Chapter 9 : Innate Immunity to Parasitic Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Innate Immunity to Parasitic Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817978/9781555812140_Chap09-2.gif


Traditionally, the control of parasitic infections was thought to be the exclusive domain of the acquired immune system. However, during the past decade it has been recognized that innate immunity can shape the outcome of the host-parasite encounter. Perhaps the simplest forms of innate immunity are represented by the presence of preexisting, soluble factors that can recognize and destroy invading parasites. Importantly, whereas complement-sensitive epimastigotes fail to express gp160, epimastigotes transfected with gp160 are resistant to complement-mediated lysis. Although innate immunity plays an important role in resistance to acute parasitic infections, the adaptive response is required to provide long-term protective immunity. Understanding the cellular and molecular basis of the mechanisms that underlie innate immunity to parasitic diseases may also provide important information for the rational design of immunotherapies or vaccines. At present there is a paucity of vaccines which protect against parasitic diseases, and understanding how innate immunity initiates the development of long-lived, protective responses to these parasites may provide new approaches to vaccination. Perhaps the best example of how understanding the mechanisms of innate immunity to infection can influence the development of new approaches to deal with parasitic infections is provided by IL-12.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9

Key Concept Ranking

Tumor Necrosis Factor alpha
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Complement system. The activation of the complement system through either the classical, lectin, or alternative pathways converges on the deposition of C3b on the parasite surface. In the absence of host (or parasite) regulatory proteins, this cascade proceeds to the assembly of the MAC, the opsonization of parasites, and the release of chemotactic peptides. Developmental stages of protozoan parasites found in insects are highly susceptible to lysis via the alternative pathway of complement activation, whereas the stages specific for the mammalian hosts have developed a variety of strategies to evade this mechanism of host resistance. Ag, antigen; Ab antibody.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Mechanism of TLF killing of TLF binds to high-affinity receptors on the surface of and is endocytosed and targeted to the lysosome. At low lysosomal pH and in the presence of high intracellular concentrations of hydrogen peroxide, TLF facilitates the release of Fe from iron stores. Fe ions react with HO via the Fenton reaction to form hydroxyl radicals. Hydroxyl radicals produced in this reaction attack polyunsaturated fatty acids (LH), causing lipid free-radical formation The lipid free radical forms a lipid (L). peroxyl radical (LOO) in the presence of O, which peroxidates adjacent lipids, creating a chain reaction. The lipid hydroperoxides (LOOH) formed are unstable, resulting in a wide variety of products that can cause membrane breakdown and release of lysosomal contents. This model was supplied by Joseph Bishop and Steve Hajduk from the University of Alabama at Birmingham.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Regulation of innate cell-mediated immunity to parasites. Infection with various parasites can stimulate the production of proinflammatory cytokines from several sources including neutrophils (PMN), macrophages (Mø), and dendritic cells (DC). IL-12, in combination with other cofactors, plays an important role in stimulating NK-cell production of IFN-γ, which mediates antiparasitic activity and may contribute to the development of Th1-type responses. IL-10 and TGF- are inhibitors of this innate mechanism of immunity, either acting directly on accessory cell populations or NK cells to inhibit the production of proinflammatory cytokines or antagonizing the effector mechanisms required to control parasite replication.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Activation of splenic dendritic cells by products. The mobilization and activation of dendritic cells are likely to be key steps in the initiation of cell-mediated responses to intracellular pathogens. This figure demonstrates the response of splenic dendritic cells to a soluble extract of tachyzoites (STAg) 6 h after intravenous injection. In the left-hand panels, spleen cells were stained with the DC cell surface marker CD11c, while the right-hand panels show serial sections from the same spleens stained with an anti-IL-12 p40 monoclonal antibody. As can be seen, the products induce a massive mobilization of dendritic cells into the T-cell areas of the spleen, and many of these dendritic cells produce IL-12, a cytokine crucial for the induction of IFN-γ dependent resistance to the parasite.

Citation: Hunter C, Sher A. 2002. Innate Immunity to Parasitic Infections, p 111-125. In Kaufmann S, Sher A, Ahmed R (ed), Immunology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817978.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Afonso, L. C. C.,, T. M. Scharton,, L. Q. Vieira,, M. Wysocka,, G. Trinchieri,, and P. Scott. 1994. The adjuvant effect of interleukin- 12 in a vaccine against Leishmania major. Science 263:235237.
2. Aliberti, J.,, C. Reis e Sousa,, M. Schito,, S. Hieny,, T. Wells,, G. B. Huffnagle,, and A. Sher. 2000. CCR5 provides a signal for microbial induced production of IL-12 by CD8α+ dendritic cells. Nat. Immunol. 1:8387.
3. Aliberti, J. C.,, M. A. G. Cardoso,, G. A. Martins,, R. T. Gazzinelli,, L. Q. Vieira,, and J. S. Silva. 1996. Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes. Infect. Immun. 64:19611967.
4. Alizadeh, H.,, and K. D. Murrell. 1984. The intestinal mast cell response to Trichinella spiralis infection in mast cell-deficient w/wv mice. J. Parasitol. 70:767773.
5. Almeida, I. C.,, M. M. Camargo,, D. O. Procopio,, L. S. Silva,, A. Mehlert,, L. R. Travassos,, R. T. Gazzinelli,, and M. A. J. Ferguson. 2000. Highly purified glycosylphosphatidylinositolsfrom Trypanosoma cruzi are potent proinflammatory agents. EMBO J. 19:101110.
6. Andrews, N. W.,, C. K. Abrams,, S. L. Slatin,, and G. Griffiths. 1990. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane poreforming activity at low pH. Cell 61:12771287.
7. Asea, A.,, S. K. Kraeft,, E. A. Kurt-Jones,, M. A. Stevenson,, L. B. Chen,, R. W. Finberg,, G. C. Koo,, and S. K. Calderwood. 2000. HSP70 stimulates cytokine production through a CD14- dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 6:435442.
8. Babu, S.,, P. Porte,, T. R. Klei,, L. D. Shultz,, and T. V. Rajan. 1998. Host NK cells are required for the growth of the human filarial parasite Brugia malayi in mice. J. Immunol. 161:14281432.
9. Belkaid, Y.,, B. Butcher,, and D. L. Sacks. 1998. Analysis of cytokine production by inflammatory mouse macrophages at the single cell level: selective impairment of IL-12 induction in Leishmania-infected cells. Eur. J. Immunol. 28:13891400.
10. Bidri, M.,, I. Vouldoukis,, M. D. Mossalayi,, P. Debre,, J. J. Guillosson,, D. Mazier,, and M. Arock. 1997. Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol. 19:475483.
11. Blackwell, J. M.,, R. A. Ezekowitz,, M. B. Roberts,, J. Y. Channon,, R. B. Sim,, and S. Gordon. 1985. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J. Exp. Med. 162:324331.
12. Bliss, S. K.,, A. J. Marshall,, Y. Zhang,, and E. Y. Denkers. 1999. Human polymorphonuclear leukocytes produce IL-12, TNF-α, and the chemokines macrophage-inflammatory protein-1α and -1β in response to Toxoplasma gondii antigens. J. Immunol. 162:73697375.
13. Braga, L. L.,, H. Ninomiya,, J. J. McCoy,, S. Eacker,, T. Wiedmer,, C. Pham,, S. Wood,, P. J. Sims,, and W. A. Petri, Jr. 1992. Inhibition of the complement membrane attack complex by the galactose-specific adhesion of Entamoeba histolytica. J. Clin. Investig. 90:11311137.
14. Brown, D. R.,, D. J. Fowell,, D. B. Corry,, T. A. Wynn,, N. H. Moskowitz,, A. W. Cheever,, R. M. Locksley,, and S. L. Reiner. 1996. β2-Microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184: 12951304.
15. Butterworth, A. E. 1984. Cell-mediated damage to helminths. Adv. Parasitol. 23:143235.
16. Caamaño, J.,, J. Alexander,, L. Craig,, R. Bravo,, and C. A. Hunter. 1999. The NF-κB family member RelB is required for innate and adaptive immunity to Toxoplasma gondii. J. Immunol. 163: 44534461.
17. Cai, G.,, R. Kastelein,, and C. A. Hunter. 2000a. Interleukin-18 (IL-18) enhances innate IL-12-mediated resistance to Toxoplasma gondii. Infect. Immun. 68:69326938.
18. Cai, G.,, T. Radzanowski,, E. Villegas,, R. Kastelein,, and C. A. Hunter. 2000b. Identification of STAT4-dependent and independent mechanisms of resistance to Toxoplasma gondii. J. Immunol. 165:26192627.
19. Camargo, M. M.,, I. C. Almeida,, M. E. S. Pereira,, M. A. J. Ferguson,, L. R. Travassos,, and R. T. Gazzinelli. 1997. Glycosylphosphatidylinositol- anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes initiate the synthesis of proinflammatory cytokines in macrophages. J. Immunol. 158: 58905901.
20. Cardillo, F.,, J. C. Voltarelli,, S. G. Reed,, and J. S. Silva. 1996. Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: role of NK cells. Infect. Immun. 64:128134.
21. Carrera, L.,, R. T. Gazzinelli,, R. Badolato,, S. Hieny,, W. Muller,, R. Kuhn,, and D. Sacks. 1996. Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J. Exp. Med. 183:515526.
22. Catterall, J. R.,, C. M. Black,, J. P. Leventhal,, N. W. Rizk,, J. S. Wachtel,, and J. S. Remington. 1987. Nonoxidative microbicidal activity in normal human alveolar and peritoneal macrophages. Infect. Immun. 55:16351640.
23. Catto, B. A.,, F. A. Lewis,, and E. A. Ottesen. 1980. Cercariainduced histamine release: a factor in the pathogenesis of schistosome dermatitis? Am. J. Trop. Med. Hyg. 29:886889.
24. Cho, B. K.,, D. Palliser,, E. Guillen,, J. Wisniewski,, R. A. Young,, J. Chen,, and H. N. Eisen. 2000. A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 12:263272.
25. De Greef, C.,, and R. Hamers. 1994. The serum resistanceassociated (SRA) gene of Trypanosoma brucei rhodesiense encodes a variant surface glycoprotein-like protein. Mol. Biochem. Parasitol. 68:277284.
26. Descoteaux, A.,, S. J. Turco,, D. L. Sacks,, and G. Matlashewski. 1991. Leishmania donovani lipophosphoglycan selectively inhibits signal transduction in macrophages. J. Immunol. 146: 27472753.
27. Diaz, A.,, A. Ferreira,, and R. B. Sim. 1997. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J. Immunol. 158:37793786.
28. Elloso, M. M.,, H. C. van der Heyde,, J. A. vande Waa,, D. D. Manning,, and W. P. Weidanz. 1994. Inhibition of Plasmodium falciparum in vitro by human γδ T cells. J. Immunol. 153:11871194.
29. Else, K. J.,, and F. D. Finkelman. 1998. Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol. 28: 11451158.
30. Feng, G. J.,, H. S. Goodridge,, M. M. Harnett,, X. Q. Wei,, A. V. Nikolaev,, A. P. Higson,, and F. Y. Liew. 1999. Extracellular signal-related kinase (ERK) and p38 mitogen-activated protein (MAP) kinases differentially regulate the lipopolysaccharidemediated induction of inducible nitric oxide synthase and IL-12 in macrophages: Leishmania phosphoglycans subvert macrophage IL-12 production by targeting ERK MAP kinase. J. Immunol. 163:64036412.
31. Ferrante, A.,, and A. C. Allison. 1983. Alternative pathway activation of complement by African trypanosomes lacking a glycoprotein coat. Parasite Immunol. 5:491498.
32. Ferrick, D. A.,, M. D. Schrenzel,, T. Mulvania,, B. Hsieh,, W. G. Ferlin,, and H. Lepper. 1995. Differential production of interferon- g and interleukin-4 in response to Th1- and Th2- stimulating pathogens by γδ T cells in vivo. Nature 373:255257.
33. Fishelson, Z. 1995. Novel mechanisms of immune evasion by Schistosoma mansoni. Mem. Inst. Oswaldo Cruz 90:289292.
34. Frosch, S.,, D. Kuntzlin,, and B. Fleischer. 1997. Infection with Trypanosoma cruzi selectively upregulates B7-2 molecules on macrophages and enhances their costimulatory activity. Infect. Immun. 65:971977.
35. Gazzinelli, R. T.,, S. Hieny,, T. A. Wynn,, S. Wolf,, and A. Sher. 1993. Interleukin 12 is required for the T-lymphocyteindependent induction of interferon γ by an intracellular parasite and induces resistance in T-cell deficient hosts. Proc. Natl. Acad. Sci. USA 90:61156119.
36. Gazzinelli, R. T.,, I. P. Oswald,, S. Hieny,, S. L. James,, and A. Sher. 1992. The microbicidal activity of interferon-γ-treated macrophages against Trypanosoma cruzi involves an L-argininedependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-β. Eur. J. Immunol. 22:25012506.
37. Gazzinelli, R. T.,, M. Wysocka,, S. Hayashi,, E. Y. Denkers,, S. Hieny,, P. Caspar,, G. Trinchieri,, and A. Sher. 1994. Parasiteinduced IL-12 stimulates early IFN-γ synthesis and resistance during acute infection with Toxoplasma gondii. J. Immunol. 153:25332543.
38. Goerlich, R.,, G. Hacker,, K. Pfeffer,, K. Heeg,, and H. Wagner. 1991. Plasmodium falciparum merozoites primarily stimulate the Vγ 9 subset of human γ /δ T cells. Eur. J. Immunol. 21: 26132616.
39. Gorak, P. M. A.,, C. R. Engwerda,, and P. M. Kaye. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28: 687695.
40. Green, P. J.,, T. Feizi,, M. S. Stoll,, S. Thiel,, A. Prescott,, and M. J. McConville. 1994. Recognition of the major cell surface glycoconjugates of Leishmania parasites by the human serum mannan- binding protein. Mol. Biochem. Parasitol. 66:319328.
41. Gurunathan, S.,, C. Prussin,, D. L. Sacks,, and R. A. Seder. 1998. Vaccine requirements for sustained cellular immunity to an intracellular parasitic infection. Nat. Med. 4:14091415.
42. Gutierrez-Kobeh, L.,, N. Cabrera,, and R. Perez-Montfort. 1997. A mechanism of acquired resistance to complement-mediated lysis by Entamoeba histolytica. J. Parasitol. 83:234241.
43. Hager, K. M.,, and S. L. Hajduk. 1997. Mechanism of resistance of African trypanosomes to cytotoxic human HDL. Nature 385: 823826.
44. Hajduk, S. L.,, D. R. Moore,, J. Vasudevacharya,, H. Siqueira,, A. F. Torri,, E. M. Tytler,, and J. D. Esko. 1989. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J. Biol. Chem. 264:52105217.
45. Hauser, W. E.,, S. D. Sharma,, and J. S. Remington. 1983. Augmentation of NK cell activity by soluble and particulate fractions of Toxoplasma gondii. J. Immunol. 131:458463.
46. Himmelrich, H.,, C. Parra-Lopez,, F. Tacchini-Cottier,, J. A. Louis,, and P. Launois. 1998. The IL-4 rapidly produced in BALB/ c mice after infection with Leishmania major down-regulates IL- 12 receptor β2-chain expression on CD4+ T cells resulting in a state of unresponsiveness to IL-12. J. Immunol. 161:61566163.
47. Hisaeda, H.,, H. Nagasawa,, K. Maeda,, Y. Maekawa,, H. Ishikawa,, Y. Ito,, R. A. Good,, and K. Himeno. 1995. γδ T cells play an important role in hsp65 expression and in acquiring protective immune responses against infection with Toxoplasma gondii. J. Immunol. 154:244251.
48. Hisaeda, H.,, T. Sakai,, H. Ishikaw,, Y. Maekawa,, K. Yasutomo,, R. A. Good,, and K. Himeno. 1997. Heat shock protein 65 induced by γδ T cells prevents apoptosis of macrophages and contributes to host defense in mice infected with Toxoplasma gondii. J. Immunol. 159:23752381.
49. Hoshino, T.,, R. H. Wiltrout,, and H. A. Young. 1999. IL-18 is a potent coinducer of IL-13 in NK and T cells: a new potential role for IL-18 in modulating the immune response. J. Immunol. 162:50705077.
50. Hunter, C. A.,, L. Bermudez,, H. Beernink,, W. Waegell,, and J. S. Remington. 1995a. Transforming growth factor-β inhibits interleukin- 12-induced production of interferon-γ by natural killer cells: a role for transforming growth factor-β in the regulation of T-cell independent resistance to Toxoplasma gondii. Eur. J. Immunol. 25:9941000.
51. Hunter, C. A.,, R. Chizzonite,, and J. S. Remington. 1995b. Interleukin 1β is required for the ability of IL-12 to induce production of IFN-γ by NK cells: a role for IL-1β in the T cell independent mechanism of resistance against intracellular pathogens. J. Immunol. 155:43474354.
52. Hunter, C. A.,, L. Ellis-Neyer,, K. Gabriel,, M. Kennedy,, P. Linsley,, and J. S. Remington. 1997. The role of the CD28/B7 interaction in the regulation of NK cell responses during infection with Toxoplasma gondii. J. Immunol. 158:22852293.
53. Ilg, T. 2000. Lipophosphoglycan is not required for infection of macrophages or mice by Leishmania mexicana. EMBO J. 19:19531962.
54. Jack, R. M.,, and P. A. Ward. 1980. Babesia rodhaini interactions with complement: relationship to parasitic entry into red cells. J. Immunol. 124:15661573.
55. Joiner, K. A.,, W. D. daSilva,, M. T. Rimoldi,, C. H. Hammer,, A. Sher,, and T. L. Kipnis. 1988. Biochemical characterization of a factor produced by trypomastigotes of Trypanosoma cruzi that accelerates the decay of complement C3 convertases. J. Biol. Chem. 263:1132711335.
56. Joiner, K. A.,, S. A. Fuhrman,, H. M. Miettinen,, L. H. Kasper,, and I. Mellman. 1990. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science 249:641646.
57. Jones, D.,, M. M. Elloso,, L. Showe,, D. Williams,, G. Trinchieri,, and P. Scott. 1998. Differential regulation of the interleukin-12 receptor during the innate immune response to Leishmania major. Infect. Immun. 66:38183824.
58. Kasper, L. H.,, T. Matsuura,, S. Fonseka,, J. Arruda,, J. Y. Channon,, and I. A. Khan. 1996. Induction of γδ T cells during acute murine infection with Toxoplasma gondii. J. Immunol. 157: 55215527.
59. Kaye, P. M.,, and G. J. Bancroft. 1992. Leishmania donovani infection in scid mice: lack of tissue response and in vivo macrophage activation correlates with failure to trigger natural killer cell-derived gamma interferon production in vitro. Infect. Immun. 60:43354342.
60. Kaye, P. M.,, N. J. Rogers,, A. J. Curry,, and J. C. Scott. 1994. Deficient expression of co-stimulatory molecules on Leishmaniainfected macrophages. Eur. J. Immunol. 24:28502854.
61. Khan, I. A.,, J. A. MacLean,, F. S. Lee,, L. Casciotti,, E. DeHaan,, J. D. Schwartzman,, and A. D. Luster. 2000. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12:483494.
62. Kopacz, J.,, and N. Kumar. 1999. Murine gd T lymphocytes elicited during Plasmodium yoelii infection respond to Plasmodium heat shock proteins. Infect. Immun. 67:5763.
63. Kweider, M.,, J. L. Lemesre,, F. Santoro,, J. P. Kusnierz,, M. Sadigursky,, and A. Capron. 1989. Development of metacyclic Leishmania promastigotes is associated with the increasing expression of GP65, the major surface antigen. Parasite Immunol. 11:197209.
64. Launois, P.,, I. Maillard,, S. Pingel,, K. G. Swihart,, I. Xenarios,, H. Acha-Orbea,, H. Diggelmann,, R. M. Locksley,, H. R. MacDonald,, and J. A. Louis. 1997. IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/ c mice. Immunity 6:541549.
65. Lopez-Osuna, M.,, J. Arellano,, and R. R. Kretschmer. 1992. The destruction of virulent Entamoeba histolytica by activated human eosinophils. Parasite Immunol. 14:579586.
66. Magez, S.,, M. Geuskens,, A. Beschin,, H. del Favero,, H. Verschueren,, R. Lucas,, E. Pays,, and P. de Baetselier. 1997. Specific uptake of tumor necrosis factor-alpha is involved in growth control of Trypanosoma brucei. J. Cell Biol. 137:715727.
67. Magez, S.,, B. Stijlemans,, M. Radwanska,, E. Pays,, M. A. Ferguson,, and P. De Baetselier. 1998. The glycosyl-inositol-phosphate and dimyristoylglycerol moieties of the glycosylphosphatidylinositol anchor of the trypanosome variant-specific surface glycoprotein are distinct macrophage-activating factors. J. Immunol. 160: 19491956.
68. Marone, G.,, V. Casolaro,, V. Patella,, G. Florio,, and M. Triggiani. 1997. Molecular and cellular biology of mast cells and basophils. Int. Arch. Allergy Immunol. 114:207217.
69. Matthews, D. J.,, C. L. Emson,, G. J. McKenzie,, H. E. Jolin,, J. M. Blackwell,, and A. N. McKenzie. 2000. IL-13 is a susceptibility factor for Leishmania major infection. J. Immunol. 164:14581462.
70. Matzinger, P. 1998. An innate sense of danger. Semin. Immunol. 10:399415.
71. McDonald, V.,, R. Deer,, S. Uni,, M. Iseki,, and G. J. Bancroft. 1992. Immune responses to Cryptosporidium muris and Cryposporidium parvum in adult immunocompromised (nude and SCID) mice. Infect. Immun. 60:33253331.
72. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway. 1997. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394397.
73. Mohan, K.,, P. Moulin,, and M. M. Stevenson. 1997. Natural killer cell cytokine production, not cytotoxicity, contributes to resistance against blood-stage Plasmodium chabaudi AS infection. J. Immunol. 159:49904998.
74. Molano, A.,, S. H. Park,, Y. H. Chiu,, S. Nosseir,, A. Bendelac,, and M. Tsuji. 2000. The IgG response to the circumsporozoite protein is MHC class II-dependent and CD1d-independent: exploring the role of GPIs in NK T cell activation and antimalarial responses. J. Immunol. 164:50055009.
75. Moore, K. W.,, A. O’Garra,, R. de Waal Malefyt,, P. Vieira,, and T. R. Mossman. 1993. Interleukin 10. Annu. Rev. Immunol. 11: 165190.
76. Mosser, D. M.,, and A. Brittingham. 1997. Leishmania, macrophages and complement: a tale of subversion and exploitation. Parasitology 115:S9S23.
77. Mosser, D. M.,, and P. J. Edelson. 1984. Activation of the alternative complement pathway by Leishmania promastigotes: parasite lysis and attachment to macrophages. J. Immunol. 132: 15011505.
78. Mosser, D. M.,, and P. J. Edelson. 1985. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J. Immunol. 135:27852789.
79. Mosser, D. M.,, and P. J. Edelson. 1987. The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 327:329331.
80. Noben-Trauth, N.,, W. E. Paul,, and D. L. Sacks. 1999. IL-4- and IL-4 receptor-deficient BALB/ c mice reveal differences in susceptibility to Leishmania major parasite substrains. J. Immunol. 162:61326140.
81. Norris, K. A. 1998. Stable transfection of Trypanosoma cruzi epimastigotes with the trypomastigote-specific complement regulatory protein cDNA confers complement resistance. Infect. Immun. 66:24602465.
82. Norris, K. A.,, B. Bradt,, N. R. Cooper,, and M. So. 1991. Characterization of a Trypanosoma cruzi C3 binding protein with functional and genetic similarities to the human complement regulatory protein, decay-accelerating factor. J. Immunol. 147: 22402247.
83. Norris, K. A.,, and J. E. Schrimpf. 1994. Biochemical analysis of the membrane and soluble forms of the complement regulatory protein of Trypanosoma cruzi. Infect. Immun. 62:236243.
84. Ohkusu, K.,, T. Yoshimoto,, K. Takeda,, T. Ogura,, S. Kashiwamura,, Y. Iwakura,, S. Akira,, H. Okamura,, and K. Nakanishi. 2000. Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect. Immun. 68:24492456.
85. Okamura, H.,, H. Tsutsui,, T. Komatsu,, M. Yutsudo,, A. Hakura,, T. Tanimoto,, K. Torigoe,, T. Okura,, Y. Nukuda,, K. Hattori,, K. Akita,, M. Namba,, F. Tanabe,, K. Konishi,, S. Fukuda,, and M. Kurimoto. 1995. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378:8891.
86. Paciorkowski, N.,, P. Porte,, L. D. Shultz,, and T. V. Rajan. 2000. B1 B lymphocytes play a critical role in host protection against lymphatic filarial parasites. J. Exp. Med. 191:731736.
87. Pearce, E. J.,, B. F. Hall,, and A. Sher. 1990. Host-specific evasion of the alternative complement pathway by schistosomes correlates with the presence of a phospholipase C-sensitive surface molecule resembling human decay accelerating factor. J. Immunol. 144:27512756.
88. Peck, C. A.,, M. D. Carpenter,, and A. A. Mahmoud. 1983. Speciesrelated innate resistance to Schistosoma mansoni. Role of mononuclear phagocytes in schistosomula killing in vitro. J. Clin. Investig. 71:6672.
89. Pernis, A.,, S. Gupta,, K. J. Gollob,, E. Garfein,, R. L. Coffman,, C. Schindler,, and P. Rothman. 1995. Lack of interferon γ receptor β chain and the prevention of interferon γ signalling in TH1 cells. Science 269:245247.
90. Plaut, M.,, J. H. Pierce,, C. J. Watson,, J. Hanley-Hyde,, R. P. Nordan,, and W. E. Paul. 1989. Mast cell lines produce lymphokines in response to cross-linkage of FcϵRI or to calcium ionophores. Nature 339:6467.
91. Proudfoot, L.,, C. A. O’Donnell,, and F. Y. Liew. 1995. Glycoinositolphospholipids of Leishmania major inhibit nitric oxide synthesis and reduce leishmanicidal activity in murine macrophages. Eur. J. Immunol. 25:745750.
92. Puentes, S. M.,, R. P. Da Silva,, D. L. Sacks,, C. H. Hammer,, and K. A. Joiner. 1990. Serum resistance of metacyclic stage Leishmania major promastigotes is due to release of C5b-9. J. Immunol. 145:43114316.
93. Raper, J.,, R. Fung,, J. Ghiso,, V. Nussenzweig,, and S. Tomlinson. 1999. Characterization of a novel trypanosome lytic factor from human serum. Infect. Immun. 67:19101916.
94. Reed, S. L.,, J. A. Ember,, D. S. Herdman,, R. G. DiScipio,, T. E. Hugli,, and I. Gigli. 1995. The extracellular neutral cysteine proteinase of Entamoeba histolytica degrades anaphylatoxins C3a and C5a. J. Immunol. 155:266274.
95. Reiner, S. L.,, and R. A. Seder. 1999. Dealing from the evolutionary pawnshop: how lymphocytes make decisions. Immunity 11: 110.
96. Reiner, S. L.,, S. Zheng,, Z. E. Wang,, L. Stowring,, and R. M. Locksley. 1994. Leishmania promastigotes evade interleukin 12 induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J. Exp. Med. 179:447456.
97. Reis e Sousa, B. C.,, S. Hieny,, T. Scharton-Kersten,, D. Jankovic,, H. Charset,, R. N. Germain,, and A. Sher. 1997. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186:18191829.
98. Rifkin, M. R. 1978. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc. Natl. Acad. Sci. USA 75:34503454.
99. Rimoldi, M. T.,, A. Sher,, S. Heiny,, A. Lituchy,, C. H. Hammer,, and K. Joiner. 1988. Developmentally regulated expression by Trypanosoma cruzi of molecules that accelerate the decay of complement C3 convertases. Proc. Natl. Acad. Sci. USA 85:193197.
100. Rosat, J.-P.,, F. Conceicao-Silva,, G. A. Waanders,, F. Beermann,, A. Wilson,, M. J. Owen,, A. C. Hayday,, S. Huang,, M. Aguet,, H. R. MacDonald,, and J. A. Louis. 1995. Expansion of γδ+ T cells in BALB/ c mice infected with Leishmania major is dependent upon Th2-type CD4+ T cells. Infect. Immun. 63:30003004.
101. Roussilhon, C.,, M. Agrapart,, J. J. Ballet,, and A. Bensussan. 1990. T lymphocytes bearing the γδ T cell receptor in patients with acute Plasmodium falciparum malaria. J. Infect. Dis. 162:283285.
102. Sabin, E. A.,, M. A. Kopf,, and E. J. Pearce. 1996. Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils. J. Exp. Med. 184:18711878.
103. Saraiva, E. M.,, P. F. Pimenta,, T. N. Brodin,, E. Rowton,, G. B. Modi,, and D. L. Sacks. 1995. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major in Phlebotomus papatasi. Parasitology 111:275287.
104. Sayles, P. C.,, and L. L. Johnson. 1996. Exacerbation of toxoplasmosis in neutrophil-depleted mice. Nat. Immun. 15:249258.
105. Scalise, F.,, R. Gerli,, G. Castellucci,, F. Spinozzi,, G. M. Fabietti,, S. Crupi,, L. Sensi,, R. Britta,, R. Vaccaro,, and A. Bertotto. 1992. Lymphocytes bearing the γδ T-cell receptor in acute toxoplasmosis. Immunology 76:668670.
106. Scharton, T. M.,, and P. Scott. 1993. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178:567577.
107. Scharton-Kersten, T.,, C. Contursi,, A. Masumi,, A. Sher,, and K. Ozato. 1997. Interferon consensus sequence binding proteindeficient mice display impaired resistance to intracellular infection due to a primary defect in interleukin 12 p40 induction. J. Exp. Med. 186:15231534.
108. Schofield, L.,, and F. Hackett. 1993. Signal transduction in host cells by a glycosylphosphatidylinositol toxin of malaria parasites. J. Exp. Med. 177:145153.
109. Schofield, L.,, M. J. McConville,, D. Hansen,, A. S. Campbell,, B. Fraser-Reid,, M. J. Grusby,, and S. D. Tachado. 1999. CD1drestricted immunoglobulin G formation to GPI-anchored antigens mediated by NKT cells. Science 283:225229.
110. Sedegah, M.,, F. Finkelman,, and S. L. Hoffman. 1994. Interleukin 12 induction of interferon γ-dependent protection against malaria. Proc. Natl. Acad. Sci. USA 91:1070010702.
111. Seder, R. A.,, W. E. Paul,, A. M. Dvorak,, S. J. Sharkis,, A. Kagey- Sobotka,, Y. Niv,, F. D. Finkelman,, S. A. Barbieri,, S. J. Galli,, and M. Plaut. 1991. Mouse splenic and bone marrow cell populations that express high- affinity Fce receptors and produce interleukin 4 are highly enriched in basophils. Proc. Natl. Acad. Sci. USA 88:28352839.
112. Seydel, K. B.,, S. J. Smith,, and S. L. Stanley, Jr. 2000. Innate immunity to amebic liver abscess is dependent on gamma interferon and nitric oxide in a murine model of disease. Infect. Immun. 68:400402.
113. Sharma, S. D.,, J. Verhoef,, and J. S. Remington. 1986. Enhancement of human natural killer cell activity by subcellular components of Toxoplasma gondii. Cell. Immunol. 86:317326.
114. Sher, A.,, I. P. Oswald,, S. Hieny,, and R. Gazzinelli. 1993. Toxoplasma gondii induces a T-independent IFN-γ response in natural killer cells that requires both adherent accessory cells and tumor necrosis factor-α. J. Immunol. 150:39823989.
115. Sibley, L. D.,, E. Weidner,, and J. L. Krahenbuhl. 1985. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature 315:416419.
116. Smith, A. B.,, J. D. Esko,, and S. L. Hajduk. 1995. Killing of trypanosomes by the human haptoglobin-related protein. Science 268:284286.
117. Spath, G. F.,, L. Epstein,, B. Leader,, S. M. Singer,, H. A. Avila,, S. J. Turco,, and S. M. Beverley. 2000. Lipophosphoglycan is a virulence factor distinct from related glycoconjugates in the protozoan parasite Leishmania major. Proc. Natl. Acad. Sci. USA 97:92589263.
118. Subauste, C. S.,, J. Y. Chung,, D. Do,, A. H. Koniaris,, C. A. Hunter,, J. G. Montoya,, S. Porcelli,, and J. S. Remington. 1995. Preferential activation and expansion of human peripheral blood γδ T cells in response to Toxoplasma gondii in vitro and their cytokine production and cytotoxic activity against T. gondiiinfected cells. J. Clin. Investig. 96:610619.
119. Svetic, A.,, K. B. Madden,, X. D. Zhou,, P. Lu,, I. M. Katona,, F. D. Finkelman,, J. F. Urban, Jr.,, and W. C. Gause. 1993. A primary intestinal helminthic infection rapidly induces a gut-associated elevation of Th2-associated cytokines and IL-3. J. Immunol. 150:34343441.
120. Sypek, J. P.,, C. L. Chung,, S. E. H. Mayor,, J. M. Subramanyam,, S. J. Goldman,, D. S. Sieburth,, S. F. Wolf,, and R. G. Schaub. 1993. Resolution of cutaneous leishmaniasis: Interleukin 12 initiates a protective T helper type I immune response. J. Exp. Med. 177:17971802.
121. Tachado, S. D.,, R. Mazhari-Tabrizi,, and L. Schofield. 1999. Specificity in signal transduction among glycosylphosphatidylinositols of Plasmodium falciparum, Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. Parasite Immunol. 21: 609617.
122. Takamoto, M.,, Y. Kusama,, K. Takatsu,, H. Nariuchi,, and K. Sugane. 1995. Occurrence of interleukin-5 production by CD4 CD8 (double-negative) T cells in lungs of both normal and congenitally athymic nude mice infected with Toxocara canis. Immunology 85:285291.
123. Tomlinson, S.,, and J. Raper. 1998. Natural immunity to trypanosomes. Parasitol. Today 14:354359.
124. Tsuji, M.,, P. Mombaerts,, L. Lefrancois,, R. S. Nussenzweig,, F. Zavala,, and S. Tonegawa. 1994. γδ T cells contribute to immunity against the liver stages of malaria in αβ T cell deficient mice. Proc. Natl. Acad. Sci. USA 91:345349.
125. Urban, J. F.,, R. Fayer,, S.-J. Chen,, W. C. Gause,, M. K. Gately,, and F. D. Finkelman. 1996. IL-12 protects immunocompetent and immunodeficient neonatal mice against infection with Cryptosporidium parvum. J. Immunol. 156:263268.
126. Urban, J. F.,, N. Noben-Trauth,, D. D. Donaldson,, K. B. Madden,, S. C. Morris,, M. Collins,, and F. D. Finkelman. 1998. IL-13, IL- 4Rα, and STAT6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8:255264.
127. Velupillai, P.,, and D. A. Harn. 1994. Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome- infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc. Natl. Acad. Sci. USA 91:1822.
128. von Stebut, E.,, Y. Belkaid,, T. Jakob,, D. L. Sacks,, and M. C. Udey. 1998. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived den dritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188:15471552.
129. Wakil, A. E.,, Z. E. Wang,, J. C. Ryan,, D. J. Fowell,, and R. M. Locksley. 1998. Interferon γ derived from CD4+ T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188:16511656.
130. Walker, C.,, J. Checkel,, S. Cammisuli,, P. J. Leibson,, and G. J. Gleich. 1998. IL-5 production by NK cells contributes to eosinophil infiltration in a mouse model of allergic inflammation. J. Immunol. 161:19621969.
131. Warren, H. S.,, B. F. Kinnear,, J. H. Phillips,, and L. Lanier. 1995. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J. Immunol. 154:51445152.
132. Wei, X. Q.,, B. P. Leung,, W. Niedbala,, D. Piedrafita,, G. F. Feng,, M. Sweet,, L. Dobbie,, A. J. Smith,, and F. Y. Liew. 1999. Altered immune responses and susceptibility to Leishmania major and Staphylococcus aureus infection in IL-18-deficient mice. J. Immunol. 163:28212828.
133. Wynn, T. A.,, A. W. Cheever,, D. Jankovic,, R. W. Poindexter,, P. Caspar,, F. A. Lewis,, and A. Sher. 1995. An IL-12 based vaccination method for preventing fibrosis induced by schistosome infection. Nature 376:594596.
134. Xong, H. V.,, L. Van hamme,, M. Chamekh,, C. E. Chimfwembe,, J. Van Den Abbeele,, A. Pays,, N. Van Meirvenne,, R. Hamers,, P. De Baetselier,, and E. Pays. 1998. A VSG expression siteassociated gene confers resistance to human serum in Trypanosoma rhodesiense. Cell 95:839846.
135. Yoshimoto, T.,, and W. E. Paul. 1994. CD4+, NK1.1+ T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179:12851295.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error