Chapter 25 : Immune Evasion by Parasites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Immune Evasion by Parasites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap25-2.gif


This chapter examines two paradigms of parasite immune evasion during infection: one is a new theme emerging from a classic paradigm of surface antigen variation by extracellular parasites, and the other is a new paradigm of modified antigen recognition of intracellular parasites. A study was published with newer crystal structure data in a broader sequence survey of VSG molecules related by class (the pattern of Cys residues in the N terminus) and type (sequence similarities within the C terminus). The finding of the study was that the amino acid-hypervariable regions existed among different variant surface glycoprotein (VSG) and that some of these were buried within the surface coat. It was proposed that this represented evidence at the primary sequence level for antigenic variation within potential Th-cell epitope sites, and they made the formal hypothesis that antigenic variation by trypanosomes was done to evade host B- and T-cell responses. Additional evidence that VSG-specific Th-cell responses contribute to host resistance has come from a recent unexpected finding. In this work, C57BL/6-Igh-6 mice that lack mature B cells were infected with LouTat 1. Some parasites reside intracellularly during infection and do not exhibit substantial antigenic variation. In summary, the protozoan parasite Leishmania has developed several powerful strategies to subvert the macrophage signaling system, and this consequently affects the development of protective immune responses to favor parasite survival.

Citation: Mansfield J, Olivier M. 2002. Immune Evasion by Parasites, p 379-392. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch25

Key Concept Ranking

Tumor Necrosis Factor alpha
Major Histocompatibility Complex
Immune Systems
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The trypanosome VSG coat presents a T-cell-independent surface “antigen pattern” that activates B cells. The three-dimensional or architectural array of exposed repetitive VSG epitopes is sufficient to activate B cells and produce a rapid immunoglobulin M response during infection in the absence of Th cells. Subsequent exposure of the immune system to VSG molecules liberated from the surface coat induces strong VSG-specific Th1-cell and T-dependent B-cell responses. Adapted from .

Citation: Mansfield J, Olivier M. 2002. Immune Evasion by Parasites, p 379-392. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

VSG molecules are members of a protein superfamily that exhibit a highly conserved structure. Two VSG molecules are shown that differ significantly in primary sequence but display conserved secondary and tertiary structural features; these structural features are retained among different molecules because VSGs contain highly conserved subsequences necessary for proper folding of the molecule. Highlighted in the figure are the minimal structural differences seen between these two VSGs, as well as other molecular landmarks ( ). Reprinted from with permission of the publisher.

Citation: Mansfield J, Olivier M. 2002. Immune Evasion by Parasites, p 379-392. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Th-cell-reactive sites are found within a buried hyper-variable region conserved among VSG molecules. The relative placement of three different hypervariable (HV) regions found within trypanosome VSGs is shown ( ). HV-2 and HV-3 are predicted to contain amino acids that would be exposed on the surface of the VSG coat, while HV-1 contains amino acids that are predicted to be buried within VSG molecules. The Th-cell-reactive subsequence shown for the LouTat 1 VSG lies within the predicted conserved HV-1 region.

Citation: Mansfield J, Olivier M. 2002. Immune Evasion by Parasites, p 379-392. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Induction of host cell phosphatases by infection. The Ca-dependent serine / threonine phosphatase PP-2B (calcineurin) activity is increased over the Ser /Thr phosphatase PP- 1 and P-2A activities in -infected macrophages. PTP activity is rapidly triggered by and, in particular, the PTP SHP-1 is recognized for its role as a negative signaling regulator in leukocytes.

Citation: Mansfield J, Olivier M. 2002. Immune Evasion by Parasites, p 379-392. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allred, D. R. 1998. Antigenic variation in Babesia bovis: how similar is it to that in Plasmodium falciparum? Ann. Trop. Med. Parasitol. 92: 461 472.
2. Anderson, R. M. 1998. Complex dynamic behaviours in the interaction between parasite population and the host’s immune system. Int. J. Parasitol. 28: 551 566.
3. Bachmann, M. F.,, and R. Zinkernagel. 1996. The influence of virus structure on antibody responses and virus serotype formation. Immunol. Today 17: 553 558.
4. Belosevic, M.,, D. S. Findbloom,, M. S. Meltzer,, and C. A. Nacy. 1990. IL-2. A cofactor for induction of activated macrophage resistance to infection. J. Immunol. 145: 831 839.
5. Berger, S.,, R. Chandra,, H. Ballo,, R. Hildenbrand,, and H. J. Stutte. 1997. Immune complexes are potent inhibitors of interleukin- 12 secretion by human monocytes. Eur. J. Immunol. 27: 2994 3000.
6. Blanchette, J.,, N. Racette,, K. A. Siminovitch,, R. Faure,, and M. Olivier. 1999. Leishmania-induced increases in activation of macrophage SHP-1 phosphatase are associated with impaired IFN-γ-triggered JAK2 activation. Eur. J. Immunol. 29: 3737 3744.
7. Bliska, J. B.,, J. E. Galan,, and S. Falkow. 1993. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 73: 903 920.
8. Bliska, J. B.,, K. L. Guan,, J. E. Dixon,, and S. Falkow. 1991. Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc. Natl. Acad. Sci. USA 88: 1187 1191.
9. Blum, J. L.,, J. A. Down,, A. M. Gurnett,, M. Carrington,, M. J. Turner,, and D. C. Wiley. 1993. A structural motif in the variant surface glycoproteins of Trypanosoma brucei. Nature 362: 603 609.
10. Borst, P.,, and G. A. Cross. 1982. Molecular basis for trypanosome antigenic variation. Cell 29: 291 303.
11. Borst, P.,, A. C. Frasch,, A. Bernards,, L. H. Van der Ploeg,, J. H. Hoeijmakers,, A. C. Arnberg,, and G. A. Cross. 1981. DNA rearrangements involving the genes for variant antigens in Trypanosoma brucei. Cold Spring Harbor Symp. Quant. Biol. 2: 935 943.
12. Borst, P.,, and G. Rudenko. 1994. Antigenic variation in African trypanosomes. Science 264: 1872 1873.
13. Borst, P.,, G. Rudenko,, M. C. Taylor,, P. A. Blundell,, F. Vanleeuwen,, W. Bitter,, M. Cross,, and R. McCulloch. 1996. Antigenic variation In trypanosomes. Arch. Med. Res. 27: 379 388.
14. Brown, M. G.,, J. Driscoll,, and J. J. Monaco. 1991. Structural and serological similarity of MHC-linked LMP and proteasome (multicatalytic proteinase) complexes. Nature 353: 355 357.
15. Carrington, M.,, N. Miller,, M. Blum,, I. Roditi,, D. Wiley,, and M. Turner. 1991. Variant specific glycoprotein of Trypanosoma brucei consists of two domains each having an independently conserved pattern of cysteine residues J. Mol. Biol. 221: 823 835.
16. Chaussepied, M.,, D. Lallemand,, M. F. Moreau,, R. Adamson,, R. Hall,, and G. Langsley. 1998. Upregulation of Jun and Fos family members and permanent JNK activity lead to constitutive AP- 1 activation in Theileria-transformed leukocytes. Mol. Biochem. Parasitol. 94: 215 226.
17. Chen, Z.,, J. Hagler,, V. J. Palombella,, F. Melandri,, D. Scherer,, D. Ballard,, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev. 9: 1586 1597.
18. Cross, G. 1990. Cellular and genetic aspects of antigenic variation in trypanosomes. Annu. Rev. Immunol. 8: 83 110.
19. Cross, G. A. 1975. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology 71: 393 417.
20. Cross, G. A. 1996. Antigenic variation in trypanosomes: secrets surface slowly. Bioessays 18: 283 291.
21. Cross, G. A.,, L. E. Wirtz,, and M. Navarro. 1998. Regulation of vsg expression site transcription and switching in Trypanosoma brucei Mol. Biochem. Parasitol. 91: 77 91.
22. Damian, R. T. 1997. Parasite immune evasion and exploitation: reflections and projections. Parasitology 115: S169 S175.
23. Darnell, J. E. 1997. STATs and gene regulation. Science 277: 1630 1635.
24. Dea-Ayuela, M. A.,, and F. Bolas-Fernandez. 1999. Trichinella antigens: a review. Vet. Res. 30: 559 571.
25. De Gee, A. L.,, R. F. Levine,, and J. M. Mansfield. 1988. Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses. J. Immunol. 140: 283 288.
26. De Gee, A. L.,, and J. M. Mansfield. 1984. Genetics of resistance to the African trypanosomes. IV. Resistance of radiation chimeras to Trypanosoma rhodesiense infection. Cell. Immunol. 87: 85 91.
27. De Gee, A. L.,, G. Sonnenfeld,, and J. M. Mansfield. 1985. Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains. J. Immunol. 134: 2723 2726.
28. Dominguez, M.,, and A. Torano. 1999. Immune adherence-mediated opsonophagocytosis: the mechanism of Leishmania infection. J. Exp. Med. 189: 25 35.
29. Donelson, J. E.,, K. L. Hill,, and N. M. El-Sayed. 1998. Multiple mechanisms of immune evasion by African trypanosomes. Mol. Biochem. Parasitol. 91: 51 66.
30. Dong, Z.,, C. A. O’Brian,, and I. J. Fidler. 1993a. Activation of tumoricidal properties in macrophages by lipopolysaccharide requires protein-tyrosine kinase activity. J. Leukoc. Biol. 53: 53 60.
31. Dong, Z.,, X. Qi,, K. Xie,, and I. J. Fidler. 1993b. Protein tyrosine kinase inhibitors decrease induction of nitric oxide synthase activity in lipopolysaccharide-responsive and lipopolysaccharide-nonresponsive murine macrophages. J. Immunol. 151: 2717 2724.
32. Fantl, W. J.,, D. E. Johnson,, and L. T. Williams. 1993. Signalling by receptor tyrosine kinases. Annu. Rev. Biochem. 62: 453 481.
33. Fearon, D. T.,, and R. M. Locksley. 1996. The instructive role of innate immunity in the acquired immune response. Science 272: 50 53.
34. Field, M. C.,, and J. C. Boothroyd. 1996. Sequence divergence in a family of variant surface glycoprotein genes from trypanosomes: coding region hypervariability and downstream recombinogenic repeats. J. Mol. Evol. 42: 500 511.
35. Glaser, K. B.,, A. Sung,, J. Bauer,, and B. M. Weichman. 1993. Regulation of eicosanoid biosynthesis in the macrophage. Involvement of protein tyrosine phosphorylation and modulation by selective protein tyrosine kinase inhibitors. Biochem. Pharmacol. 45: 711 721.
36. Golden, A.,, and J. S. Brugge. 1989. Thrombin treatment induces rapid changes in tyrosine phosphorylation in platelets. Proc. Natl. Acad. Sci. USA 86: 901 905.
37. Golden, A.,, S. P. Nemeth,, and J. S. Brugge. 1986. Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 83: 852 856.
38. Green, S. P.,, J. A. Hamilton,, and W. A. Phillips. 1992. Zymosan-triggered tyrosine phosphorylation in mouse bone-marrow-derived macrophages is enhanced by respiratory-burst priming agents. Biochem. J. 288: 427 432.
39. Greenberg, S.,, P. Chang,, and S. C. Silverstein. 1993. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem. 269: 3897 3902.
40. Guy, R. A.,, and M. Belosevic. 1993. Comparison of receptors required for entry of Leishmania major amastigotes into macrophages. Infect. Immun. 61: 1553 1558.
41. Haque, S.,, H. Dumon,, A. Haque,, and L. H. Kasper. 1998. Alteration of intracellular calcium flux and impairment of nuclear factor-AT translocation in T cells during acute Toxoplasma gondii infection in mice. J. Immunol. 161: 6812 6818.
42. Harnett, W.,, M. R. Deehan,, K. M. Houston,, and M. M. Harnett. 1999. Immunomodulatory properties of a phosphorylcholine containing secreted filarial glycoprotein. Parasite Immunol. 21: 601 608.
43. Haspel, R. L. M. Salditt-Georgieff, and J. E. Darnell. 1996. The rapid inactivation of nuclear tyrosine phosphorylated Stat1 depends upon a protein tyrosine phosphatase. EMBO J. 15: 6262 6268.
44. Heinzel, F. P.,, M. D. Sadick,, B. J. Holaday,, R. L. Coffman,, and R. M. Locksley. 1989. Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J. Exp. Med. 169: 59 72.
45. Heinzel, F. P.,, M. D. Sadick,, and R. M. Locksley. 1988. Leishmania major: analysis of lymphocyte and macrophage cellular phenotypes during infection of susceptible and resistant mice. Exp. Parasitol. 65: 258 268.
46. Hertz, C. J.,, and J. M. Mansfield. 1999. IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis. Cell. Immunol. 192: 24 32.
47. Hertz, C. J.,, H. Filutowicz,, and J. M. Mansfield. 1998. Resistance to the African trypanosomes is IFN-gamma dependent. J. Immunol. 161: 6775 6783.
48. Hoeijmakers, J. H.,, A. C. Frasch,, A. Bernards,, P. Borst,, and G. A. Cross. 1980. Novel expression-linked copies of the genes for variant surface antigens in trypanosomes. Nature 284: 78 80.
49. Hommel, M. 1997. Modulation of host cell receptors: a mechanism for the survival of malaria parasites. Parasitology 115: S45 S54.
50. Hooft van Huijsduijnen, R. 1998. Protein tyrosine phosphatases: counting the trees in the forest. Gene 225: 1 8.
51. Horn, D.,, and G. A. Cross. 1997. Analysis of Trypanosoma brucei vsg expression site switching in vitro. Mol. Biochem. Parasitol. 84: 189 201.
52. Hunter, T. 1993. Signal transduction. Cytokine connections. Nature 366: 114 116.
53. Hunter, T.,, and B. M. Sefton. 1980. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 77: 1311 1315.
54. Hunter, T.,, and J. A. Cooper. 1985. Protein-tyrosine kinases. Annu. Rev. Biochem. 54: 897 930.
55. Kima, P. E.,, N. H. Ruddle,, and D. McMahon-Pratt. 1987. Presentation via the class I pathway by Leishmania amazonensis infected macrophages of an endogenous leishmanial antigen to CD8+ T cells. J. Immunol. 159: 1828 1834.>
56. Klee, C. B.,, T. H. Crouch,, and M. H. Krinks. 1979. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76: 6270 6273.
57. Kozlowski, M.,, I. Mlinaric-Rascan,, G. S. Feng,, R. Shen,, T. Pawson,, and K. A. Siminovitch. 1993. Expression and catalytic activity of the tyrosine phosphatase PTP1C is severely impaired in motheaten and viable motheaten mice. J. Exp. Med. 178: 2157 2163.
58. Kukita, M.,, M. Hirata,, and T. Koga. 1986. Requirement of Ca2+ for the production and degradation of inositol 1,4,5- triphosphate in macrophages. Biochim. Biophys. Acta 885: 121 128.
59. Leonard, W. J.,, and J. J. O’Shea. 1998. JAKs and STATs: biological implications. Annu. Rev. Immunol. 16: 293 322.
60. Liu, B.,, J. Liao,, X. Rao,, S. A. Kushner,, C. D. Chung,, D. D. Chang,, and K. Shuai. 1998. Inhibition of Stat1-mediated gene activation by PIAS1. Proc. Natl. Acad. Sci. USA 95: 10626 10631.
61. Locksley, R. M.,, F. P. Heinzel,, B. J. Holaday,, S. S. Mutha,, S. L. Reiner,, and M. D. Sadick. 1991. Induction of Th1 and Th2 CD4+ subsets during murine Leishmania major infection. Res. Immunol. 142: 28 32.
62. Locksley, R. M.,, F. P. Heinzel,, M. D. Sadick,, B. J. Holaday,, and K. Gardner. 1987. Murine cutaneous leishmaniasis: susceptibility correlates with differential expansion of helper T-cell subsets. Ann. Inst. Pasteur Immunol. 138: 744 749.
63. Locksley, R. M.,, and P. Scott. 1991. Helper T-cell subsets in mouse leishmaniasis: induction, expansion and effector function. Immunol. Today 12: A58 A61.
64. Locksley, R. M.,, A. E. Wakil,, D. B. Corry,, S. Pingel,, M. Bix,, and D. J. Fowell. 1995. The development of effector T cell subsets in murine Leishmania major infection. Ciba Found. Symp. 195: 110 117.
65. Mansfield, J. M. 1994. T-cell responses to the trypanosome variant surface glycoprotein: a new paradigm? Parasitol. Today 10: 267 270.>
66. Mansfield, J. M., 1995. Immunobiology of African trypanosomiasis: a revisionist view, p. 477 496. In J. C. Boothroyd, and R. Komuniecki (ed.), Molecular Approaches to Parasitology. Wiley- Liss, New York, N.Y..
67. Mansfield, J. M.,, R. F. Levine,, W. L. Dempsey,, S. R. Wellhausen,, and C. T. Hansen. 1981. Lymphocyte function in experimental African trypanosomiasis. IV. Immunosuppression and suppressor cells in the athymic nu/nu mouse. Cell. Immunol. 63: 210 215.
68. Marth, T.,, and B. L. Kelsall. 1997. Regulation of interleukin-12 by complement receptor 3 signaling. J. Exp. Med. 185: 1987 1995.
69. Matte, C.,, J.-F. Marquis,, J. Blanchette,, P. Gros,, R. Faure,, and M. Olivier. 2000. Peroxovanadium-mediated protection against murine leishmaniasis: role of the modulation of nitric oxide. Eur. J. Immunol. 30: 2555 2564.
70. Matthews, R. J.,, D. B. Bowne,, E. Flores,, and M. L. Thomas. 1992. Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Mol. Cell. Biol. 12: 2396 2405.
71. Mauel, J. 1990. Macrophage-parasite interactions in Leishmania infections. J. Leukoc. Biol. 47: 187 193.
72. Metcalf, P.,, M. Blum,, D. Freymann,, M. Turner,, and D. C. Wiley. 1987. Two variant surface glycoproteins of Trypanosoma brucei of different sequence classes have similar 6 Å resolution X-ray structures Nature 325: 84 86.
73. Mosser, D. M.,, and P. J. Edelson. 1984. Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J. Immunol. 132: 1501 1505.
74. Mosser, D. M.,, and P. J. Edelson. 1985. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol. 135: 2785 2789.
75. Moudgil, K. D.,, E. E. Sercarz,, and I. S. Grewal. 1998. Modulation of the immunogenicity of antigenic determinants by their flanking residues. Immunol. Today 19: 217 220.
76. Muller, M.,, J. Briscoe,, C. Laxton,, D. Guschin,, A. Ziemiecki,, O. Silvennoinen,, A. G. Harpur,, G. Barbieri,, B. A. Witthuhn,, C. Schindler, et al. 1993. The protein tyrosine kinase JAK1 complements defects in interferon-alpha / beta and -gamma signal transduction. Nature 366: 129 135.
77. Muller, N.,, and B. Gottstein. 1998. Antigenic variation and the murine immune response to Giardia lamblia. Int. J. Parasitol. 28: 1829 1839.
78. Murray, H. W.,, H. Masur,, and J. S. Keithly. 1982. Cell-mediated immune response in experimental visceral leishmaniasis. I. Correlation between resistance to Leishmania donovani and lymphokine- generating capacity. J. Immunol. 129: 344 350.
79. Murray, H. W.,, J. J. Stern,, K. Welte,, B. Y. Rubin,, S. M. Carriero,, and C. F. Nathan. 1987. Experimental visceral leishmaniasis: production of interleukin 2 and interferon-gamma, tissue im mune reaction, and response to treatment with interleukin 2 and interferon-gamma. J. Immunol. 138: 2290 2297.
80. Nash, T. E. 1997. Antigenic variation in Giardia lamblia and the host’s immune response. Philos. Trans. R. Soc. London Ser. B 352: 1369 1375.
81. Navarro, M.,, and G. A. M. Cross. 1996. DNA rearrangements associated with multiple consecutive directed antigenic switches in Trypanosoma brucei. Mol. Cell. Biol. 16: 3615 3625.
82. Newbold, C. I. 1999. Antigenic variation in Plasmodium falciparum: mechanisms and consequences. Curr. Opin. Microbiol. 2: 420 425.
83. Olivier, M. 1996. Modulation of host cell intracellular Ca 2+. Parasitol. Today 12: 145 150.
84. Olivier, M.,, K. G. Baimbridge,, and N. E. Reiner. 1992a. Stimulus-response coupling in monocytes infected with Leishmania. Attenuation of calcium transients is related to defective agonist-induced accumulation of inositol phosphates. J. Immunol. 148: 1188 1196.
85. Olivier, M.,, S. Bertrand,, and C. E. Tanner. 1989a. Killing of Leishmania donovani by activated liver macrophages from resistant and susceptible strains mice. Int. J. Parasitol. 19: 377 383.
86. Olivier, M.,, R. W. Brownsey,, and N. E. Reiner. 1992b. Defective stimulus-response coupling in human monocytes infected with Leishmania donovani is associated with altered activation and translocation of protein kinase C. Proc. Natl. Acad. Sci. USA 89: 7481 7485.
87. Olivier, M.,, C. Proulx,, and C. E. Tanner. 1989b. Importance of lymphokines in the control of the multiplication and dispersion of Leishmania donovani within liver macrophages of resistant and susceptible mice. J. Parasitol. 75: 720 727.
88. Olivier, M.,, B. J. Romero-Gallo,, C. Matte,, J. Blanchette,, B. I. Posner,, M. J. Tremblay,, and R. Faure. 1998. Modulation of interferon-gamma-induced macrophage activation by phosphotyrosine phosphatases inhibition. Effect on murine leishmaniasis progression. J. Biol. Chem. 273: 13944 13949.
89. Olivier, M.,, and C. Tanner,. 1989. The effect of cyclosporin A in murine visceral leishmaniasis. Trop. Med. Parasitol. 40: 32 38. Plutzky, J.,, B. B. Neel,, and R. D. Rosenberg. 1992. Isolation of a src homology 2-containing tyrosine phosphatase. Proc. Natl. Acad. Sci. USA 89: 1123 1127.
90. Posner, B. I.,, R. Faure,, J. W. Burgess,, A. P. Bevan,, D. Lachance,, G. Zhang-Sun,, J. B. Ng,, D. A. Hall,, B. S. Lum,, and A. Shaver. 1994. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269: 4596 4604.
91. Ramasamy, R. 1998. Molecular basis for evasion of host immunity and pathogenesis in malaria. Biochim. Biophys. Acta 1406: 10 27.
92. Ray, M.,, A. A. Gam,, R. A. Boykins,, and R. T. Kenney. 2000. Inhibition of interferon-γ signaling by Leishmania donovani. J. Infect. Dis. 181: 1121 1128.
93. Reiner, N. E.,, W. Ng,, T. Ma,, and W. R. McMaster. 1988. Kinetics of gamma interferon binding and induction of major histocompatibility complex class II mRNA in Leishmania-infected macrophages. Proc. Natl. Acad. Sci. USA 85: 4330 4334.
94. Reiner, N. E.,, W. Ng,, and W. R. McMaster. 1987. Parasite-accessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility complex gene products. J. Immunol. 138: 1926 1932.
95. Reiner, S. L.,, and R. M. Locksley. 1995. The regulation of immunity to Leishmania major. Ann. Rev. Immunol. 13: 151 177.
96. Reinitz, D. M.,, B. D. Aizenstein,, and J. M. Mansfield. 1992. Variable and conserved structural elements of trypanosome variant surface glycoproteins. Mol. Biochem. Parasitol. 51: 119 132.
97. Reinitz, D. M.,, and J. M. Mansfield. 1988. Independent regulation of B cell responses to surface and subsurface epitopes of African trypanosome variable surface glycoproteins. J. Immunol. 141: 620 626.
98. Reinitz, D. M.,, and J. M. Mansfield. 1990. T-cell-independent and T-cell-dependent B-cell responses to exposed variant surface glycoprotein epitopes in trypanosome-infected mice. Infect. Immun. 58: 2337 2342.
99. Rivett, A. J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110 114.
100. Roach, P. J. 1991. Multisite and hierarchal protein phosphorylation. J. Biol. Chem. 266: 14139 14142.
101. Russell, D. G.,, and P. Talamas-Rohana. 1989. Leishmania and the macrophage: a marriage of inconvenience. Immunol. Today 10: 328 333.
102. Scharton-Kersten, T.,, and P. Scott. 1995. The role of the innate immune response in Th1 cell development following Leishmania major infection. J. Leukoc. Biol. 57: 515 522.
103. Schleifer, K. W.,, H. Filutowicz,, L. R. Schopf,, and J. M. Mansfield. 1993. Characterization of T helper cell responses to the trypanosome variant surface glycoprotein. J. Immunol. 150: 2910 2919.
104. Schleifer, K. W.,, and J. M. Mansfield. 1993. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins. J. Immunol. 151: 5492 5503.
105. Schneider, S. C.,, and E. E. Sercarz. 1997. Antigen processing differences among APC. Hum. Immunol. 54: 148 158.
106. Schopf, L. R.,, H. Filutowicz,, X. J. Bi,, and J. M. Mansfield. 1998. Interleukin-4-dependent immunoglobulin G1 isotype switch in the presence of a polarized antigen-specific Th1-cell response to the trypanosome variant surface glycoprotein Infect. Immun. 66: 451 461.
107. Schopf, L. R.,, and J. M. Mansfield. 1998. Characterization of a relatively rare class B, type 2 trypanosome variant surface glycoprotein gene. J. Parasitol. 84: 284.
108. Schwarzer, E.,, M. Alessio,, D. Ulliers,, and P. Arese. 1998. Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes. Infect. Immun. 66: 1601 1606.
109. Schwarzer, E.,, and P. Arese. 1996. Phagocytosis of malarial pigment hemozoin inhibits NADPH-oxidase activity in human monocyte-derived macrophages. Biochim. Biophys. Acta 1316: 169 175.
110. Scott, P. 1990. T-cell subsets and T-cell antigens in protective immunity against experimental leishmaniasis. Curr. Top. Microbiol. Immunol. 155: 35 52.
111. Scott, P. 1991. Host and parasite factors regulating the development of CD4+ T-cell subsets in experimental cutaneous leishmaniasis. Res. Immunol. 142: 32 36.
112. Scott, P.,, E. Pearce,, A. W. Cheever,, R. L. Coffman,, and A. Sher. 1989. Role of cytokines and CD4+ T-cell subsets in the regulation of parasite immunity and disease. Immunol. Rev. 112: 161 182.
113. Seed, J. R.,, and J. B. Sechelski. 1989. African trypanosomes: inheritance of factors involved in resistance. Exp. Parasitol. 69: 1 8.
114. Sercarz, E. E. 1998. Immune focusing vs diversification and their connection to immune regulation. Immunol. Rev. 164: 5 10.
115. Shen, S.-H.,, L. Bastien,, B. I. Posner,, and P. Chretien. 1991. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352: 736 739.
116. Shuai, K.,, G. R. Stark,, I. M. Kerr,, and J. E. Darnell. 1993. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261: 1744 1746.
117. Silvennoinen, O.,, J. N. Ihle,, J. Schlessinger,, and D. E. Levy. 1993. Interferon-induced nuclear signalling by Jak protein tyrosine kinases. Nature 366: 583 585.
118. Snapper, C. M.,, M. R. Kehry,, B. E. Castle,, and J. J. Mond. 1995a. Multivalent, but not divalent, antigen receptor cross-linkers synergize with CD40 ligand for induction of Ig synthesis and class switching in normal murine B cells. A redefinition of the TI-2 vs T cell-dependent antigen dichotomy J. Immunol. 154: 1177 1187.
119. Snapper, C. M., and J. J. Mond. 1996. A model for induction of T cell-independent humoral immunity in response to polysaccharide antigens. J. Immunol. 157: 2229 2233.
120. Snapper, C. M.,, F. R. Rosas,, L. Jin,, C. Wortham,, M. R. Kehry,, and J. J. Mond. 1995b. Bacterial lipoproteins may substitute for cytokines in the humoral immune response to T cell-independent type II antigens. J. Immunol. 155: 5582 5589.
121. Snapper, C. M.,, H. Yamaguchi,, M. A. Moorman,, and J. J. Mond. 1994. An in vitro model for T cell-independent induction of humoral immunity. A requirement for NK cells. J. Immunol. 152: 4884 4892.
122. Stenger, S.,, N. Donhauser,, H. Thüring,, M. Röllinghoff,, and C. Bogdan. 1996. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183: 1501 1514.
123. Stohwasser, R.,, S. Standera,, I. Peters,, P. M. Kloetzel,, and M. Groettrup. 1997. Molecular cloning of the mouse proteasome subunits MC14 and MECL-1: reciprocally regulated tissue expression of interferon-gamma-modulated proteasome subunits. Eur. J. Immunol. 27: 1182 1187.
124. Sutterwala, F. S.,, G. J. Noel,, R. Clynes,, and D. M. Mosser. 1997. Selective suppression of interleukin-12 induction after macrophage receptor ligation. J. Exp. Med. 185: 1977 1985..
125. Tachado, S. D.,, P. Gerold,, R. Schwarz,, S. Novakovic,, M. Mc- Conville,, and L. Schofield. 1997. Signal transduction in macrophages by glycosylphosphatidylinositols of Plasmodium, Trypanosoma, and Leishmania: activation of protein tyrosine kinases and protein kinase C by inositolglycan and diacylglycerol moieties. Proc. Natl. Acad. Sci. USA 94: 4022 4027.
126. Tachado, S. D.,, R. Mazhari-Tabrizi,, and L. Schofield. 1999. Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol. 21: 609 617.
127. Turco, S. J. 1999. Adversarial relationship between the leishmania lipophosphoglycan and protein kinase C of host macrophages. Parasite Immunol. 21: 597 600.
128. Turner, C. M.,, and J. D. Barry. 1989. High frequency of antigenic variation in Trypanosoma brucei rhodesiense infections. Parasitology 1: 67 75.
129. Turner, C. M. R. 1997. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol. Lett. 153: 227 231.
130. Van der Ploeg, L. H.,, K. Gottesdiener,, and M. G. Lee. 1992. Antigenic variation in African trypanosomes. Trends Genet. 8: 452 457.
131. Vickerman, K.,, and A. G. Luckins. 1969. Localization of variable antigens in the surface coat of Trypanosoma brucei using ferritin conjugated antibody. Nature 224: 1125 1126.
132. Walton, K. M.,, and J. E. Dixon. 1993. Protein tyrosine phosphatases. Annu. Rev. Biochem. 62: 101 120.
133. Watling, D.,, D. Guschin,, M. Muller,, O. Silvennoinen,, B. A. Witthuhn,, F. W. Quelle,, N. C. Rogers,, C. Schindler,, G. R. Stark,, J. N. Ihle, et al. 1993. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 366: 166 170.
134. Yeung, Y. G.,, K. L. Berg,, F. J. Pixley,, R. H. Angeletti,, and E. R. Stanley. 1992. Protein tyrosine phosphatase-1C is rapidly phosphorylated in tyrosine in macrophages in response to colony stimulating factor-1. J. Biol. Chem. 267: 23447 23450.
135. Yi, T.,, J. L. Cleveland,, and J. N. Ihle. 1992. Protein tyrosine phosphatase containing SH2 domains: characterization, preferential expression in hematopoietic cells, and localization to human chromosome 12p12-p13. Mol. Cell. Biol. 12: 836 846.
136. Yu, C. L.,, and S. J. Burakoff. 1997. Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J. Biol. Chem. 272: 14017 14020.
137. Zinkernagel, R. M. 2000. What is missing in immunology to understand immunity? Nat. Immunol. 1: 181 185.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error