M. J.,, and A. J. Zajac,. 1999. Lymphocytic choriomeningitis virus, p. 575 605. In R. Ahmed,, and I. S. Y. Chen (ed.), Persistent Viral Infections. John Wiley & Sons, Ltd., Chichester, United Kingdom.
9. Busch, D. H.,, I. M. Pilip,, S. Vijh,, and E. G. Pamer. 1998. Coordinate regulation of complex T cell populations responding to bacterial infection. Immunity 8: 353 362.
10. Champagne, P.,, G. S. Ogg,, A. S. King,, C. Knabenhans,, K. Ellefsen,, M. Nobile,, V. Appay,, G. P. Rizzardi,, S. Fleury,, M. Lipp, et al. 2001. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410: 106 111.
11. Cho, B. K.,, C. Wang,, S. Sugawa,, H. N. Eisen,, and J. Chen. 1999. Functional differences between memory and naive CD8 T cells. Proc. Natl. Acad. Sci. USA 96: 2976 2981.
12. Cohen, D.,, M. S. Green,, E. Katzenelson,, R. Slepon,, H. Bercovier,, and M. Wiener. 1994. Long-term persistence of anti-diphtheria toxin antibodies among adults in Israel. Implications for vaccine policy. Eur. J. Epidemiol. 10: 267 270.
13. Crawford, F.,, H. Kozono,, J. White,, P. Marrack,, and J. Kappler. 1998. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8: 675 682.
14. Demkowicz, W. E., Jr.,, R. A. Littaua,, J. Wang,, and F. A. Ennis. 1996. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 70: 2627 2631.
15. Dutton, R. W.,, L. M. Bradley,, and S. L. Swain. 1998. T cell memory. Annu. Rev. Immunol. 16: 201 223.
16. Edelson, B. T.,, P. Cossart,, and E. R. Unanue. 1999. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol. 163: 4087 4090.
17. Finley, J. H. 1951. The Complete Writings of Thucydides: The Peloponnesian War Modern Library, New York, N.Y.
18. Freitas, A. A.,, and B. Rocha. 2000. Population biology of lymphocytes: the flight for survival. Annu. Rev. Immunol. 18: 83 111.
19. Harrington, L. E.,, M. Galvan,, L. G. Baum,, J. D. Altman,, and R. Ahmed. 2000. Differentiating between memory and effector CD8 T cells by altered expression of cell surface O-glycans. J. Exp. Med. 191: 1241 1246.
20. Helmreich, E.,, M. Kern,, and H. N. Eisen. 1961. The secretion of antibody by isolated lymph node cells. J. Biochem. 236: 464 473.
21. Helms, T.,, B. O. Boehm,, R. J. Asaad,, R. P. Trezza,, P. V. Lehmann,, and M. Tary-Lehmann. 2000. Direct visualization of cytokine-producing recall antigen-specific CD4 memory T cells in healthy individuals and HIV patients. J. Immunol. 164: 3723 3732.
22. Hibi, T.,, and H. M. Dosch. 1986. Limiting dilution analysis of the B cell compartment in human bone marrow. Eur. J. Immunol. 16: 139 145.
23. Hou, S.,, L. Hyland,, K. W. Ryan,, A. Portner,, and P. C. Doherty. 1994. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369: 652 654.
24. Jacob, J.,, and D. Baltimore. 1999. Modelling T-cell memory by genetic marking of memory T cells in vivo. Nature 399: 593 597.
25. Jacob, J.,, G. Kelsoe,, K. Rajewsky,, and U. Weiss. 1991. Intraclonal generation of antibody mutants in germinal centres. Nature 354: 389 392.
26. Kaech, S. M.,, and R. Ahmed. 2001. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat. Immunol. 2: 415 422.
27. Kearney, E. R.,, K. A. Pape,, D. Y. Loh,, and M. K. Jenkins. 1994. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1: 327 339.
28. Kedl, R. M.,, and M. F. Mescher. 1998. Qualitative differences between naive and memory T cells make a major contribution to the more rapid and efficient memory CD8+ T cell response. J. Immunol. 161: 674 683.
29. Kehry, M. R.,, and L. C. Yamashita. 1989. Low-affinity IgE receptor (CD23) function on mouse B cells: role in IgE-dependent antigen focusing. Proc. Natl. Acad. Sci. USA 86: 7556 7560.
30. Kjeldsen, K.,, O. Simonsen,, and I. Heron. 1985. Immunity against diphtheria 25-30 years after primary vaccination in childhood. Lancet i: 900 902.
31. LaCasse, R. A.,, K. E. Follis,, M. Trahey,, J. D. Scarborough,, D. R. Littman,, and J. H. Nunberg. 1999. Fusion-competent vaccines: broad neutralization of primary isolates of HIV. Science 283: 357 362.
32. Lanzavecchia, A.,, and F. Sallusto. 2001. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat. Immunol. 2: 487 492.
33. Lau, L. L.,, B. D. Jamieson,, T. Somasundaram,, and R. Ahmed. 1994. Cytotoxic T-cell memory without antigen. Nature 369: 648 652.
34. Lin, Y.,, K. Wong,, and K. Calame. 1997. Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276: 596 599.
35. Liu, Y. J.,, J. A. Cairns,, M. J. Holder,, S. D. Abbot,, K. U. Jansen,, J. Y. Bonnefoy,, J. Gordon,, and I. C. MacLennan. 1991. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur. J. Immunol. 21: 1107 1114.
36. MacLennan, I. C. 1994. Germinal centers. Annu. Rev. Immunol. 12: 117 139.
37. Mandel, T. E.,, R. P. Phipps,, A. Abbot,, and J. G. Tew. 1980. The follicular dendritic cell: long term antigen retention during immunity. Immunol. Rev. 53: 29 59.
38. Manz, R. A.,, M. Lohning,, G. Cassese,, A. Thiel,, and A. Radbruch. 1998. Survival of long-lived plasma cells is independent of antigen. Int. Immunol. 10: 1703 1711.
39. Manz, R. A.,, A. Thiel,, and A. Radbruch. 1997. Lifetime of plasma cells in the bone marrow. Nature 388: 133 134.
40. Markiewicz, M. A.,, C. Girao,, J. T. Opferman,, J. Sun,, Q. Hu,, A. A. Agulnik,, C. E. Bishop,, C. B. Thompson,, and P. G. Ashton- Rickardt. 1998. Long-term T cell memory requires the surface expression of self-peptide / major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 95: 3065 3070.
41. Marrack, P.,, J. Bender,, D. Hildeman,, M. Jordan,, T. Mitchell,, M. Murakami,, A. Sakamoto,, B. C. Schaefer,, B. Swanson,, and J. Kappler. 2000. Homeostasis of alpha beta TCR+ T cells. Nat. Immunol. 1: 107 111.
42. Marshall, D. R.,, S. J. Turner,, G. T. Belz,, S. Wingo,, S. Andreansky,, M. Y. Sangster,, J. M. Riberdy,, T. Liu,, M. Tan,, and P. C. Doherty. 2001. Measuring the diaspora for virus-specific CD8+ T cells. Proc. Natl. Acad. Sci. USA 98: 6313 6318.
43. Maruyama, M.,, K. P. Lam,, and K. Rajewsky. 2000. Memory Bcell persistence is independent of persisting immunizing antigen. Nature 407: 636 642.
44. Masopust, D.,, V. Vezys,, A. L. Marzo,, and L. Lefrancois. 2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291: 2413 2417.
45. McChesney, M. B.,, C. J. Miller,, P. A. Rota,, Y. D. Zhu,, L. Antipa,, N. W. Lerche,, R. Ahmed,, and W. J. Bellini. 1997. Experimental measles. I. Pathogenesis in the normal and the immunized host. Virology 233: 74 84.
46. McHeyzer-Williams, M. G.,, and R. Ahmed. 1999. B cell memory and the long-lived plasma cell. Curr. Opin. Immunol. 11: 172 179.
47. Moskophidis, D.,, F. Lechner,, H. Pircher,, and R. M. Zinkernagel. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362: 758 761.
48. Mudde, G. C.,, R. Bheekha,, and C. A. Bruijnzeel-Koomen. 1995. Consequences of IgE /CD23-mediated antigen presentation in allergy. Immunol. Today 16: 380 383.
49. Mullbacher, A. 1994. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J. Exp. Med. 179: 317 321.
50. Murali-Krishna, K.,, J. D. Altman,, M. Suresh,, D. J. Sourdive,, A. J. Zajac,, J. D. Miller,, J. Slansky,, and R. Ahmed. 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177 187.
51. Murali-Krishna, K.,, L. L. Lau,, S. Sambhara,, F. Lemonnier,, J. Altman,, and R. Ahmed. 1999. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286: 1377 1381.
52. Opferman, J. T.,, B. T. Ober,, and P. G. Ashton-Rickardt. 1999. Linear differentiation of cytotoxic effectors into memory T lymphocytes. Science 283: 1745 1748.
53. Panum, P. L. 1847. Beobachtungen uber das Maserncontagium. Virchows Arch. 1: 492 503.
54. Paul, J. R.,, J. T. Riordan,, and J. L. Melnick. 1951. Antibodies to three different antigenic types of poliomyelitis virus in sera from North Alaskan Eskimos. Am. J. Hyg. 54: 275 285.
55. Pirron, U.,, T. Schlunck,, J. C. Prinz,, and E. P. Rieber. 1990. IgE-dependent antigen focusing by human B lymphocytes is mediated by the low-affinity receptor for IgE. Eur. J. Immunol. 20: 1547 1551.
56. Plotkin, S. A.,, and W. A. Orenstein. 1999. Vaccines, 3rd ed. The W. B. Saunders Co., Philadelphia, Pa.
57. Reinhardt, R. L.,, A. Khoruts,, R. Merica,, T. Zell,, and M. K. Jenkins. 2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410: 101 105.
58. Sallusto, F.,, D. Lenig,, R. Forster,, M. Lipp,, and A. Lanzavecchia. 1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708 712.
59. Sawyer, W. A. 1931. Persistence of yellow fever immunity. J. Prev. Med. 5: 413 428.
60. Scheibel, I.,, M. W. Bentzon,, P. E. Christensen,, and A. Biering. 1966. Duration of immunity to diphtheria and tetanus after active immunization. Acta Pathol. Microbiol. Scand. 67: 380 392.
61. Selin, L. K.,, M. Y. Lin,, K. A. Kraemer,, D. M. Pardoll,, J. P. Schneck,, S. M. Varga,, P. A. Santolucito,, A. K. Pinto,, and R. M. Welsh. 1999. Attrition of T cell memory: selective loss of LCMV epitope-specific memory CD8 T cells following infections with heterologous viruses. Immunity 11: 733 742.
62. Simonsen, O.,, K. Kjeldsen,, and I. Heron. 1984. Immunity against tetanus and effect of revaccination 25-30 years after primary vaccination. Lancet ii: 1240 1242.
63. Slifka, M. K.,, and R. Ahmed. 1998. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 10: 252 258.
64. Slifka, M. K.,, R. Antia,, J. K. Whitmire,, and R. Ahmed. 1998. Humoral immunity due to long-lived plasma cells. Immunity 8: 363 372.
65. Slifka, M. K.,, M. Matloubian,, and R. Ahmed. 1995. Bone marrow is a major site of long-term antibody production after acute viral infection. J. Virol. 69: 1895 1902.
66. Slifka, M. K.,, and J. L. Whitton. 2000. Activated and memory CD8+ T cells can be distinguished by their cytokine profiles and phenotypic markers. J. Immunol. 164: 208 216.
67. Sprent, J.,, and C. D. Surh. 2001. Generation and maintenance of memory T cells. Curr. Opin. Immunol. 13: 248 254.
68. Stuber, E.,, and W. Strober. 1996. The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J. Exp. Med. 183: 979 989.
69. Swain, S. L.,, H. Hu,, and G. Huston. 1999. Class II-independent generation of CD4 memory T cells from effectors. Science 286: 1381 1383.
70. Tanchot, C.,, F. A. Lemonnier,, B. Perarnau,, A. A. Freitas,, and B. Rocha. 1997. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276: 2057 2062.
71. Turner, C. A., Jr.,, D. H. Mack,, and M. M. Davis. 1994. Blimp- 1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77: 297 306.
72. van Stipdonk, M. J.,, E. E. Lemmens,, and S. P. Schoenberger. 2001. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2: 423 429.
73. Wong, P.,, and E. G. Pamer. 2001. Cutting edge: antigenin-dependent CD8 T cell proliferation. J. Immunol. 166: 5864 5868.
74. Zajac, A. J.,, J. N. Blattman,, K. Murali-Krishna,, D. J. Sourdive,, M. Suresh,, J. D. Altman,, and R. Ahmed. 1998. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188: 2205 2213.
75. Zimmermann, C.,, A. Prevost-Blondel,, C. Blaser,, and H. Pircher. 1999. Kinetics of the response of naive and memory CD8 T cells to antigen: similarities and differences. Eur. J. Immunol. 29: 284 290.
76. Zinkernagel, R. M.,, M. F. Bachmann,, T. M. Kundig,, S. Oehen,, H. Pirchet,, and H. Hengartner. 1996. On immunological memory. Annu. Rev. Immunol. 14: 333 367.

Tables

Generic image for table
Table 1

General approaches for vaccines

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 2

Recombinant delivery systems for future vaccines

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 3

Distinction between effector B and T cells

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 4

Differences between naïve and memory B cells

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 5

Differences between memory B cells and plasma cells

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 6

Defining characteristics of memory B and T cells

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 7

Markers that distinguish between naïve, effector, and memory T cells

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 8

Mechanisms of maintaining immunological memory

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13
Generic image for table
Table 9

Long-term immunity in the absence of reexposure to the pathogen

Citation: Ahmed R, Lanier J, Pamer E. 2002. Immunological Memory and Infection, p 175-189. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error