1887

Chapter 10 : Overall Transport Capabilities of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Overall Transport Capabilities of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap10-2.gif

Abstract:

Membrane transport systems play important roles in enabling the uptake of essential nutrients, ions, and metabolites, as well as the expulsion of toxic compounds, cell envelope macromolecules, secondary metabolites, and the end products of metabolism. Transporters also enable communication between cells and their environments and participate in energy generation and interconversion. Secondary active transporters use chemiosmotic energy in the form of transmembrane ion or solute electrochemical gradients to drive transport. Primary active transporters use chemical, electrical, or solar energy to drive transport. ATP hydrolysis provides the energy for the majority of chemically driven active transporters, but decarboxylation or methyltransfer can drive uptake or extrusion of solutes via other such systems. Whole-genome sequencing allows comparison of cellular processes such as membrane transport at the organismal level. encodes within its genome six recognized channel proteins, and these proteins belong to four distinct families. Two uncharacterized Trk family paralogues, YkrM and YubG, are present in . They may be K/Na symporters. encodes a large number of efflux pumps responsible for the extrusion of drugs, metabolites, and a variety of natural products. Families of sugar-transporting permeases have been tabulated and discussed, and structure-function relationships of phosphotransferase system (PTS) permeases (also known as enzyme II complexes) have been reviewed in this chapter. Although only a small fraction of the recognized transporters have been functionally characterized, rational functional predictions have been made for a majority of these proteins.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic depiction of the four major types of transporters found in living organisms. (A) Channels (usually oligomeric). A voltage-gated ion channel (VIC) family member (TC#l.A.l) is represented. The tetrameric channel allows solute (S) to flow freely across the membrane without energy coupling. (B) Secondary carriers (usually monomeric or dimeric). A major facilitator (MF) superfamily porter (TC #2 A.1) is depicted. A functionally dimeric (heterodimeric or homodimeric) carrier utilizes both domains for solute (and cation) recognition. The majority of secondary carriers have both domains fused in a single polypeptide chain. One or more conformational changes allow alternative binding conformers. Solute is accumulated in accordance with the electrochemical gradients of the solutes transported. A solute-proton symport mechanism is portrayed, but solute uniport, solute-proton antiport, or solute-solute antiport may be catalyzed by secondary carriers instead of, or in addition to, symport (see Fig. 2 ). (C) Primary active transporters (usually multidomain and multicomponent). An ATP-binding cassette (ABC) superfamily uptake permease (TC #3 A.l) is shown. The functionally dimeric (homodimeric or heterodimeric) pump allows active transport of solute into (or out of) the cell against a large concentration gradient. A single extracellular receptor (R) feeds solute into the dimeric membrane channel (M), and solute transport is energized by ATP hydrolysis, catalyzed by the cytoplasmic, dimeric ATPase (C). (D) Group translocators (always multidomain). A phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) superfamily group translocator (TC #4.A.l) is presented. The functionally dimeric (homodimeric) membrane transporter, enzyme IIC (C), is energized by a series of phosphoryl transfer reactions sequentially catalyzed by enzyme I (I), HPr (H), enzyme IIA (A), and enzyme IIB (B). The sugar substrate is phosphorylated during transport.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The four currently recognized types of secondary transporters found in nature. These four types include uniporters, whereby a single species is translocated across the membrane; symporters, whereby two or more species are transported together in a tightly coupled process; and antiporters, whereby molecular species are transported in opposite directions. The latter types of secondary active transporters can expel a metabolite, a toxic compound, or a drug from the cell at the expense of the proton electrochemical gradient. In the process, protons flow into the cell, down their electrochemical gradient. Some antiporters exclusively catalyze exchange of one solute for another solute of similar structure.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap10
1. Aleshin, V. V.,, N. P. Zakataeva,, and V. A. Livshits. 1999. A new family of amino-acid-efflux proteins. Trends Biochem. Sci. 24:133135.
2. Asai, K.,, S.-H. Baik,, Y. Kasahara,, S. Moriya,, and N. Ogasawara. 2000. Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis. Microbiology 146: 263271.
3. Askwith, C.,, and J. Kaplan. 1997. An oxidase-permease-based iron transport system in Schizosaccharomyces pombe and its expression in Saccharomyces cerevisiae. J. Biol. Chem. 272:401405.
3a. Boingiu, C.,, and E. Bremer. Personal communication.
4. Boorsma, A.,, M. E. van der Rest,, J. S. Lolkema,, and W. N. Konigs. 1996. Secondary transporters for citrate and the Mg2+-citrate complex in Bacillus subtilis are homologous proteins. J. Bacteriol. 178:62166222.
5. Brown, M. H.,, I. T. Paulsen,, and R. A. Skurray. 1999. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol. 31:394395.
6. Chang, G.,, R. H. Spencer,, A. T. Lee,, M. T. Barclay,, and D. C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:22202226.
7. Chen, X.-Z.,, J.-B. Peng,, A. Cohen,, H. Nelson,, N. Nelson,, and M. A. Hediger. 1999. Yeast SMF1 mediates H+-coupled iron uptake with concomitant uncoupled cation currents. J. Biol. Chem. 274:3508935094.
7a. Chung, Y. J.,, and M. H. Saier, Jr. 2001. SMR-type multidrug resistance pumps. Curr. Opin. DrugDisc. Dev. 4: 237245.
8. Cox, J. S.,, B. Chen,, M. McNeil,, and W. R. Jacobs, Jr. 1999. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:7983.
9. De Silva, D. M.,, C. C. Askwith,, D. Eide,, and J. Kaplan. 1995. The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J. Biol. Chem. 270:10981101.
10. Doyle, D. A.,, J. M. Cabral,, R. A. Pfuetzner,, A. Kuo,, J. M. Glubis,, S. L. Cohen,, B. T. Chait,, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:6977.
11. Eide, D. J. 1998. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18: 441469.
12. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness, et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496498.
13. Galinier, A.,, J. Deutscher,, and I. Martin-Verstrate. 1999. Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn ere and catabolite repression of the xyn operon. J. Mol. Biol. 286:307314.
14. Hiramatsu, T.,, K. Kodama,, T. Kuroda,, T. Mizushima,, and T. Tsuchiya. 1998. A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J. Bacteriol. 180: 66426648.
15. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J. Bacteriol. 181:23942402.
16. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 2000. Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J. Bacteriol. 182:56635670.
17. Jack, D. L.,, I. T. Paulsen,, and M. H. Saier, Jr. 2000. The APC superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146:17971814.
18. Jack, D. L.,, M. L. Storms,, J. H. Tchieu,, I. T. Paulsen,, and M. H. Saier,Jr. 2000. A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J. Bacteriol. 182:23112313.
19. Jack, D. L.,, N. Yang,, and M. H. Saier, Jr. 2001. The drug/metabolite transporter superfamily. Eur. J. Biochem. 268:36203639.
20. Kappes, R.,, B. Kempf,, and E. Bremer. 1996. Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J. Bacteriol. 178:50715079.
21. Kosono, S.,, S. Morotomi,, M. Kitada,, and T. Kudo. 1998. Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of al-kaliphilic Bacillus sp. C-125. Biochim. Biophys. Acta 1409: 171175.
22. Kosono, S.,, Y. Ohashi,, F. Kawamura,, M. Kitada,, and T. Kudo. 2000. Function of a principal Na+/H+ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182:898904.
23. Krom, B. P.,, J. B. Warner,, W. N. Konings,, and J. S. Lolkema. 2000. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis. J. Bacteriol. 182:63746381.
24. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
25. Makui, H.,, E. Roig,, S. T. Cole,, J. D. Helmann,, P. Gros,, and M. F. M. Cellier. 2000. Identification of the Escherichia coli K-12 Nramp orthologue (MntH) as a selective divalent metal ion transporter. Mol. Microbiol. 35:10651078.
26. Mansilla, M. C, and D. de Mendoza. 2000. The Bacillus subtilis cysP gene encodes a novel sulphate permease related to the inorganic phosphate transporter (Pit) family. Microbiology 146:815821.
27. Martinac, B.,, M. Buechner,, A. H. Delcour,, J. Adler,, and C. Kung. 1987. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:22972301.
28. Morita, Y.,, K. Kodama,, S. Shiota,, T. Mine,, A. Kataoka,, T. Mizushima,, and T. Tsuchiya. 1998. NorM, a putative multidrug efflux protein, of Vibrio parahemolyticus and its homolog in Escherichia coli. Antimicrob. Agents Chemother. 42:17781782.
29. Nies, D.,, S. Koch,, S. Wachi,, M. Peitzsch,, and M. H. Saier, Jr. 1998. Chr, a novel family of prokaryotic proton motive force-driven transporters probably containing chro-mate/sulfate antiporters. J. Bacteriol. 180:57995802.
30. Nunez, M. F.,, M. T. Pellicer,, J. Badia,, J. Aguilar,, and L. Baldoma. The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Unpublished data.
31. Pao, S. S.,, I. T. Paulsen,, and M. H. Saier, Jr. 1998. The major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62: 132.
32. Paulsen, I. T.,, A. M. Benessm,, and M. H. Saier, Jr. 1997. Computer-based analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria. Microbiology143:26852699.
33. Paulsen, I. T.,, S. Chauvaux,, P. Choi,, and M. H. Saier, Jr. 1998. Characterization of glucose-specific catabolite repression-resistant mutants of Bacillus subtilis: identification of a novel hexose:H+ symporter. J. Bacteriol. 180:498504.
34. Paulsen, I. T.,, L. Nguyen,, M. K. Sliwinski,, R. Rabus,, and M. H. Saier, Jr. 2000. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Mol. Biol. 301:75100.
35. Paulsen, I. T.,, M. K. Sliwinski,, B. Nelissen,, A. Goffeau,, and M. H. Saier, Jr. 1998. Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett. 430: 116125.
36. Paulsen, I. T.,, M. K. Sliwinski,, and M. H. Saier, Jr. 1998. Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277:573592.
37. Putnoky, P.,, A. Kereszt,, T. Nakamura,, G. Endre,, E. Grosskopf,, P. Kiss,, and A. Kondorosi. 1998. The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol. Microbiol. 28:10911101.
38. Rabus, R.,, D. L. Jack,, D. J. Kelly,, and M. H. Saier, Jr. 1999. TRAP transporters; an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. Microbiology 145:34313445.
39. Reeves, J. P. 1998. Na2+/Ca2+ exchange and cellular Ca2+ homeostasis. J. Bioenerg. Biomembr. 30:151160.
40. Reizer, J.,, S. Bachem,, A. Reizer,, M. Arnaud,, and M. H. Saier, Jr. 1999. Novel phosphotransferase system genes revealed by genome analysis—the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. Microbiology 145:34193429.
40a. Reizer, J.,, and M. H. Saier, Jr. Unpublished observation.
41. Rensing, C.,, B. Fan,, R. Sharma,, B. Mitra,, and B. P. Rosen. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97:652656.
42. Robillard, G. T.,, and J. Broos. 1999. Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim. Biophys. Acta 1422:73104.
43. Saier, M. H., Jr. 2000. A functional/phylogenetic classification system for transmembrane solute transporters. Microbiol. Mol. Biol. Rev. 64:354411.
44. Saier, M. H., Jr. 2000. Families of proteins forming transmembrane channels. J. Membr. Biol. 175:165180.
45. Saier, M. H., Jr. 2000. Families of transporters specific for amino acids and their derivatives. Microbiology 146: 17551795.
46. Saier, M. H., Jr. 2000. Families of transmembrane sugar transport proteins. Mol. Microbiol. 35:699710.
47. Saier, M. H., Jr.,, J. T. Beatty,, A. Goffeau,, K. T. Harley,, W. H. M. Heijne,, S.-C. Huang,, D. L. Jack,, P. S. Jahn,, K. Lew,, J. Liu,, S. S. Pao,, I. T. Paulsen,, T.-T. Tseng,, and P. S. Virk. 1999. The major facilitator superfamily. J. Mol. Microbiol. Biotechnol. 1:257279.
48. Saier, M. H., Jr.,, M. J. Fagan,, C. Hoischen,, and J. Reizer,. 1993. Transport mechanisms in gram-positive bacteria, p. 133156. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, andMolecular Genetics. American Society for Microbiology, Washington, D.C.
49. Saier, M. H., Jr.,, S. R. Goldman,, R. R. Maile,, M. S. Moreno,, W. Weyler,, N. Yang,, and I. T. Paulsen. Transport capabilities encoded within the Bacillus subtilis genome. J. Mol. Microbiol. Biotechnol, in press.
50. Sarsero, J. P.,, E. Merino,, and C. Yanofsky. 2000. The Bacillus subtilis gene of previously unknown function, yhaG, is translationally regulated by tryptophan-activated TRAP and appears to be involved in tryptophan transport. J. Bacteriol. 182:23292331.
51. Smith, R. L.,, J. L. Banks,, M. D. Snavely,, and M. E. Maguire. 1993. Sequence and topology of the Cor A magnesium transport systems of Salmonella typhimurium and Escherichia coli. Identification of a new class of transport protein. J. Biol. Chem. 268:1407114080.
52. Smith, R. L.,, and M. E. Maguire. 1998. Microbial magnesium transport: unusual transporters searching for identity. Mol. Microbiol. 28:217226.
53. Smith, R. L.,, M. A. Szegedy,, L. M. Kucharski,, C. Walker,, R. M. Wiet,, A. Redpath,, M. T. Kaczmarek,, and M. E. Maguire. 1998. The CorA Mg2+ transport protein of Salmonella typhimurium: mutagenesis of conserved residues in the third membrane domain identifies a Mg2+ pore. J. Biol. Chem. 273:2866328669.
54. Smith, R. L.,, L. J. Thompson,, and M. E. Maguire. 1995. Cloning and characterization of MgtE, a putative new class of Mg2+ transporter from Bacillus firmus OF4. J. Bacteriol. 177:12331238.
55. Soldo, B.,, V. Lazarevic,, M. Pagni,, and D. Karamata. 1999. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31:795805.
56. Toyoshima, C.,, M. Nakasako,, H. Nomura,, and H. Ogawa. 2000. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647655.
57. Tseng, T.-T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau,, and M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:107125.
58. Vincent, C.,, P. Doublet,, C. Grangeasse,, E. Vaganay,, A. J. Cozzone,, and B. Duclos. 1999. Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphoty-rosine-protein phosphatase, Wzb. J. Bacteriol. 181: 34723477.
59. Vrljic, M.,, J. Garg,, A. Bellman,, S. Wachi,, R. Freudl,, M. J. Malecki,, H. Sahm,, V. J. Kozina,, L. Eggeling,, and M. H. Saier, Jr. 1999. The LysE superfamily: topology of the lysine exporter LysE of Corynebacterium glutamicum, a paradigm for a novel superfamily of transmembrane solute translocators. J. Mol. Microbiol. Biotechnol. 1:327336.
60. Wei, Y.,, A. A. Guffanti,, E. A. Cahill,, and T. A. Krul-wich. Unpublished observations.
61. Wei, Y.,, A. A. Guffanti,, M. Ito,, and T. A. Krulwich. 2000. Bacillus subtilis Yqkl is a novel malic/Na lactate an-tiporter that enhances growth on malate at low proton motive force. J. Biol. Chem. 275:3028930292.
62. Whitfield, C.,, and I. S. Roberts. 1999. Structure, assembly and regulation of expression of capsules in Escherichia coli. Mol. Microbiol. 31:13071319.
63. Zakataeva, N. P.,, V. V. Aleshin,, I. L. Tokmakova,, P. V. Troshin,, and V. A. Livshits. 1999. The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett. 452:228232.

Tables

Generic image for table
TABLE 1a

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1b

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1c

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1d

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1e

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1f

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1g

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10
Generic image for table
TABLE 1h

Transporters and transporter homologues currently recognized in

For more detailed information about the TC system, see our website (http://www.biology.ucsd.edu/∼msaier/transport/) and references .

Protein components of a single system are separated by commas, and distinct systems, when presented on a single line, are separated by semicolons.

Evidence: 1, certain—based on direct experimental data; 2, probable—based on close sequence similarity; 3, possible—based on distant sequence similarities.

Citation: Saier M, Goldman S, Maile R, Moreno M, Weyler W, Yang N, Paulsen I. 2002. Overall Transport Capabilities of , p 113-128. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error