1887

Chapter 10 : Overall Transport Capabilities of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Overall Transport Capabilities of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap10-2.gif

Abstract:

Membrane transport systems play important roles in enabling the uptake of essential nutrients, ions, and metabolites, as well as the expulsion of toxic compounds, cell envelope macromolecules, secondary metabolites, and the end products of metabolism. Transporters also enable communication between cells and their environments and participate in energy generation and interconversion. Secondary active transporters use chemiosmotic energy in the form of transmembrane ion or solute electrochemical gradients to drive transport. Primary active transporters use chemical, electrical, or solar energy to drive transport. ATP hydrolysis provides the energy for the majority of chemically driven active transporters, but decarboxylation or methyltransfer can drive uptake or extrusion of solutes via other such systems. Whole-genome sequencing allows comparison of cellular processes such as membrane transport at the organismal level. encodes within its genome six recognized channel proteins, and these proteins belong to four distinct families. Two uncharacterized Trk family paralogues, YkrM and YubG, are present in . They may be K/Na symporters. encodes a large number of efflux pumps responsible for the extrusion of drugs, metabolites, and a variety of natural products. Families of sugar-transporting permeases have been tabulated and discussed, and structure-function relationships of phosphotransferase system (PTS) permeases (also known as enzyme II complexes) have been reviewed in this chapter. Although only a small fraction of the recognized transporters have been functionally characterized, rational functional predictions have been made for a majority of these proteins.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic depiction of the four major types of transporters found in living organisms. (A) Channels (usually oligomeric). A voltage-gated ion channel (VIC) family member (TC#l.A.l) is represented. The tetrameric channel allows solute (S) to flow freely across the membrane without energy coupling. (B) Secondary carriers (usually monomeric or dimeric). A major facilitator (MF) superfamily porter (TC #2 A.1) is depicted. A functionally dimeric (heterodimeric or homodimeric) carrier utilizes both domains for solute (and cation) recognition. The majority of secondary carriers have both domains fused in a single polypeptide chain. One or more conformational changes allow alternative binding conformers. Solute is accumulated in accordance with the electrochemical gradients of the solutes transported. A solute-proton symport mechanism is portrayed, but solute uniport, solute-proton antiport, or solute-solute antiport may be catalyzed by secondary carriers instead of, or in addition to, symport (see Fig. 2 ). (C) Primary active transporters (usually multidomain and multicomponent). An ATP-binding cassette (ABC) superfamily uptake permease (TC #3 A.l) is shown. The functionally dimeric (homodimeric or heterodimeric) pump allows active transport of solute into (or out of) the cell against a large concentration gradient. A single extracellular receptor (R) feeds solute into the dimeric membrane channel (M), and solute transport is energized by ATP hydrolysis, catalyzed by the cytoplasmic, dimeric ATPase (C). (D) Group translocators (always multidomain). A phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) superfamily group translocator (TC #4.A.l) is presented. The functionally dimeric (homodimeric) membrane transporter, enzyme IIC (C), is energized by a series of phosphoryl transfer reactions sequentially catalyzed by enzyme I (I), HPr (H), enzyme IIA (A), and enzyme IIB (B). The sugar substrate is phosphorylated during transport.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The four currently recognized types of secondary transporters found in nature. These four types include uniporters, whereby a single species is translocated across the membrane; symporters, whereby two or more species are transported together in a tightly coupled process; and antiporters, whereby molecular species are transported in opposite directions. The latter types of secondary active transporters can expel a metabolite, a toxic compound, or a drug from the cell at the expense of the proton electrochemical gradient. In the process, protons flow into the cell, down their electrochemical gradient. Some antiporters exclusively catalyze exchange of one solute for another solute of similar structure.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap10
1. Aleshin, V. V.,, N. P. Zakataeva,, and V. A. Livshits. 1999. A new family of amino-acid-efflux proteins. Trends Biochem. Sci. 24: 133 135.
2. Asai, K.,, S.-H. Baik,, Y. Kasahara,, S. Moriya,, and N. Ogasawara. 2000. Regulation of the transport system for C 4-dicarboxylic acids in Bacillus subtilis. Microbiology 146: 263 271.
3. Askwith, C.,, and J. Kaplan. 1997. An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272: 401 405.
3a. Boingiu, C.,, and E. Bremer. Personal communication.
4. Boorsma, A.,, M. E. van der Rest,, J. S. Lolkema,, and W. N. Konigs. 1996. Secondary transporters for citrate and the Mg 2+-citrate complex in Bacillus subtilis are homologous proteins. J. Bacteriol. 178: 6216 6222.
5. Brown, M. H.,, I. T. Paulsen,, and R. A. Skurray. 1999. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol. 31: 394 395.
6. Chang, G.,, R. H. Spencer,, A. T. Lee,, M. T. Barclay,, and D. C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220 2226.
7. Chen, X.-Z.,, J.-B. Peng,, A. Cohen,, H. Nelson,, N. Nelson,, and M. A. Hediger. 1999. Yeast SMF1 mediates H +-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem. 274: 35089 35094.
7a. Chung, Y. J.,, and M. H. Saier, Jr. 2001. SMR-type multidrug resistance pumps. Curr. Opin. DrugDisc. Dev. 4: 237 245.
8. Cox, J. S.,, B. Chen,, M. McNeil,, and W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79 83.
9. De Silva, D. M.,, C. C. Askwith,, D. Eide,, and J. Kaplan. 1995. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270: 1098 1101.
10. Doyle, D. A.,, J. M. Cabral,, R. A. Pfuetzner,, A. Kuo,, J. M. Glubis,, S. L. Cohen,, B. T. Chait,, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science 280: 69 77.
11. Eide, D. J. 1998. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18: 441 469.
12. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 498.
13. Galinier, A.,, J. Deutscher,, and I. Martin-Verstrate. 1999. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn ere and catabolite repression of the xyn operon. J. Mol. Biol. 286: 307 314.
14. Hiramatsu, T.,, K. Kodama,, T. Kuroda,, T. Mizushima,, and T. Tsuchiya. 1998. A putative multisubunit Na +/H + antiporter from Staphylococcus aureus. J. Bacteriol. 180: 6642 6648.
15. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na + and in pH homeostasis. J. Bacteriol. 181: 2394 2402.
16. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 2000. Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na + and alkali but not cholate resistance. J. Bacteriol. 182: 5663 5670.
17. Jack, D. L.,, I. T. Paulsen,, and M. H. Saier, Jr. 2000. The APC superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146: 1797 1814.
18. Jack, D. L.,, M. L. Storms,, J. H. Tchieu,, I. T. Paulsen,, and M. H. Saier, Jr. 2000. A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J. Bacteriol. 182: 2311 2313.
19. Jack, D. L.,, N. Yang,, and M. H. Saier, Jr. 2001. The drug/metabolite transporter superfamily. Eur. J. Biochem. 268: 3620 3639.
20. Kappes, R.,, B. Kempf,, and E. Bremer. 1996. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178: 5071 5079.
21. Kosono, S.,, S. Morotomi,, M. Kitada,, and T. Kudo. 1998. Analyses of a Bacillus subtilis homologue of the Na +/H + antiporter gene which is important for pH homeostasis of al-kaliphilic Bacillus sp. C-125. Biochim. Biophys. Acta 1409: 171 175.
22. Kosono, S.,, Y. Ohashi,, F. Kawamura,, M. Kitada,, and T. Kudo. 2000. Function of a principal Na +/H + antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182: 898 904.
23. Krom, B. P.,, J. B. Warner,, W. N. Konings,, and J. S. Lolkema. 2000. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis. J. Bacteriol. 182: 6374 6381.
24. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
25. Makui, H.,, E. Roig,, S. T. Cole,, J. D. Helmann,, P. Gros,, and M. F. M. Cellier. 2000. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35: 1065 1078.
26. Mansilla, M. C, and D. de Mendoza. 2000. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146: 815 821.
27. Martinac, B.,, M. Buechner,, A. H. Delcour,, J. Adler,, and C. Kung. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 2297 2301.
28. Morita, Y.,, K. Kodama,, S. Shiota,, T. Mine,, A. Kataoka,, T. Mizushima,, and T. Tsuchiya. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42: 1778 1782.
29. Nies, D.,, S. Koch,, S. Wachi,, M. Peitzsch,, and M. H. Saier, Jr. 1998. Chr, a novel family of prokaryotic proton motive force-driven transporters probably containing chro-mate/sulfate antiporters. J. Bacteriol. 180: 5799 5802.
30. Nunez, M. F.,, M. T. Pellicer,, J. Badia,, J. Aguilar,, and L. Baldoma. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Unpublished data.
31. Pao, S. S.,, I. T. Paulsen,, and M. H. Saier, Jr. 1998. The major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 1 32.
32. Paulsen, I. T.,, A. M. Benessm,, and M. H. Saier, Jr. 1997. Computer-based analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria. Microbiology 143: 2685 2699.
33. Paulsen, I. T.,, S. Chauvaux,, P. Choi,, and M. H. Saier, Jr. 1998. Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H + symporter. J. Bacteriol. 180: 498 504.
34. Paulsen, I. T.,, L. Nguyen,, M. K. Sliwinski,, R. Rabus,, and M. H. Saier, Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301: 75 100.
35. Paulsen, I. T.,, M. K. Sliwinski,, B. Nelissen,, A. Goffeau,, and M. H. Saier, Jr. 1998. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116 125.
36. Paulsen, I. T.,, M. K. Sliwinski,, and M. H. Saier, Jr. 1998. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277: 573 592.
37. Putnoky, P.,, A. Kereszt,, T. Nakamura,, G. Endre,, E. Grosskopf,, P. Kiss,, and A. Kondorosi. 1998. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K + efflux system. Mol. Microbiol. 28: 1091 1101.
38. Rabus, R.,, D. L. Jack,, D. J. Kelly,, and M. H. Saier, Jr. 1999. TRAP transporters; an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145: 3431 3445.
39. Reeves, J. P. 1998. Na2 +/Ca2 + exchange and cellular Ca2 + homeostasis. J. Bioenerg. Biomembr. 30: 151 160.
40. Reizer, J.,, S. Bachem,, A. Reizer,, M. Arnaud,, and M. H. Saier, Jr. 1999. Novel phosphotransferase system genes revealed by genome analysis—the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145: 3419 3429.
40a. Reizer, J.,, and M. H. Saier, Jr. Unpublished observation.
41. Rensing, C.,, B. Fan,, R. Sharma,, B. Mitra,, and B. P. Rosen. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652 656.
42. Robillard, G. T.,, and J. Broos. 1999. Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim. Biophys. Acta 1422: 73 104.
43. Saier, M. H., Jr. 2000. A functional/phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64: 354 411.
44. Saier, M. H., Jr. 2000. Families of proteins forming transmembrane channels. J. Membr. Biol. 175: 165 180.
45. Saier, M. H., Jr. 2000. Families of transporters specific for amino acids and their derivatives. Microbiology 146: 1755 1795.
46. Saier, M. H., Jr. 2000. Families of transmembrane sugar transport proteins. Mol. Microbiol. 35: 699 710.
47. Saier, M. H., Jr.,, J. T. Beatty,, A. Goffeau,, K. T. Harley,, W. H. M. Heijne,, S.-C. Huang,, D. L. Jack,, P. S. Jahn,, K. Lew,, J. Liu,, S. S. Pao,, I. T. Paulsen,, T.-T. Tseng,, and P. S. Virk. 1999. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1: 257 279.
48. Saier, M. H., Jr.,, M. J. Fagan,, C. Hoischen,, and J. Reizer,. 1993. Transport mechanisms in gram-positive bacteria, p. 133 156. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, andMolecular Genetics. American Society for Microbiology, Washington, D.C.
49. Saier, M. H., Jr.,, S. R. Goldman,, R. R. Maile,, M. S. Moreno,, W. Weyler,, N. Yang,, and I. T. Paulsen. Transport capabilities encoded within the Bacillus subtilis genome. J. Mol. Microbiol. Biotechnol, in press.
50. Sarsero, J. P.,, E. Merino,, and C. Yanofsky. 2000. The Bacillus subtilis gene of previously unknown function, yhaG, is translationally regulated by tryptophan-activated TRAP and appears to be involved in tryptophan transport. J. Bacteriol. 182: 2329 2331.
51. Smith, R. L.,, J. L. Banks,, M. D. Snavely,, and M. E. Maguire. 1993. Sequence and topology of the Cor A magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J. Biol. Chem. 268: 14071 14080.
52. Smith, R. L.,, and M. E. Maguire. 1998. Microbial magnesium transport: unusual transporters searching for identity. Mol. Microbiol. 28: 217 226.
53. Smith, R. L.,, M. A. Szegedy,, L. M. Kucharski,, C. Walker,, R. M. Wiet,, A. Redpath,, M. T. Kaczmarek,, and M. E. Maguire. 1998. The CorA Mg2 + transport protein of Salmonella typhimurium: mutagenesis of conserved residues in the third membrane domain identifies a Mg2 + pore. J. Biol. Chem. 273: 28663 28669.
54. Smith, R. L.,, L. J. Thompson,, and M. E. Maguire. 1995. Cloning and characterization of MgtE, a putative new class of Mg2 + transporter from Bacillus firmus OF4. J. Bacteriol. 177: 1233 1238.
55. Soldo, B.,, V. Lazarevic,, M. Pagni,, and D. Karamata. 1999. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31: 795 805.
56. Toyoshima, C.,, M. Nakasako,, H. Nomura,, and H. Ogawa. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647 655.
57. Tseng, T.-T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau,, and M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1: 107 125.
58. Vincent, C.,, P. Doublet,, C. Grangeasse,, E. Vaganay,, A. J. Cozzone,, and B. Duclos. 1999. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphoty-rosine-protein phosphatase, Wzb. J. Bacteriol. 181: 3472 3477.
59. Vrljic, M.,, J. Garg,, A. Bellman,, S. Wachi,, R. Freudl,, M. J. Malecki,, H. Sahm,, V. J. Kozina,, L. Eggeling,, and M. H. Saier, Jr. 1999. The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J. Mol. Microbiol. Biotechnol. 1: 327 336.
60. Wei, Y.,, A. A. Guffanti,, E. A. Cahill,, and T. A. Krul-wich. Unpublished observations.
61. Wei, Y.,, A. A. Guffanti,, M. Ito,, and T. A. Krulwich. 2000. Bacillus subtilis Yqkl is a novel malic/Na lactate an-tiporter that enhances growth on malate at low proton motive force. J. Biol. Chem. 275: 30289 30292.
62. Whitfield, C.,, and I. S. Roberts. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31: 1307 1319.
63. Zakataeva, N. P.,, V. V. Aleshin,, I. L. Tokmakova,, P. V. Troshin,, and V. A. Livshits. 1999. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett. 452: 228 232.

Tables

Generic image for table
TABLE 1a

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1b

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1c

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1d

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1e

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1f

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1g

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1h

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error