Chapter 18 : Acquired Immunity against Viral Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Acquired Immunity against Viral Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap18-2.gif


The importance of acquired immunity against viruses is demonstrated by the fatal outcome of infections with many viruses (such as vaccinia virus, polyomavirus, and influenza virus) in mice with severe combined immunodeficiency (SCID mice), which lack functional T and B cells. This chapter describes the dynamics of the T- and B-cell responses elicited by virus infections and illustrates the functions and importance of these cells with examples from well-studied viral models. While much emphasis has been placed on ascertaining the relative contributions of either T-cell subset to the resolution of viral infections, the optimal control of infection in vivo usually occurs with cooperation between both sets. Recent technologic advances have furthered one's understanding of the dynamics of T-cell responses elicited by virus infection. A substantial enlargement of the CD8 cytotoxic T lymphocytes (CTL) compartment is characteristic of the immune response to viral infections. CTL have two separate systems that mediate cytolytic function. The first is the granule exocytosis pathway, and the second is the interaction of Fas ligand (FasL, expressed on T cells) and Fas (expressed on targets). The specificity of Fas-mediated cell death is enhanced by the fact that FasL expression is upregulated following T-cell receptor (TCR) triggering, so that an infected cell expressing viral antigens would more probably receive the death signal than would an uninfected cell. The induction of antiviral antibody responses in immunocompetent normal mice involves complex interactions of antigen-specific activated CD4 T cells and B cells.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18

Key Concept Ranking

Tumor Necrosis Factor alpha
Immune Systems
Simian immunodeficiency virus
Major Histocompatibility Complex
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Presentation of viral antigens. (A) Processing and presentation of MHC class I-restricted peptides. (Step 1a) Following virus infection, viral gene products are synthesized. (Step 2a) Viral proteins are degraded via cellular proteasomes to produce short peptide fragments. (Step 3a) The viral peptides are transported into the endoplasmic reticulum (ER) by the transporters associated with antigen processing. Within the ER, peptides associate with class I molecules that are complexed with the -microglobulin. (Step 4a) This newly formed tripartite complex is then shuttled to the cell surface for recognition by virus-specific CTL. (B) Processing and presentation of MHC class II-restricted peptides. (Step 1b) Newly synthesized MHC class II molecules are localized within the ER and are complexed with the invariant chain (Ii), which obstructs the peptide-binding site. The invariant chain also participates in the folding of class II molecules and in their transport to the endocytic pathway. The class II complex is shuttled out of the ER into an endosomal compartment (MIIC), where the invariant chain is degraded by proteases, revealing the peptide-binding site. (Step 2b) APC internalize exogenous viral proteins by endocytosis. The proteins are localized to the endocytic pathway, where they are degraded by proteases into peptides. (Step 3b) As peptide-containing endosomes enter the MIIC, the virus-derived peptides bind to class II molecules. (Step 4b) The class II-peptide complexes migrate to the cell surface for presentation.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Kinetics of virus-induced T-cell responses. The T-lymphocyte response to virus infection can be divided into three segments: activation, effector phase, and silencing. After a virus infection at a peripheral site, viral antigens accumulate within draining lymphoid tissue, where they are processed and presented to virus-specific T cells. Following the activation and proliferation of the T-cell population, the activated lymphocytes migrate to the site(s) of infection to eliminate virus-infected cells. Once the host is cleared of viral antigens, the immune system restores homeostasis by deleting a large portion of the T cells. The remaining virus-specific T cells can acquire a memory phenotype.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Kinetics of antiviral immune responses. (A) Viral replication and clearance. Time is given as days postinfection. (B) Antiviral humoral immune responses. ASC, antibody (IgG)-secreting cells in the spleen; se IgM, virus-specific serum IgM; se IgG, virus-specific serum IgG. (C) Virus-specific and total T-cell responses. The frequency of virus-specific T cells before infection is very low. After infection, the majority of the expanding T-cell population is virus specific, and after the down-regulation of T-cell responses, the host is left with an elevated frequency of the virus-specific T cells.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Antibody-mediated antiviral effector mechanisms. (1) Prevention of viral attachment by blocking the viral attachment site. (2) Prevention of uncoating. (3) Aggregation of viral particles. (4) Blocking of virus absorption by inducing conformational changes in the attachment site. (5) Lysis of virion-antibody-complement complexes. (6) Opsonization. (7) Lysis of virus-infected cells by antibody and complement. (8) ADCC. (9) Inhibition of the release of virus particles. (10) Intracellular inhibition of the viral life cycle. VR, virus receptor; V-ag, viral antigen; mf, macrophage; CR2, complement receptor.

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alexander-Miller, M. A.,, K. Burke,, U. H. Koszinowski,, T. H. Hansen,, and J. M. Connolly. 1993. Alloreactive cytotoxic T lymphocytes generated in the presence of viral-derived peptides show exquisite peptide and MHC specificity. J. Immunol. 151: 110.
2. Altman, J. D.,, P. A. H. Moss,, P. J. R. Goulder,, D. H. Barouch,, M. G. McHeyzer-Williams,, J. I. Bell,, A. J. McMichael,, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274:9496.
3. Andreasen, S. O.,, J. E. Christensen,, O. Marker,, and A. R. Thomsen. 2000. Role of CD40 ligand and CD28 in induction and maintenance of antiviral CD8+ effector T cell responses. J. Immunol. 164:36893697.
4. Ashkenazi, A.,, and V. M. Dixit. 1998. Death receptors: signaling and modulation. Science 281:13051308.
5. Baba, T. W.,, V. Liska,, R. Hofmann-Lehmann,, J. Vlasak,, W. Xu,, S. Ayehunie,, L. A. Cavacini,, M. R. Posner,, H. Katinger,, G. Stiegler,, B. J. Bernacky,, T. A. Rizvi,, R. Schmidt,, L. R. Hill,, M. E. Keeling,, Y. Lu,, J. E. Wright,, T.-C. Chou,, and R. M. Ruprecht. 2000. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat. Med. 6:200206.
6. Bachmann, M. F.,, E. Sebzda,, T. M. Kundig,, A. Shahinian,, D. E. Speiser,, T. W. Mak,, and P. S. Ohashi. 1996. T cell responses are governed by avidity and co-stimulatory thresholds. Eur. J. Immunol. 26:20172022.
7. Bachmann, M. F.,, and R. M. Zinkernagel. 1997. Neutralizing antiviral B cell responses. Annu. Rev. Immunol. 15:235270.
8. Baize, S.,, E. M. Leroy,, M.-C. Georges-Courbot,, M. Capron,, J. Lansoud-Soukate,, P. Debre,, S. P. Fisher-Hoch,, J. B. McCormick,, and A. J. Georges. 1999. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat. Med. 5:423426.
9. Balridge, J. R.,, and M. J. Buchmeier. 1992. Mechanism of antibody- mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J. Virol. 66:42524257.
10. Banchereau, J.,, F. Briere,, C. Caux,, J. Davoust,, S. Lebecque,, Y. J. Liu,, B. Pulendran,, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767811.
11. Barchet, W.,, S. Oehen,, P. Klenerman,, D. Wodarz,, G. Bocharov,, A. L. Lloyd,, M. A. Nowak,, H. Hengartner,, R. M. Zinkernagel,, and S. Ehl. 2000. Direct quantitation of rapid elimination of viral antigen-positive lymphocytes by antiviral CD8(+) T cells in vivo. Eur. J. Immunol. 30:13561363.
12. Bender, A.,, M. Albert,, A. Reddy,, M. Feldman,, B. Sauter,, G. Kaplan,, W. Hellman,, and N. Bhardwaj. 1998. The distinctive features of influenza virus infection of dendritic cells. Immunobiology 198:552567.
13. Berzofsky, J. A.,, I. J. Berkower,, and S. L. Epstein,. 1999. Antigen-antibody interactions and monoclonal antibodies, p. 75110. In W. E. Paul (ed.), Fundamental Immunology, 4th ed. Lippincott- Raven, Philadelphia, Pa.
14. Blaney, J. E., Jr.,, E. Nobusawa,, M. A. Brehm,, R. H. Bonneau,, L. M. Mylin,, T. M. Fu,, Y. Kawaoka,, and S. S. Tevethia. 1998. Immunization with a single major histocompatibility complex class I-restricted cytotoxic T-lymphocyte recognition epitope of herpes simplex virus type 2 confers protective immunity. J. Virol. 72:95679574.
15. Boehm, U.,, T. Klamp,, M. Groot,, and J. C. Howard. 1997. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15: 749795.
16. Boesteanu, A.,, M. Brehm,, L. M. Mylin,, G. J. Christianson,, S. S. Tevethia,, D. C. Roopenian,, and S. Joyce. 1998. A molecular basis for how a single TCR interfaces multiple ligands. J. Immunol. 161:47194727.
17. Bonneau, R. H.,, L. A. Salvucci,, D. C. Johnson,, and S. S. Tevethia. 1993. Epitope specificity of H-2Kb-restricted, HSV-1-, and HSV-2-cross-reactive cytotoxic T lymphocyte clones. Virology 195:6270.
18. Borrow, P.,, A. Tishon,, S. Lee,, J. Xu,, I. S. Grewal,, M. B. A. Oldstone,, and R. A. Flavell. 1996. CD40L-deficient mice show deficits in antiviral immunity and have an impaired memory CD8+ CTL response. J. Exp. Med. 183:21292142.
19. Borrow, P.,, D. F. Tough,, D. Eto,, A. Tishon,, I. S. Grewal,, J. Sprent,, R. A. Flavell,, and M. B. Oldstone. 1998. CD40 ligand-mediated interactions are involved in the generation of memory CD8+ cytotoxic T lymphocytes (CTL) but are not required for the maintenance of CTL memory following virus infection. J. Virol. 72:74407449.
20. Bousso, P.,, and P. Kourilsky. 1999. A clonal view of alphabeta T cell responses. Semin. Immunol. 11:423431.
21. Braciale, T. J.,, M. E. Andrew,, and V. L. Braciale. 1981. Simultaneous expression of H-2-restricted and alloreactive recognition by a cloned line of influenza virus-specific cytotoxic T lymphocytes. J. Exp. Med. 153:13711376.
22. Brundler, M.-A.,, P. Aichele,, M. Bachmann,, D. Kitamura,, K. Rajewsky,, and R. M. Zinkernagel. 1996. Immunity to viruses in B cell-deficient mice: influence of antibodies on virus persistence and on T cell memory. Eur. J. Immunol. 26:22572262.
23. Burton, D. R.,, and P. W. H. I. Parren. 2000. Vaccines and the induction of functional antibodies: time to look beyond the molecules of natural infection? Nat. Med. 6:123125.
24. Butcher, E. C.,, and L. J. Picker. 1996. Lymphocyte homing and homeostasis. Science 272:6066.
25. Butz, E. A.,, and M. J. Bevan. 1998. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8:167175.
26. Chen, W.,, L. C. Anton,, J. R. Bennink,, and J. W. Yewdell. 2000. Dissecting the multifactorial causes of immunodominance in class I-restricted T cell responses to viruses. Immunity 12:8393.
27. Clarke, S. H.,, L. M. Staudt,, J. Kavaler,, D. Schwartz,, W. U. Gerhard,, and M. G. Weigert. 1990. V region usage and somatic mutation in the primary and secondary responses to influenza virus hemagglutinin. J. Immunol. 144:27952801.
28. Cose, S. C.,, C. M. Jones,, M. E. Wallace,, W. R. Heath,, and F. R. Carbone. 1997. Antigen-specific CD8+ T cell subset distribution in lymph nodes draining the site of herpes simplex virus infection. Eur. J. Immunol. 27:23102316.
29. Courtelier, J. P.,, J. T. Van der Logt,, F. W. Hessen,, A. Vink,, and J. Van Snick. 1988. Virally induced modulation of murine IgG antibody subclasses. J. Exp. Med. 168:23732378.
30. Courtelier, J. P.,, J. T. Van der Logt,, F. W. Hessen,, G. Warnier,, and J. Van Snick. 1987. IgG2a restriction of murine antibodies elicited by viral infections. J. Exp. Med. 165:6469.
31. Cousens, L. P.,, J. S. Orange,, and C. A. Biron. 1995. Endogenous IL-2 contributes to T cell expansion and IFN-gamma production during lymphocytic choriomeningitis virus infection. J. Immunol. 155:56905699.
32. Dal Porto, J.,, T. E. Johansen,, B. Catipovic,, D. J. Parfiit,, D. Tuveson,, U. Gether,, S. Kozlowski,, D. T. Fearon,, and J. P. Schneck. 1993. A soluble divalent class I major histocompatibility complex molecule inhibits alloreactive T cells at nanomolar concentrations. Proc. Natl. Acad. Sci. USA 90:66716675.
33. Davies, D. R.,, E. A. Padlan,, and S. Sheriff. 1990. Antibody-antigen complexes. Annu. Rev. Biochem. 59:439473.
34. Davis, M. M.,, J. J. Boniface,, Z. Reich,, D. Lyons,, J. Hampl,, B. Arden,, and Y. Chien. 1998. Ligand recognition by alpha beta T cell receptors. Annu. Rev. Immunol. 16:523544.
35. deVinuesa, G.,, P. O’Leary,, D. M.-Y. Sze,, K.-M. Toellner,, and I. C. M. MacLennan. 1999. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur. J. Immunol. 29:13141327.
36. Dimmock, N. J. 1993. Neutralization of animal viruses. Curr. Top. Microbiol. Immunol. 183:1149.
37. Doherty, P. C.,, and J. P. Christensen. 2000. Accessing complexity: the dynamics of virus-specific T cell responses. Annu. Rev. Immunol. 18:561592.
38. Feng, N.,, J. W. Burns,, L. Bracy,, and H. B. Greenberg. 1994. Comparison of mucosal and systemic humoral immune responses and subsequent protection in mice orally inoculated with a homologous or a heterologous rotavirus. J. Virol. 68: 77667773.
39. Franco, M. A.,, and H. B. Greenberg. 1997. Immunity to rotavirus in T cell-deficient mice. Virology 238:169179.
40. Franco, M. A.,, and H. B. Greenberg. 1999. Immunity to rotavirus infection in mice. J. Infect. Dis. 179(Suppl. 3):S466S469.
41. Frazer, J. K.,, and J. D. Capra,. 1999. Immunoglobulins: structure and function, p. 3774. In W. E. Paul (ed.), Fundamental Immunology, 4th ed. Lippincott-Raven, Philadelphia, Pa.
42. Fujinami, R. S.,, and M. B. Oldstone. 1979. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 279:529530.
43. Gairin, J. E.,, H. Mazarguil,, D. Hudrisier,, and M. B. Oldstone. 1995. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes. J. Virol. 69: 22972305.
44. Galli, S. J.,, and C. S. Lantz,. 1999. Allergy, p. 11271174. In W. E. Paul (ed.), Fundamental Immunology, 4th ed. Lippincott-Raven, Philadelphia, Pa.
45. Gallimore, A.,, H. Hengartner,, and R. Zinkernagel. 1998. Hierarchies of antigen-specific cytotoxic T-cell responses. Immunol. Rev. 164:2936.
46. Gerhard, W.,, K. Mozdzanowska,, M. Furchner,, G. Wasko,, and K. Maiese. 1997. Role of the B-cell response in recovery of mice from primary influenza virus infection. Immunol. Rev. 159:95103.
47. Grayson, J. M.,, A. J. Zajac,, J. D. Altman,, and R. Ahmed. 2000. Increased expression of Bcl-2 in antigen-specific memory CD8+ T cells. J. Immunol. 164:39503954.
48. Grewal, I. S.,, and R. A. Flavell. 1998. CD40 and CD154 in cell-mediated immunity. Annu. Rev. Immunol. 16:111135.
49. Griffin, D.,, B. Levine,, W. Tyor,, S. Ubol,, and P. Despres. 1997. The role of antibody in recovery from alphavirus encephalitis. Immunol. Rev. 159:155161.
50. Guidotti, L. G.,, and F. V. Chisari. 1999. Cytokine-induced viral purging—role in viral pathogenesis. Curr. Opin. Microbiol. 2: 388391.
51. Guidotti, L. G.,, T. Ishikawa,, M. V. Hobbs,, B. Matzke,, R. Schreiber,, and F. V. Chisari. 1996. Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes. Immunity 4:2536.
52. Haanen, J. B.,, M. C. Wolkers,, A. M. Kruisbeek,, and T. N. Schumacher. 1999. Selective expansion of cross-reactive CD8(+) memory T cells by viral variants. J. Exp. Med. 190:13191328.
53. Harris, N.,, R. M. Buller,, and G. Karupiah. 1995. Gamma interferon- induced, nitric oxide-mediated inhibition of vaccinia virus replication. J. Virol. 69:910915.
54. Harris, N. L.,, and F. Ronchese. 1999. The role of B7 costimulation in T-cell immunity. Immunol. Cell Biol. 77:304311.
55. Harty, J. T.,, A. R. Tvinnereim,, and D. W. White. 2000. CD8+ T cell effector mechanisms in resistance to infection. Annu. Rev. Immunol. 18:275308.
56. Holterman, A. X.,, K. Rogers,, K. Edelmann,, D. M. Koelle,, L. Corey,, and C. B. Wilson. 1999. An important role for major histocompatibility complex class I-restricted T cells, and a limited role for gamma interferon, in protection of mice against lethal herpes simplex virus infection. J. Virol. 73:20582063.
57. Hou, S.,, P. C. Doherty,, M. Zijlstra,, R. Jaenish,, and M. J. Katz. 1992. Delayed clearance of Sendai virus in mice lacking class I MHC-restricted CD8+ T cells. J. Immunol. 149:13191325.
58. Hou, S.,, L. Hyland,, K. W. Ryan,, A. Portner,, and P. C. Doherty. 1994. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature 369:652654.
59. Hudrisier, D.,, M. B. Oldstone,, and J. E. Gairin. 1997. The signal sequence of lymphocytic choriomeningitis virus contains an immunodominant cytotoxic T cell epitope that is restricted by both H-2D(b) and H-2K(b) molecules. Virology 234:6273.
60. Igarashi, T.,, C. Brown,, A. Azadegan,, D. Dimitrov,, M. A. Martin,, and R. Shibata. 1999. Human immunodeficiency virus type 1 neutralizing antibodies accelerate clearance of cell-free virions from blood plasma. Nat. Med. 5:211216.
61. Jacobson, S.,, J. R. Richert,, W. E. Biddison,, A. Satinsky,, R. J. Hartzman,, and H. F. McFarland. 1984. Measles virus-specific T4+ human cytotoxic T cell clones are restricted by class II HLA antigens. J. Immunol. 133:754757.
62. Jennings, S. R.,, R. H. Bonneau,, P. M. Smith,, R. M. Wolcott,, and R. Chervenak. 1991. CD4-positive T lymphocytes are required for the generation of the primary but not the secondary CD8- positive cytolytic T lymphocyte response to herpes simplex virus in C57BL/6 mice. Cell. Immunol. 133:234252.
63. Kagi, D.,, B. Ledermann,, K. Burki,, P. Seiler,, B. Odermatt,, K. J. Olsen,, E. R. Podack,, R. M. Zinkernagel,, and H. Hengartner. 1994. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369:3137.
64. Kagi, D.,, B. Ledermann,, K. Burki,, R. M. Zinkernagel,, and H. Hengartner. 1996. Molecular mechanisms of lymphocyte-mediated cytotoxicity and their role in immunological protection and pathogenesis in vivo. Annu. Rev. Immunol. 14:207232.
65. Karupiah, G.,, Q. W. Xie,, R. M. Buller,, C. Nathan,, C. Duarte,, and J. D. MacMicking. 1993. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 261: 14451448.
66. Kehry, M. R.,, and P. D. Hodgkin. 1993. Helper T cells: delivery of cell contact and lymphokine-dependent signals to B cells. Semin. Immunol. 5:393400.
67. Klagge, I. M.,, and S. Schneider-Schaulies. 1999. Virus interactions with dendritic cells. J. Gen. Virol. 80:823833.
68. Knossow, M.,, R. S. Daniels,, A. R. Douglas,, J. J. Skehel,, and D. C. Wiley. 1984. Three-dimensional structure of an antigenic mutant of the influenza virus. Nature 311:678680.
69. Kundig, T. M.,, A. Shahinian,, K. Kawai,, H. W. Mittrucker,, E. Sebzda,, M. F. Bachmann,, T. W. Mak,, and P. S. Ohashi. 1996. Duration of TCR stimulation determines costimulatory requirement of T cells. Immunity 5:4152.
70. Kurane, I.,, and F. E. Ennis. 1992. Immunity and immunopathology in dengue virus infections. Semin. Immunol. 4:121127.
71. Lefrançois, L. 1984. Protection against lethal viral infection by neutralizing and nonneutralizing monoclonal antibodies: distinct mechanisms of action in vivo. J. Virol. 51:208214.
72. Lin, M. T.,, D. R. Hinton,, N. W. Marten,, C. C. Bergmann,, and S. A. Stohlman. 1999. Antibody prevents virus reactivation within the central nervous system. J. Immunol. 162:73587368.
73. Lin, M. Y.,, and R. M. Welsh. 1998. Stability and diversity of T cell receptor repertoire usage during lymphocytic choriomeningitis virus infection of mice. J. Exp. Med. 188:19932005.
74. Littana, R.,, I. Kurane,, and F. A. Ennis. 1990. Human IgG Fc receptor II mediates antibody-dependent enhancement of Dengue virus infection. J. Immunol. 144:31833186.
75. Lumsden, J. M.,, J. M. Roberts,, N. L. Harris,, R. J. Peach,, and F. Ronchese. 2000. Differential requirement for CD80 and CD80/CD86-dependent costimulation in the lung immune response to an influenza virus infection. J. Immunol. 164:7985.
76. MacMicking, J.,, Q. W. Xie,, and C. Nathan. 1997. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15:323350.
77. Maloy, K. J.,, B. Odermatt,, H. Hengartner,, and R. M. Zinkernagel. 1998. Interferon γ-producing γδ T cell-dependent antibody isotype switching in the absence of germinal center formation during virus infection. Proc. Natl. Acad. Sci. USA 95:11601165.
78. Mascola, J. R.,, G. Stiegler,, T. C. VanCott,, H. Katinger,, C. B. Carpenter,, C. E. Hanson,, H. Beary,, D. Hayes,, S. S. Frankel,, D. L. Birx,, and M. G. Lewis. 2000. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6:207210.
79. Mason, D. 1998. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19:395404.
80. Matloubian, M.,, R. J. Concepcion,, and R. Ahmed. 1994. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68:80568063.
81. McAdam, A. J.,, A. N. Schweitzer,, and A. H. Sharpe. 1998. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol. Rev. 165:231247.
82. Morens, D. M. 1994. Antibody-dependent enhancement of infection and the pathogenesis of viral disease. Clin. Infect. Dis. 19: 500512.
83. Moskophidis, D.,, F. Lechner,, H. Pircher,, and R. M. Zinkernagel. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector cells. Nature 362:758761.
84. Mozdzanowska, K.,, M. Furchner,, G. Washko,, J. Mozdzanowski,, and W. Gerhard. 1997. A pulmonary influenza virus infection in SCID mice can be cured by treatment with hemagglutininspecific antibodies that display very low virus-neutralizing activity in vitro. J. Virol. 71:43474355.
85. Mozdzanowska, K.,, K. Maiese,, and W. Gerhard. 2000. Th cell-deficient mice control influenza virus infection more effectively than Th- and B cell-deficient mice: evidence for a Th-independent contribution by B cells to virus clearance. J. Immunol. 164:26352643.
86. Mullbacher, A.,, R. T. Hla,, C. Museteanu,, and M. M. Simon. 1999. Perforin is essential for control of ectromelia virus but not related poxviruses in mice. J. Virol. 73:16651667.
87. Murali-Krishna, K.,, J. D. Altman,, M. Suresh,, D. J. Sourdive,, A. J. Zajac,, J. D. Miller,, J. Slansky,, and R. Ahmed. 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8:177187.
88. Mylin, L. M.,, R. H. Bonneau,, J. D. Lippolis,, and S. S. Tevethia. 1995. Hierarchy among multiple H-2b-restricted cytotoxic Tlymphocyte epitopes within simian virus 40 T antigen. J. Virol. 69:66656677.
89. Nahill, S. R.,, and R. M. Welsh. 1993. High frequency of crossreactive cytotoxic T lymphocytes elicited during the virusinduced polyclonal cytotoxic T lymphocyte response. J. Exp. Med. 177:317327.
90. Nakata, M.,, A. Kawasaki,, M. Azuma,, K. Tsuji,, H. Matsuda,, Y. Shinkai,, H. Yagita,, and K. Okumura. 1992. Expression of perforin and cytolytic potential of human peripheral blood lymphocyte subpopulations. Int. Immunol. 4:10491054.
91. Nugent, C. T.,, J. M. McNally,, R. Chervenak,, R. M. Wolcott,, and S. R. Jennings. 1995. Differences in the recognition of CTL epitopes during primary and secondary responses to herpes simplex virus infection in vivo. Cell. Immunol. 165:5564.
92. Osiowy, C.,, D. Horne,, and R. Anderson. 1994. Antibody-dependent enhancement of respiratory syncytial virus infection by sera from young infants. Clin. Diagn. Lab. Immunol. 1:670677.
93. Oxenius, A.,, M. F. Bachmann,, P. G. Ashton-Rickardt,, S. Tonegawa,, R. M. Zinkernagel,, and H. Hengartner. 1995. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur. J. Immunol. 25:34023411.
94. Planz, O.,, P. Seiler,, H. Hengartner,, and R. M. Zinkernagel. 1996. Specific cytotoxic T cells eliminate cells producing neutralizing antibodies. Nature 382:726729.
95. Price, D. A.,, P. Klenerman,, B. L. Booth,, R. E. Phillips,, and A. K. Sewell. 1999. Cytotoxic T lymphocytes, chemokines and antiviral immunity. Immunol. Today 20:212216.
96. Razvi, E. S.,, Z. Jiang,, B. A. Woda,, and R. M. Welsh. 1995. Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. Am. J. Pathol. 147:7991.
97. Razvi, E. S.,, and R. M. Welsh. 1993. Programmed cell death of T lymphocytes during acute viral infection: a mechanism for virus-induced immune deficiency. J. Virol. 67:57545765.
98. Reis e Sousa, C.,, A. Sher,, and P. Kaye. 1999. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr. Opin. Immunol. 11:392399.
99. Roizman, B.,, and A. E. Sears,. 1996. Herpes simplex viruses and their replication, p. 22312295. In B. N. Fields,, D. M. Knipe,, and P. M. Howley (ed.), Fields Virology, 3rd ed., vol. 2. Lippincott-Raven Publishers, Philadelphia, Pa.
100. Roost, H.-P.,, M. F. Bachmann,, A. Haag,, U. Kalinke,, V. Pliska,, H. Hengartner,, and R. M. Zinkernagel. 1995. Early highaffinity neutralizing anti-viral IgG responses without further improvements of affinity. Proc. Natl. Acad. Sci. USA 92:12571261.
101. Russell, J. H.,, B. Rush,, C. Weaver,, and R. Wang. 1993. Mature T cells of autoimmune lpr / lpr mice have a defect in antigen-stimulated suicide. Proc. Natl. Acad. Sci. USA 90:44094413.
102. Salio, M.,, M. Cella,, M. Suter,, and A. Lanzavecchia. 1999. Inhibition of dendritic cell maturation by herpes simplex virus. Eur. J. Immunol. 29:32453253.
103. Sallusto, F.,, C. R. Mackay,, and A. Lanzavecchia. 2000. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18:593620.
104. Salvucci, L. A.,, R. H. Bonneau,, and S. S. Tevethia. 1995. Polymorphism within the herpes simplex virus (HSV) ribonucleotide reductase large subunit (ICP6) confers type specificity for recognition by HSV type 1-specific cytotoxic T lymphocytes. J. Virol. 69:11221131.
105. Selin, L. K.,, S. R. Nahill,, and R. M. Welsh. 1994. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J. Exp. Med. 179:19331943.
106. Selin, L. K.,, S. M. Varga,, I. C. Wong,, and R. M. Welsh. 1998. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J. Exp. Med. 188:17051715.
107. Sha, Z.,, and R. W. Compans. 2000. Induction of CD4+ T-cell-independent immunoglobulin responses by inactivated influenza virus. J. Virol. 74:49995005.
108. Sheil, J. M.,, M. J. Bevan,, and L. Lefrancois. 1987. Characterization of dual-reactive H2kb-restricted anti-vesicular stomatitis virus and alloreactive cytotoxic T cells. J. Immunol. 138:36543660.
109. Shibata, R.,, T. Igarashi,, N. Haigwood,, A. Buckler-White,, R. Ogert,, W. Ross,, R. Willey,, M. W. Cho,, and M. A. Martin. 1999. Neutralizing antibody directed against the HIV-1 envelope glycoprotein can completely block HIV-1/SIV chimeric virus infections of macaque monkeys. Nat. Med. 5:204210.
110. Shresta, S.,, C. T. Pham,, D. A. Thomas,, T. A. Graubert,, and T. J. Ley. 1998. How do cytotoxic lymphocytes kill their targets? Curr. Opin. Immunol. 10:581587.
111. Sigal, L. J.,, S. Crotty,, R. Andino,, and K. L. Rock. 1999. Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398:7780.
112. Slifka, M. K.,, and R. Ahmed. 1996a. Limiting dilution analysis of virus-specific memory B cells by an ELISPOT assay. J. Immunol. Methods 199:3746.
113. Slifka, M. K.,, and R. Ahmed. 1996b. Long-term humoral immunity against viruses: revisiting the issue of plasma cell longevity. Trends Microbiol. 4:394400.
114. Slifka, M. K.,, and R. Ahmed. 1998. Long-lived plasma cells: a mechanism for maintaining persistent antibody production. Curr. Opin. Immunol. 10:252258.
115. Slifka, M. K.,, F. Rodriguez,, and J. L. Whitton. 1999. Rapid on/ off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401:7679.
116. Sourdive, D. J.,, K. Murali-Krishna,, J. D. Altman,, A. J. Zajac,, J. K. Whitmire,, C. Pannetier,, P. Kourilsky,, B. Evavold,, A. Sette,, and R. Ahmed. 1998. Conserved T cell receptor repertoire in primary and memory CD8 T cell responses to an acute viral infection. J. Exp. Med. 188:7182.
117. Spriggs, M. K.,, B. H. Koller,, T. Sato,, P. J. Morrissey,, W. C. Fanslow,, O. Smithies,, R. F. Voice,, M. B. Widmer,, and C. R. Maliszewski. 1992. B2 microglobulin, CD8+ T cell-deficient mice survive inoculation with high doses of vaccinia virus and exhibit altered IgG responses. Proc. Natl. Acad. Sci. USA 89:60706074.
118. Su, H. C.,, L. P. Cousens,, L. D. Fast,, M. K. Slifka,, R. D. Bungiro,, R. Ahmed,, and C. A. Biron. 1998. CD4+ and CD8+ T cell interactions in IFN-gamma and IL-4 responses to viral infections: requirements for IL-2. J. Immunol. 160:50075017.
119. Szomolanyi-Tsuda, E.,, J. D. Brien,, J. E. Dorgan,, R. L. Garcea,, R. T. Woodland,, and R. M. Welsh. 2001. Antiviral T cell-independent type 2 antibody responses induced in vivo in the absence of T and NK cells. Virology 280:160168.
120. Szomolanyi-Tsuda, E.,, J. D. Brien,, J. E. Dorgan,, R. M. Welsh,, and R. L. Garcea. 2000. The role of CD40-CD154 interaction in antiviral T cell-independent IgG responses. J. Immunol. 164: 58775882.
121. Szomolanyi-Tsuda, E.,, Q. P. Le,, R. L. Garcea,, and R. M. Welsh. 1998. T cell-independent immunoglobulin G responses in vivo are elicited by live-virus infection but not by immunization with viral proteins or virus-like particles. J. Virol. 72:66656670.
122. Szomolanyi-Tsuda, E.,, and R. M. Welsh. 1996. T cell-independent antibody-mediated clearance of polyoma virus in T cell-deficient mice. J. Exp. Med. 183:403411.
123. Szomolanyi-Tsuda, E.,, and R. M. Welsh. 1998. T cell-independent antiviral antibody responses. Curr. Opin. Immunol. 10:431435.
124. Tay, C. H.,, and R. M. Welsh. 1997. Distinct organ-dependent mechanisms for the control of murine cytomegalovirus infection by natural killer cells. J. Virol. 71:267275.
125. Thomsen, A. R.,, A. Nansen,, J. P. Christensen,, S. O. Andreasen,, and O. Marker. 1998. CD40 ligand is pivotal to efficient control of virus replication in mice infected with lymphocytic choriomeningitis virus. J. Immunol. 161:45834590.
126. Thomsen, A. R.,, M. Volkert,, and O. Marker. 1985. Different isotype profiles of virus-specific antibodies in acute and persistent lymphocytic choriomeningitis virus infection in mice. Immunology 55:213223.
127. Tishon, A.,, H. Lewicki,, G. Rall,, M. Von Herrath,, and M. B. Oldstone. 1995. An essential role for type 1 interferon-gamma in terminating persistent viral infection. Virology 212:244250.
128. Tishon, A.,, A. Salmi,, R. Ahmed,, and M. B. A. Oldstone. 1991. Role of viral strains and host genes in determining levels of immune complexes in a model system—implications for HIV infection. AIDS Res. 7:963969.
129. Toes, R. E. M.,, S. P. Schoenberger,, E. I. H. van der Voort,, R. Offringa,, and C. J. M. Melief. 1998. CD40-CD40Ligand interactions and their role in cytotoxic T lymphocyte priming and anti-tumor immunity. Semin. Immunol. 10:443448.
130. Tomori, O. 1999. Impact of yellow fever on the developing world. Adv. Virus Res. 53:534.
131. Topham, D. J.,, R. A. Tripp,, and P. C. Doherty. 1997. CD8+ T cells clear influenza virus by perforin- or Fas-dependent processes. J. Immunol. 159:51975200.
132. Townsend, A. R.,, J. Rothbard,, F. M. Gotch,, G. Bahadur,, D. Wraith,, and A. J. McMichael. 1986. The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959968.
133. Tyler, K. L.,, M. A. Mann,, B. N. Fields,, and H. W. Virgin IV. 1993. Protective anti-reovirus monoclonal antibodies and their effects on viral pathogenesis. J. Virol. 67:34463453.
134. van den Broek, M.,, M. F. Bachmann,, G. Kohler,, M. Barner,, R. Escher,, R. Zinkernagel,, and M. Kopf. 2000. IL-4 and IL-10 antagonize IL-12-mediated protection against acute vaccinia virus infection with a limited role of IFN-gamma and nitric oxide synthetase 2. J. Immunol. 164:371378.
135. van der Most, R. G.,, K. Murali-Krishna,, J. L. Whitton,, C. Oseroff,, J. Alexander,, S. Southwood,, J. Sidney,, R. W. Chesnut,, A. Sette,, and R. Ahmed. 1998. Identification of Db- and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice. Virology 240:158167.
136. Varga, S. M.,, and R. M. Welsh. 1996. The CD45RB-associated epitope defined by monoclonal antibody CZ-1 is an activation and memory marker for mouse CD4 T cells. Cell. Immunol. 167:5662.
137. Varga, S. M.,, and R. M. Welsh. 1998a. Stability of virus-specific CD4+ T cell frequencies from acute infection into long term memory. J. Immunol. 161:367374.
138. Varga, S. M.,, and R. M. Welsh. 1998b. Detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 161: 32153218.
139. Varga, S. M.,, and R. M. Welsh. 2000. High frequency of virus-specific interleukin-2-producing CD4+ T cells and Th1 dominance during lymphocytic choriomeningitis virus infection. J. Virol. 74:44294432.
140. Virgin, H. W., IV, and S. H. Speck. 1999. Unraveling immunity to γ-herpesviruses: a new model for understanding the role of immunity in chronic virus infection. Curr. Opin. Immunol. 11: 371379.
141. Von Herrath, M. G.,, B. Coon,, and M. B. A. Oldstone. 1997. Low affinity cytotoxic T-lymphocytes require IFNg to clear an acute viral infection. Virology 229:349359.
142. von Pirquet, C. 1908. Das Verhalten der kurtanen Tuberkulin- Reakton wahrend der Masern. Dtsch. Med. Wochenschr. 34: 12971300.
143. Wang, B.,, R. Maile,, R. Greenwood,, E. J. Collins,, and J. A. Frelinger. 2000. Naive CD8+ T cells do not require costimulation for proliferation and differentiation into cytotoxic effector cells. J. Immunol. 164:12161222.
144. Ward, S. G.,, K. Bacon,, and J. Westwick. 1998. Chemokines and T lymphocytes: more than an attraction. Immunity 9:111.
145. Welsh, R. M.,, T. G. Markees,, B. A. Woda,, K. A. Daniels,, M. A. Brehm,, J. P. Mordes,, D. L. Greiner,, and A. A. Rossini. 2000. Virus-induced abrogation of transplantation tolerance induced by donor-specific transfusion and anti-CD154 antibody. J. Virol. 74:22102218.
146. Welsh, R. M.,, and J. M. McNally. 1999. Immune deficiency, immune silencing, and clonal exhaustion of T cell responses during viral infections. Curr. Opin. Microbiol. 2:382387.
147. Welsh, R. M.,, and M. Vargas-Cortes,. 1992. Natural killer cells in viral infection, p. 107150. In C. E. Lewis, and J. O. McGee (ed.), The Natural Killer Cell. The Natural Immune System. IRL Press, Ltd., Oxford, United Kingdom.
148. Whitmire, J. K.,, M. S. Asano,, K. Murali-Krishna,, M. Suresh,, and R. Ahmed. 1998. Long-term CD4 Th1 and Th2 memory following acute lymphocytic choriomeningitis virus infection. J. Virol. 72:82818288.
149. Whitmire, J. K.,, R. A. Flavell,, I. S. Grewal,, C. P. Larsen,, T. C. Pearson,, and R. Ahmed. 1999. CD40-CD40 ligand costimulation is required for generating antiviral CD4 T cell responses but is dispensable for CD8 T cell responses. J. Immunol. 163: 31943201.
150. Whitmire, J. K.,, M. K. Slifka,, I. S. Grewal,, R. A. Flavell,, and R. Ahmed. 1996. CD40-ligand-deficient mice generate a normal primary cytotoxic T-lymphocyte response but a defective humoral response to a viral infection. J. Virol. 70:83758381.
151. Whitton, J. L.,, P. J. Southern,, and M. B. Oldstone. 1988. Analyses of the cytotoxic T lymphocyte responses to glycoprotein and nucleoprotein components of lymphocytic choriomeningitis virus. Virology 162:321327.
152. Wilson, C. S.,, J. M. Moser,, J. D. Altman,, P. E. Jensen,, and A. E. Lukacher. 1999. Cross-recognition of two middle T protein epitopes by immunodominant polyoma virus-specific CTL. J. Immunol. 162:39333941.
153. Wilson, I. A.,, and N. J. Case. 1990. Structural basis of immune recognition of influenza virus hemagglutinin. Annu. Rev. Immunol. 8:737771.
154. Wu, Y.,, and Y. Liu. 1994. Viral induction of co-stimulatory activity on antigen-presenting cells bypasses the need for CD4+ T-cell help in CD8+ T-cell responses. Curr. Biol. 4:499505.
155. Yang, H.,, and R. M. Welsh. 1986. Induction of alloreactive cytotoxic T cells by acute virus infection of mice. J. Immunol. 136: 11861193.
156. Yang, H. Y.,, P. L. Dundon,, S. R. Nahill,, and R. M. Welsh. 1989. Virus-induced polyclonal cytotoxic T lymphocyte stimulation. J. Immunol. 142:17101718.
157. Yasukawa, M.,, and J. M. Zarling. 1984. Human cytotoxic T cell clones directed against herpes simplex virus-infected cells. I. Lysis restricted by HLA class II MB and DR antigens. J. Immunol. 133:422427.
158. Yewdell, J. W.,, and J. R. Bennink. 1999. Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 17:5188.
159. Zarozinski, C. C.,, J. M. McNally,, B. L. Lohman,, K. A. Daniels,, and R. M. Welsh. 2000. Bystander sensitization to activation-induced cell death as a mechanism of virus-induced immune suppression. J. Virol. 74:36503658.
160. Zarozinski, C. C.,, and R. M. Welsh. 1997. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185:16291639.
161. Zhang, X.,, S. Sun,, I. Hwang,, D. F. Tough,, and J. Sprent. 1998. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8:591599.
Zimmermann, C.,, P. Seiler,, P. Lane,, and R. M. Zinkernagel. 1997. Antiviral immune response in CTLA4 transgenic mice. J. Virol. 71:18021807..
163. Zinkernagel, R. M.,, and P. C. Doherty. 1974. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248: 701702.


Generic image for table
Table 1

Antiviral antibody responses in mice with targeted mutations affecting T-cell helper function

Citation: Szomolanyi-Tsuda E, Brehm M, Welsh R. 2002. Acquired Immunity against Viral Infections, p 247-266. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error