1887

Chapter 21 : Pathology and Pathogenesis of Parasitic Disease

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Pathology and Pathogenesis of Parasitic Disease, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap21-2.gif

Abstract:

This chapter focuses primarily on the question of how the balance between immune protection and immune pathology is regulated. A fundamental biological dilemma is that the host has to deal with many different infectious pathogens and, even for a single species of parasite, with different strains. Eosinophils, typically associated with the Th2 response, are involved in immediate hypersensitivity reactions to the filarial worm . Humans with visceral leishmaniasis have high circulating levels of IL-10, which may partly explain their inability to control the infection. The clinical manifestations of weight loss, hypothermia, hypoglycemia, and increased levels of liver-derived enzymes in the blood, together with hepatic necrosis, suggested that the IL-10 knockout (KO) mice died in response to an overwhelming systemic immune response, resembling that observed during septic shock. Schistosomiasis is caused by one of three major species of helminth parasites, , , and . Malarial infection provokes high levels of tumor necrosis factor (TNF) and other proinflammatory cytokines as well as causing markedly elevated immunoglobulin production activation of complement and redistribution of lymphocytes from the peripheral circulation to the spleen and other organs. Although our knowledge of cytokines and other immunological mediators has grown enormously in the last 15 years, the current list is undoubtedly a small fraction of the total number of host molecules involved in the pathogenesis of parasitic disease.

Citation: Wynn T, Kwiatkowski D. 2002. Pathology and Pathogenesis of Parasitic Disease, p 293-305. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch21

Key Concept Ranking

Transforming Growth Factor beta
0.42475402
0.42475402
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Resistance versus susceptibility to many intracellular organisms is regulated by a delicate balance between IFN-γ and IL- 10. The type, magnitude, location, and duration of the host response dictate a susceptible or resistant outcome following infection with and With all three intracellular pathogens, IFN-γ is required to induce resistance. Nevertheless, the protective response must also be carefully down-regulated in a timely manner to prevent the development of immune-mediated and potentially lethal tissue pathology. Here, the immunosuppressive cytokine IL-10 appears to play a dominant role. Because of the systemic nature of and infections, dysregulation in the type 1 response is more dangerous during these infections (bold line) than during an infection (dotted line), which tends to remain localized within granulomatous foci.

Citation: Wynn T, Kwiatkowski D. 2002. Pathology and Pathogenesis of Parasitic Disease, p 293-305. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

The proinflammatory response, mediated through IFN- γ, TNF-α, and NO, is important for acute resistance to murine malaria infection, but in the absence of IL-10 or TGF-β these responses can induce severe pathology. It is postulated that an early proinflammatory cytokine response mediates protective immunity whereas a late or uncontrolled response contributes to the development of lethal pathology.

Citation: Wynn T, Kwiatkowski D. 2002. Pathology and Pathogenesis of Parasitic Disease, p 293-305. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Highly polarized type 1 and type 2 cytokine responses induce distinct but equally detrimental forms of immunopathology in murine schistosomiasis. A mixed Th1-Th2-type cytokine response protects chronically -infected mice from the development of lethal egg-induced tissue pathology. Mice deficient in IL-4 and IL-10 develop highly polarized Th1-type cytokine responses following infection. Consequently, these mice suffer acute mortality, which is linked to overexpression of the proinflammatory mediators IFN-γ, TNF-α, and inducible NO and the formation of nonfibrotic granulomas. In contrast, mice deficient in IL-12 and IL-10 develop highly polarized Th2-type cytokine responses and show signs of chronic morbidity. These mice form large eosinophil-rich granulomas and develop severe hepatic fibrosis, causing portal hypertension, portal-systemic shunts, and fatal hematemesis.

Citation: Wynn T, Kwiatkowski D. 2002. Pathology and Pathogenesis of Parasitic Disease, p 293-305. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817978.chap21
1. Abbas, A. K.,, K. M. Murphy,, and A. Sher. 1996. Function diversity of helper T lymphocytes. Nature 383: 787 793.
2. Abdalla, S.,, and D. J. Weatherall. 1982. The direct antiglobulin test in P. falciparum malaria. Br. J. Haematol. 51: 415 425.
3. Abdalla, S.,, D. J. Weatherall,, S. N. Wickramasinghe,, and M. Hughes. 1980. The anaemia of P. falciparum malaria. Br. J. Haematol. 46: 171 183.
4. Aitman, T. J.,, L. D. Cooper,, P. J. Norsworthy,, F. N. Wahid,, J. K. Gray,, B. R. Curtis,, P. M. McKeigue,, D. Kwiatkowski,, B. M. Greenwood,, R. W. Snow,, A. V. Hill,, and J. Scott. 2000. Malaria susceptibility and CD36 mutation. Nature 405: 1015 1016.
5. Al Yaman, F. M.,, D. Mokela,, B. Genton,, K. A. Rockett,, M. P. Alpers,, and I. A. Clark. 1996. Association between serum levels of reactive nitrogen intermediates and coma in children with cerebral malaria in Papua New Guinea. Trans. R. Soc. Trop. Med. Hyg. 90: 270 273.
6. Anstey, N. M.,, J. B. Weinberg,, M. Y. Hassanali,, E. D. Mwaikambo,, D. Manyenga,, M. A. Misukonis,, D. R. Arnelle,, D. Hollis,, M. I. McDonald,, and D. L. Granger. 1996. Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production / nitric oxide synthase type 2 expression. J. Exp. Med. 184: 557 567.
7. Berendt, A. R.,, D. L. Simmons,, J. Tansey,, C. I. Newbold,, and K. Marsh. 1989. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341: 57 59.
8. Berkley, J.,, S. Mwarumba,, K. Bramham,, B. Lowe,, and K. Marsh. 1999. Bacteraemia complicating severe malaria in children. Trans. R. Soc. Trop. Med. Hyg. 93: 283 286.
9. Brewster, D. R.,, D. Kwiatkowski,, and N. J. White. 1990. Neurological sequelae of cerebral malaria in children. Lancet 336: 1039 1043.
10. Brunet, L. R.,, F. D. Finkelman,, A. W. Cheever,, M. A. Kopf,, and E. J. Pearce. 1997. IL-4 protects against TNF-alpha-mediated cachexia and death during acute schistosomiasis. J. Immunol. 159: 777 785.
11. Cabrera, M.,, M. A. Shaw,, C. Sharples,, H. Williams,, M. Castes,, J. Convit,, and J. M. Blackwell. 1995. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J. Exp. Med. 182: 1259 1264.
12. Cargill, M.,, D. Altshuler,, J. Ireland,, P. Sklar,, K. Ardlie,, N. Patil,, N. Shaw,, C. R. Lane,, E. P. Lim,, N. Kalyanaraman,, J. Nemesh,, L. Ziaugra,, L. Friedland,, A. Rolfe,, J. Warrington,, R. Lipshutz,, G. Q. Daley,, and E. S. Lander. 1999. Characterization of singlenucleotide polymorphisms in coding regions of human genes. Nat. Genet. 22: 231 238. (Erratum, 23:373, 1999.).
13. Cheever, A. W.,, and G. S. Yap. 1997. Immunologic basis of disease and disease regulation in schistosomiasis. Chem. Immunol. 66: 159 176.
14. Chiaramonte, M. G.,, D. D. Donaldson,, A. W. Cheever,, and T. A. Wynn. 1999. An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J. Clin. Investig. 104: 777 785.
15. Clark, I. A.,, F. M. al Yaman,, and L. S. Jacobson. 1997. The biological basis of malarial disease. Int. J. Parasitol. 27: 1237 1249.
16. Clark, I. A.,, W. B. Cowden,, G. A. Butcher,, and N. H. Hunt. 1987a. Possible roles of tumor necrosis factor in the pathology of malaria. Am. J. Pathol. 129: 192 199.
17. Clark, I. A.,, N. H. Hunt,, G. A. Butcher,, and W. B. Cowden. 1987b. Inhibition of murine malaria ( Plasmodium chabaudi) in vivo by recombinant interferon-gamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J. Immunol. 139: 3493 3496.
18. Clark, I. A.,, K. A. Rockett,, and W. B. Cowden. 1992a. Possible central role of nitric oxide in conditions clinically similar to cerebral malaria. Lancet 340: 894 896.
19. Clark, I. A.,, K. A. Rockett,, and W. B. Cowden. 1992b. TNF in Malaria. Raven Press, New York, N.Y..
20. Clark, I. A.,, J. L. Virelizier,, E. A. Carswell,, and P. R. Wood. 1981. Possible importance of macrophage-derived mediators in acute malaria. Infect. Immun. 32: 1058 1066.
21. Dai, W. J.,, G. Kohler,, and F. Brombacher. 1997. Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice. J. Immunol. 158: 2259 2267.
22. Dessein, A. J.,, D. Hillaire,, N. E. Elwali,, S. Marquet,, Q. Mohamed- Ali,, A. Mirghani,, S. Henri,, A. A. Abdelhameed,, O. K. Saeed,, M. M. Magzoub,, and L. Abel. 1999. Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-gamma receptor gene. Am. J. Hum. Genet. 65: 709 721.
23. English, M.,, R. Sauerwein,, C. Waruiru,, M. Mosobo,, J. Obiero,, B. Lowe,, and K. Marsh. 1997. Acidosis in severe childhood malaria. Q. J. Med. 90: 263 270.
24. Facer, C. A.,, R. S. Bray,, and J. Brown. 1979. Direct Coombs antiglobulin reactions in Gambian children with Plasmodium falciparum malaria. I. Incidence and class specificity. Clin. Exp. Immunol. 35: 119 127.
25. Fallon, P. G.,, and D. W. Dunne. 1999. Tolerization of mice to Schistosoma mansoni egg antigens causes elevated type 1 and diminished type 2 cytokine responses and increased mortality in acute infection. J. Immunol. 162: 4122 4132.
26. Fallon, P. G.,, E. J. Richardson,, G. J. McKenzie,, and A. N. McKenzie. 2000a. Schistosome infection of transgenic mice defines distinct and contrasting pathogenic roles for IL-4 and IL- 13: IL-13 is a profibrotic agent. J. Immunol. 164: 2585 2591.
27. Fallon, P. G.,, E. J. Richardson,, P. Smith,, and D. W. Dunne. 2000b. Elevated type 1, diminished type 2 cytokines and impaired antibody response are associated with hepatotoxicity and mortalities during Schistosoma mansoni infection of CD4- depleted mice. Eur. J. Immunol. 30: 470 480.
28. Fernandez-Reyes, D.,, A. G. Craig,, S. A. Kyes,, N. Peshu,, R. W. Snow,, A. R. Berendt,, K. Marsh,, and C. I. Newbold. 1997. A high frequency African coding polymorphism in the N-terminal domain of ICAM-1 predisposing to cerebral malaria in Kenya. Hum. Mol. Genet. 6: 1357 1360.
29. Gazzinelli, R. T.,, M. Wysocka,, S. Hieny,, T. Scharton-Kersten,, A. Cheever,, R. Kuhn,, W. Muller,, G. Trinchieri,, and A. Sher. 1996. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J. Immunol. 157: 798 805.
30. Grau, G. E.,, L. F. Fajardo,, P. F. Piguet,, B. Allet,, P. H. Lambert,, and P. Vassalli. 1987. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237: 1210 1212.
31. Grau, G. E.,, P. Pointaire,, P. F. Piguet,, C. Vesin,, H. Rosen,, I. Stamenkovic,, F. Takei,, and P. Vassalli. 1991. Late administration of monoclonal antibody to leukocyte function-antigen 1 abrogates incipient murine cerebral malaria. Eur. J. Immunol. 21: 2265 2267.
32. Grau, G. E.,, T. E. Taylor,, M. E. Molyneux,, J. J. Wirima,, P. Vassalli,, M. Hommel,, and P. H. Lambert. 1989. Tumor necrosis factor and disease severity in children with falciparum malaria. N. Engl. J. Med. 320: 1586 1591.
33. Gravenor, M. B.,, A. R. McLean,, and D. Kwiatkowski. 1995. The regulation of malaria parasitaemia; parameter estimates for a population model. Parasitology 110: 115 122.
34. Greenwood, B. M. 1974. Possible role of a B-cell mitogen in hypergammaglobulinaemia in malaria and trypanosomiasis. Lancet i: 435 436.
35. Greenwood, B. M.,, and M. J. Brueton. 1974. Complement activation in children with acute malaria. Clin. Exp. Immunol. 18: 267 272.
36. Hall, L. R.,, and E. Pearlman. 1999. Pathogenesis of onchocercal keratitis (river blindness). Clin. Microbiol. Rev. 12: 445 453.
37. Hamilton, W. D.,, R. Axelrod,, and R. Tanese. 1990. Sexual reproduction as an adaptation to resist parasites. Proc. Natl. Acad. Sci. USA 87: 3566 3573.
38. Hearn, J.,, N. Rayment,, D. N. Landon,, D. R. Katz,, and J. B. de Souza. 2000. Immunopathology of cerebral malaria: morphological evidence of parasite sequestration in murine brain microvasculature. Infect. Immun. 68: 5364 5376.
39. Heinzel, F. P.,, M. D. Sadick,, B. J. Holaday,, R. L. Coffman,, and R. M. Locksley. 1989. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169: 59 72.
40. Hoffmann, K. F.,, A. W. Cheever,, and T. A. Wynn. 2000. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. J. Immunol. 164: 6406 6416.
41. Hoffmann, K. F.,, T. C. McCarty,, D. H. Segal,, M. G. Chiaramonte,, M. Hesse,, E. M. Davis,, A. W. Cheever,, P. S. Meltzer,, H. C. Morse III,, and T. A. Wynn. Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type-1 and type-2 cytokine-mediated inflammatory reactions. FASEB J., in press.
42. Holaday, B. J.,, M. M. Pompeu,, S. Jeronimo,, M. J. Texeira,, A. de Sousa,, A. W. Vasconcelos,, R. D. Pearson,, J. S. Abrams,, and R. M. Locksley. 1993. Potential role for interleukin-10 in the immunosuppression associated with kala azar. J. Clin. Investig. 92: 2626 2632.
43. Holscher, C.,, M. Mohrs,, W. J. Dai,, G. Kohler,, B. Ryffel,, G. A. Schaub,, H. Mossmann,, and F. Brombacher. 2000. Tumor necrosis factor alpha-mediated toxic shock in Trypanosoma cruziinfected interleukin 10-deficient mice. Infect. Immun. 68: 4075 4083.
44. Hunter, C. A.,, L. A. Ellis-Neyes,, T. Slifer,, S. Kanaly,, G. Grunig,, M. Fort,, D. Rennick,, and F. C. Araujo. 1997. IL-10 is required to prevent immune hyperactivity during infection with Trypanosoma cruzi. J. Immunol. 158: 3311 3316.
45. Hviid, L.,, T. G. Theander,, N. H. Abdulhadi,, Y. A. Abu-Zeid,, R. A. Bayoumi,, and J. B. Jensen. 1991. Transient depletion of T cells with high LFA-1 expression from peripheral circulation during acute Plasmodium falciparum malaria. Eur. J. Immunol. 21: 1249 1253.
46. Infante-Duarte, C.,, and T. Kamradt. 1999. Th1/Th2 balance in infection. Springer Semin. Immunopathol. 21: 317 338.
47. Johnson, R. A.,, T. A. Waddelow,, J. Caro,, A. Oliff,, and G. D. Roodman. 1989. Chronic exposure to tumor necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood 74: 130 138.
48. Karp, C. L.,, S. H. el-Safi,, T. A. Wynn,, M. M. Satti,, A. M. Kordofani,, F. A. Hashim,, M. Hag-Ali,, F. A. Neva,, T. B. Nutman,, and D. L. Sacks. 1993. In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J. Clin. Investig. 91: 1644 1648.
49. Kitagawa, S.,, A. Yuo,, M. Yagisawa,, E. Azuma,, M. Yoshida,, Y. Furukawa,, M. Takahashi,, J. Masuyama,, and F. Takaku. 1996. Activation of human monocyte functions by tumor necrosis factor: rapid priming for enhanced release of superoxide and erythrophagocytosis, but no direct triggering of superoxide release. Exp. Hematol. 24: 559 567.
50. Knight, J. C.,, I. Udalova,, A. V. Hill,, B. M. Greenwood,, N. Peshu,, K. Marsh,, and D. Kwiatkowski. 1999. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat. Genet. 22: 145 150.
51. Krishna, S.,, D. W. Waller,, F. ter Kuile,, D. Kwiatkowski,, J. Crawley,, C. F. Craddock,, F. Nosten,, D. Chapman,, D. Brewster,, P. A. Holloway, et al. 1994. Lactic acidosis and hypoglycemia in children with severe malaria: pathophysiological and prognostic significance. Trans. R. Soc. Trop. Med. Hyg. 88: 67 73.
52. Kurtzhals, J. A.,, V. Adabayeri,, B. Q. Goka,, B. D. Akanmori,, J. O. Oliver-Commey,, F. K. Nkrumah,, C. Behr,, and L. Hviid. 1998. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria. Lancet 351: 1768 1772. (Errata, 352: 242, 1998, and 353: 848, 1999.)
53. Kwiatkowski, D. 1995. Malarial toxins and the regulation of parasite density. Parasitol. Today ii: 206 212.
54. Kwiatkowski, D.,, A. V. Hill,, I. Sambou,, P. Twumasi,, J. Castracane,, K. R. Manogue,, A. Cerami,, D. R. Brewster,, and B. M. Greenwood. 1990. TNF concentration in fatal cerebral, nonfatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet 336: 1201 1204.
55. Kwiatkowski, D.,, and P. Perlmann. 1999. Inflammatory Processes in the Pathogenesis of Malaria. Harwood Academic Publishers.
56. Li, C.,, I. Corraliza,, and J. Langhorne. 1999. A defect in interleukin- 10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect. Immun. 67: 4435 4442.
57. Linke, A.,, R. Kuhn,, W. Muller,, N. Honarvar,, C. Li,, and J. Langhorne. 1996. Plasmodium chabaudi chabaudi: differential susceptibility of gene-targeted mice deficient in IL-10 to an erythrocytic-stage infection. Exp. Parasitol. 84: 253 263.
58. Looareesuwan, S.,, M. Ho,, Y. Wattanagoon,, N. J. White,, D. A. Warrell,, D. Bunnag,, T. Harinasuta,, and D. J. Wyler. 1987. Dynamic alteration in splenic function during acute falciparum malaria. N. Engl. J. Med. 317: 675 679.
59. Lucas, R.,, P. Juillard,, E. Decoster,, M. Redard,, D. Burger,, Y. Donati,, C. Giroud,, C. Monso-Hinard,, T. De Kesel,, W. A. Buurman,, M. W. Moore,, J. M. Dayer,, W. Fiers,, H. Bluethmann,, and G. E. Grau. 1997. Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane-bound TNF in experimental cerebral malaria. Eur. J. Immunol. 27: 1719 1725.
60. Luxemburger, C.,, F. Ricci,, F. Nosten,, D. Raimond,, S. Bathet,, and N. J. White. 1997. The epidemiology of severe malaria in an area of low transmission in Thailand. Trans. R. Soc. Trop. Med. Hyg. 91: 256 262.
61. Maeda, H.,, H. Kuwahara,, Y. Ichimura,, M. Ohtsuki,, S. Kurakata,, and A. Shiraishi. 1995. TGF-beta enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J. Immunol. 155: 4926 4932.
62. Marquet, S.,, L. Abel,, D. Hillaire,, H. Dessein,, J. Kalil,, J. Feingold,, J. Weissenbach,, and A. J. Dessein. 1996. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat. Genet. 14: 181 184.
63. McGuire, W.,, A. V. Hill,, C. E. Allsopp,, B. M. Greenwood,, and D. Kwiatkowski. 1994. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature 371: 508 510.
64. McGuire, W.,, J. C. Knight,, A. V. Hill,, C. E. Allsopp,, B. M. Greenwood,, and D. Kwiatkowski. 1999. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J. Infect. Dis. 179: 287 290.
65. Miller, K. L.,, P. H. Silverman,, B. Kullgren,, and L. J. Mahlmann. 1989. Tumor necrosis factor alpha and the anemia associated with murine malaria. Infect. Immun. 57: 1542 1546.
66. Montenegro, S. M.,, P. Miranda,, S. Mahanty,, F. G. Abath,, K. M. Teixeira,, E. M. Coutinho,, J. Brinkman,, I. Goncalves,, L. A. Domingues,, A. L. Domingues,, A. Sher,, and T. A. Wynn. 1999. Cytokine production in acute versus chronic human schistosomiasis mansoni: the cross-regulatory role of interferon-gamma and interleukin-10 in the responses of peripheral blood mononuclear cells and splenocytes to parasite antigens. J. Infect. Dis. 179: 1502 1514.
67. Newbold, C.,, A. Craig,, S. Kyes,, A. Rowe,, D. Fernandez-Reyes,, and T. Fagan. 1999. Cytoadherence, pathogenesis and the infected red cell surface in Plasmodium falciparum. Int. J. Parasitol. 29: 927 937.
68. Omer, F. M.,, J. A. Kurtzhals,, and E. M. Riley. 2000. Maintaining the immunological balance in parasitic infections: a role for TGF-beta? Parasitol. Today 16: 18 23.
69. Omer, F. M.,, and E. M. Riley. 1998. Transforming growth factor beta production is inversely correlated with severity of murine malaria infection. J. Exp. Med. 188: 39 48.
70. Oster, C. N.,, L. C. Koontz,, and D. J. Wyler. 1980. Malaria in asplenic mice: effects of splenectomy, congenital asplenia, and splenic reconstitution on the course of infection. Am. J. Trop. Med. Hyg. 29: 1138 1142.
71. Othoro, C.,, A. A. Lal,, B. Nahlen,, D. Koech,, A. S. Orago,, and V. Udhayakumar. 1999. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J. Infect. Dis. 179: 279 282.
72. Ottesen, E. A. 1995. Immune responsiveness and the pathogenesis of human onchocerciasis. J. Infect. Dis. 171: 659 671.
73. Pearce, E. J.,, A. La Flamme,, E. Sabin,, and L. R. Brunet. 1998. The initiation and function of Th2 responses during infection with Schistosoma mansoni. Adv. Exp. Med. Biol. 452: 67 73.
74. Pearlman, E.,, J. H. Lass,, D. S. Bardenstein,, E. Diaconu,, F. E. Hazlett, Jr., J. Albright, A. W. Higgins, and J. W. Kazura. 1997. IL-12 exacerbates helminth-mediated corneal pathology by augmenting inflammatory cell recruitment and chemokine expression. J. Immunol. 158: 827 833.
75. Pichyangkul, S.,, P. Saengkrai,, and H. K. Webster. 1994. Plasmodium falciparum pigment induces monocytes to release high levels of tumor necrosis factor-alpha and interleukin-1 beta. Am. J. Trop. Med. Hyg. 51: 430 435.
76. Reis e Sousa, C.,, G. Yap,, O. Schulz,, N. Rogers,, M. Schito,, J. Aliberti,, S. Hieny,, and A. Sher. 1999. Paralysis of dendritic cell IL-12 production by microbial products prevents infectioninduced immunopathology. Immunity 11: 637 647.
77. Roodman, G. D.,, A. Bird,, D. Hutzler,, and W. Montgomery. 1987. Tumor necrosis factor-alpha and hematopoietic progenitors: effects of tumor necrosis factor on the growth of erythroid progenitors CFU-E and BFU-E and the hematopoietic cell lines K562, HL60, and HEL cells. Exp. Hematol. 15: 928 935.
78. Schofield, L.,, J. Villaquiran,, A. Ferreira,, H. Schellekens,, R. Nussenzweig,, and V. Nussenzweig. 1987. Gamma interferon, CD8+ T cells and antibodies required for immunity to malaria sporozoites. Nature 330: 664 666.
79. Scott, P.,, P. Natovitz,, R. L. Coffman,, E. Pearce,, and A. Sher. 1988. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med. 168: 1675 1684.
80. Scuderi, P.,, K. E. Sterling,, K. S. Lam,, P. R. Finley,, K. J. Ryan,, C. G. Ray,, E. Petersen,, D. J. Slymen,, and S. E. Salmon. 1986. Raised serum levels of tumour necrosis factor in parasitic infections. Lancet ii: 1364 1365.
81. Sedegah, M.,, F. Finkelman,, and S. L. Hoffman. 1994. Interleukin 12 induction of interferon gamma-dependent protection against malaria. Proc. Natl. Acad. Sci. USA 91: 10700 10702.
82. Snow, R. W.,, J. A. Omumbo,, B. Lowe,, C. S. Molyneux,, J. O. Obiero,, A. Palmer,, M. W. Weber,, M. Pinder,, B. Nahlen,, C. Obonyo,, C. Newbold,, S. Gupta,, and K. Marsh. 1997. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349: 1650 1654.
83. Stevenson, M. M.,, and E. Ghadirian. 1989. Human recombinant tumor necrosis factor alpha protects susceptible A/ J mice against lethal Plasmodium chabaudi AS infection. Infect. Immun. 57: 3936 3939.
84. Stevenson, M. M.,, M. F. Tam,, S. F. Wolf,, and A. Sher. 1995. IL- 12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J. Immunol. 155: 2545 2556.
85. Suzuki, Y.,, A. Sher,, G. Yap,, D. Park,, L. E. Neyer,, O. Liesenfeld,, M. Fort,, H. Kang,, and E. Gufwoli. 2000. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/ c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J. Immunol. 164: 5375 5382.
86. Taverne, J.,, N. Sheikh,, J. B. de Souza,, J. H. Playfair,, L. Probert,, and G. Kollias. 1994. Anaemia and resistance to malaria in transgenic mice expressing human tumour necrosis factor. Immunology 82: 397 403.
87. Taylor-Robinson, A. W. 1998. Immunoregulation of malarial infection: balancing the vices and virtues. Int. J. Parasitol. 28: 135 148.
88. Turner, D. M.,, D. M. Williams,, D. Sankaran,, M. Lazarus,, P. J. Sinnott,, and I. V. Hutchinson. 1997. An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet. 24: 1 8.
89. Turner, G. D.,, H. Morrison,, M. Jones,, T. M. Davis,, S. Looareesuwan,, I. D. Buley,, K. C. Gatter,, C. I. Newbold,, S. Pukritayakamee,, B. Nagachinta, et al. 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol. 145: 1057 1069.
90. Vanham, G.,, Z. Toossi,, C. S. Hirsch,, R. S. Wallis,, S. K. Schwander,, E. A. Rich,, and J. J. Ellner. 1997. Examining a paradox in the pathogenesis of human pulmonary tuberculosis: immune activation and suppression / anergy. Tubercle Lung Dis. 78: 145 158.
91. van Hensbroek, M. B.,, A. Palmer,, E. Onyiorah,, G. Schneider,, S. Jaffar,, G. Dolan,, H. Memming,, J. Frenkel,, G. Enwere,, S. Bennett,, D. Kwiatkowski,, and B. Greenwood. 1996. The effect of a monoclonal antibody to tumor necrosis factor on survival from childhood cerebral malaria. J. Infect. Dis. 174: 1091 1097.
92. Villegas, E. N.,, U. Wille,, L. Craig,, P. S. Linsley,, D. M. Rennick,, R. Peach,, and C. A. Hunter. 2000. Blockade of costimulation prevents infection-induced immunopathology in interleukin-10- deficient mice. Infect. Immun. 68: 2837 2844.
93. Warren, K. W. 1982. The secret of the immunopathogenesis of schistosomiasis: in vivo models. Immunol. Rev. 61: 189 213.
94. Wills-Karp, M. 1999. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17: 255 281.
95. Wynn, T. A.,, and A. W. Cheever. 1995. Cytokine regulation of granuloma formation in schistosomiasis. Curr. Opin. Immunol. 7: 505 511.
96. Wynn, T. A.,, A. W. Cheever,, D. Jankovic,, R. W. Poindexter,, P. Caspar,, F. A. Lewis,, and A. Sher. 1995. An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376: 594 596.
97. Yap, G. S.,, and A. Sher. 1999. Cell-mediated immunity to Toxoplasma gondii: initiation, regulation and effector function. Immunobiology 201: 240 247.
98. Yap, G. S.,, and M. M. Stevenson. 1994. Blood transfusion alters the course and outcome of Plasmodium chabaudi AS infection in mice. Infect. Immun. 62: 3761 3765.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error