1887

Chapter 12 : The Krebs Citric Acid Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Krebs Citric Acid Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap12-2.gif

Abstract:

The Krebs citric acid cycle, a central pathway of intermediary metabolism, generates ATP, reducing power, and biosynthetic intermediates. This chapter provides a list of enzymes of the Krebs cycle and the genes that encode them. In , isocitrate dehydrogenase (IDH) reduces NADP, but in other organisms IDH is an NAD-reducing enzyme. Among the enzymes from gram-positive bacteria, IDH is unusual; it resembles the IDH in that it lacks the extra loop of amino acids found in IDH. The loss of aconitase activity causes a severe block in SpoOA~P-dependent gene expression and near-total blockage of sporulation at stage 0. In large measure, this defect can be attributed to accumulation of citrate, both inside the cells and in the medium. Citrate is a chelatot of divalent cations; in this case, Mn and Fe are the relevant cations. The gene encodes the sole malate dehydrogenase (MDH) of this organism, as judged by total loss of MDH enzyme activity and at least partial aspartate auxotrophy in a null mutant. The gene is upstream of and divergently transcribed from in all spp. examined. The enzymes for the dicarboxylic acid part of the cycle probably appeared very early in evolution, since they are found in species from all branches of life. The genes for isopropylmalate isomerase () and isopropylmalate dehydrogenase () are close homologs of the and genes, respectively, and the reactions catalyzed by the respective enzymes are chemically analogous.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12

Key Concept Ranking

Transcription Start Site
0.59148425
Acetyl Coenzyme A
0.5106383
Gene Expression and Regulation
0.5019132
Fatty Acid Biosynthesis
0.4468175
Fatty Acid Degradation
0.4468175
0.59148425
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The Krebs citric acid cycle and related pathways. The pathway from acetyl coenzyme A (acetyl-CoA) to oxaloacetate is shown as it occurs in subtilis. The glyoxylate shunt, indicated by dashed lines, is absent from but is found in some other low-G+C gram-positive bacteria. Genes that encode the relevant enzymes are shown in italicized, lowercase lettering. Oxaloacetate to prime the cycle is generated by pyruvate carboxylase (encoded by conversion of oxaloacetate to phosphoenolpyruvate (PEP) for gluconeogenesis is mediated by PEP carboxykinase (encoded by During fermentative growth, pyruvate is converted to lactate, ethanol, acetoin, and acetate. Acetate production is catalyzed by phosphotransacetylase and acetate kinase, encoded by and respectively. The acetate kinase reaction is coupled to ATP synthesis. Acetate utilization is mediated by acetyl-CoA synthetase, the product of the gene.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Genes for Krebs cycle enzymes and related pathways. Gene organization is shown as it occurs in For some genes, this organization is conserved in related organisms (see Table 2 ), but in other cases the genes are located in entirely different genetic environments.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Regulation of transcription of citZ and citB. (A) The citZ promoter is repressed directly by CcpA (small dark ovals; shown as a dimer) and CcpC (light ovals; shown as a pair of dimers). The binding site for CcpA appears to be centered at position +89 with respect to the transcription start site. CcpA bound at this site presumably acts as a roadblock to transcription; CcpC binds to a dyad symmetry element centered at position + 32 and to a second copy of one arm of the dyad element located at about position +1 ( ). Binding of CcpC is reduced in the presence of citrate ( ). In the fully derepressed state, neither CcpA nor CcpC binds to the DNA, and RNA polymerase (large dark oval) has unrestricted access to the promoter and downstream DNA. (B) The citB promoter is repressed directly by CcpC (light ovals; shown as dimers) and indirectly by CcpA. CcpC binds to two sites, a high-affinity, dyad symmetry site centered at position −66 and a weaker half-dyad site at position − 27 ( ). Mutations in either one of these sites cause derepression of the citB gene in cells grown in glucose-glutamate medium. Binding of CcpC to the promoter region induces a 60° bend in the DNA (at position −41), presumably owing to interaction between CcpC molecules bound at positions −66 and −27 ( ). According to a model currently being tested, this bent complex cannot serve as a binding site for RNA polymerase (large dark oval), and the citB gene is repressed. The model postulates that citrate induces the citB gene by binding to CcpC and interfering with protein-protein interaction, thereby unbending the DNA and making the promoter accessible for transcription. A mutant is also partially derepressed for citB transcription ( ), but the citB gene region does not contain any apparent binding site for CcpA. It appears that in the absence of CcpA there is enough expression of citZ that some citrate can accumulate and partially inactivate CcpC. In cells growing in nutrient broth medium, the citB gene is induced as cells make the transition from exponential phase to stationary phase ( ). This induction requires the inactivation of CcpC., AbrB (a global repressor of stationary-phase genes), and CodY, a GTP-sensing repressor of many stationary-phase genes ( ). Binding of AbrB covers the region from positions −35 to + 14 ( ); the CodY binding site has not yet been defined.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

A putative pathway for propionate metabolism in Gene and enzyme assignments have been made by analogy with known pathways in and . (see text and Table 3 ). The precursor of propionyl-CoA may be propionate or an intermediate in fatty acid degradation.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap12
1. Agrawal, P. K.,, G. K. Garg,, and K. G. Gollakota. 1975. Studies on two isozymes of aconitase from Bacillus cereus T. I. Partial purification and stability. Biochem. Biophys. Res. Commun. 67:645652.
2. Alén, C.,, and A. L. Sonenshein. 1999. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Nad. head. Sci. USA 96:1041210417.
3. Archibald, F. S.,, and M. N. Duong. 1984. Manganese acquisition by Lactobacillus plantarum. J. Bacteriol. 158:18.
4. Arnau, J.,, F. Jorgensen,, S. M. Madsen,, A. Vrang,, and H. Israelsen. 1997. Cloning, expression, and characterization of the Lactococcus lactis pfl gene, encoding pyruvate for-mate-lyase. J. Bacteriol. 179:58845891.
5. Bailey, D. L.,, M. E. Fraser,, W. A. Bridger,, M. N. James,, and W. T. Wolodko. 1999. A dimeric form of Escherichia coli succinyl-CoA synthetase produced by site-directed mutagenesis. J. Mol. Biol. 285:16551666.
6. Brutsche, S.,, and V. Braun. 1997. SigX of Bacillus subtilis replaces the ECF sigma factor Feel of Escherichia coli and is inhibited by RsiX. Mol. Gen. Genet. 256:416425.
7. Bryan, E. M.,, B. W. Beall,, and C. P. Moran, Jr. 1996. A sigma E dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J. Bacteriol. 178: 47784786.
8. Carls, R. A.,, and R. S. Hanson. 1971. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J. Bacteriol. 106:848855.
9. Carlsson, P.,, and L. Hederstedt. 1989. Genetic characterization of Bacillus subtilis odhA and odhB, encoding 2-oxoglutarate dehydrogenase and dihydrolipoamide transsuc-cinylase, respectively.J. Bacteriol. 171:36673672.
10. Cendrin, F.,, J. Chroboczek,, G. Zaccai,, H. Eisenberg,, and M. Mevarech. 1993. Cloning, sequencing, and expression in Escherichia coli of the gene coding for malate dehydrogenase of the extremely halophilic archaebacterium Haloarcula marismortui. Biochemistry 32:43084313.
11. Chell, R. L.,, and T. K. Sundaram. 1975. Isolation and characterization of isocitrate lyase and malate synthase from Bacillus stearothermophilus. Biochem. Soc. Trans. 3: 303306.
12. Chung, T.,, D. J. Klumpp,, and D. C. LaPorte. 1988. Gly-oxylate bypass operon of Escherichia coli: cloning and determination of the functional map. J. Bacteriol. 170:386392.
13. Cox, D. P.,, and R. S. Hanson. 1968. Catabolite repression of aconitate hydratase in Bacillus subtilis. Biochim. Biophys. Acta 158:3644.
14. Craig, J. E.,, M. J. Ford,, D. C. Blaydon,, and A. L. So-nenshein. 1997. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-depen-dent gene expression. J. Bacteriol. 179:73517359.
15. Cronan, J. E., Jr.,, and D. LaPorte,. 1996. Tricarboxylic acid cycle and glyoxylate bypass, p. 206216. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
16. Cruz Ramos, H.,, T. Hoffmann,, M. Marino,, H. Nedjari,, E. Presecan-Siedel,, O. Dreesen,, P. Glaser,, and D. Jahn. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J. Bacteriol. 182: 30723080.
17. Cvitkovitch, D. G.,, J. A. Gutierrez,, and A. S. Bleiweis. 1997. Role of the citrate pathway in glutamate biosynthesis by Streptococcus mutans. J. Bacteriol. 179:650635.
18. Débarbouillé, M.,, R. Gardan,, M. Arnaud,, and G. Rapoport. 1999. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181:20592066.
19. Diesterhaft, M. D.,, and E. Freese. 1973. Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 248:60626070.
20. Dingman, D. W.,, M. S. Rosenkrantz,, and A. L. Sonenshein. 1987. Relationship between aconitase gene expression and sporulation in Bacillus subtilis. J. Bacteriol. 169: 30683075.
21. Dingman, D. W.,, and A. L. Sonenshein. 1987. Purification of aconitase from Bacillus subtilis and correlation of its N-terminal amino acid sequence with the sequence of the citB gene. J. Bacteriol. 169:30623067.
22. Domingo, G. J.,, H. J. Chauhan,, I. A. Lessard,, C. Fuller,, and R. N. Perham. 1999. Self-assembly and catalytic activity of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. Eur. J. Biochem. 266: 11361146.
23. Feavers, I. M.,, V. Price,, and A. Moir. 1988. The regulation of the fumarase (cicG) gene of Bacillus subtilis 168. Mol. Gen. Genet. 211:465471.
24. Fisher, S. H. Personal communication.
25. Fisher, S. H.,, and B. Magasanik. 1984- 2-Ketoglutarate and the regulation of aconitase and histidase formation in Bacillus subtilis. J. Bacteriol. 158:379382.
26. Fisher, S. H.,, and B. Magasanik. 1984. Synthesis of ox-aloacetate in Bacillus subtilis mutants lacking the 2-ketog-lutarate dehydrogenase enzymatic complex. J. Bacteriol. 158:5562.
27. Fortnagel, P. 1970. The regulation of aconitase and isocitrate dehydrogenase in sporulation mutants of Bacillus subtilis. Biochim. Biophys. Acta 222:290298.
28. Fortnagel, P.,, and E. Freese. 1968. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J. Bacteriol. 95:14311438.
29. Fortnagel, P.,, and E. Freese. 1968. Inhibition of aconitase by chelation of transition metals causing inhibition of sporulation in Bacillus subtilis. J. Biol. Chem. 243:52895295.
30. Fouet, A.,, S. F. Jin,, G. Raffel,, and A. L. Sonenshein. 1990. Multiple regulatory sites in the Bacillus subtilis citB promoter region. J. Bacteriol. 172:54085415.
31. Fouet, A.,, and A. L. Sonenshein. 1990. A target for carbon source-dependent negative regulation of the citB promoter of Bacillus subtilis. J. Bacteriol. 172:835844.
32. Freese, E.,, and U. Fortnagel. 1969. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bacteriol. 99:745756.
33. Freese, E. B.,, and C. L. Marks. 1973. Developmental block in citric acid cycle mutants of Bacillus subtilis. J. Bacteriol. 116:14661468.
34. Galperin, M. Y.,, and E. V. Koonin. 1999. Functional ge-nomics and enzyme evolution. Homologous and analogous enzymes encoded in microbial genomes. Genetica 106: 159170.
35. Gest, H. 1987. Evolutionary roots of the citric acid cycle in prokaryotes. Biochem. Soc. Symp. 54:316.
36. Gottschalk, G.,, and H. A. Barker. 1967. Presence and stereospecificity of citrate synthase in anaerobic bacteria. Biochemistry 6:10271034.
37. Hanson, R. S.,, and D. P. Cox. 1967. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J. Bacteriol. 93:17771787.
38. Hederstedt, L., 1993. The Krebs citric acid cycle, p. 181197. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
39. Hederstedt, L. 1999. Respiration without O2. Science 284:19411942.
40. Hederstedt, L.,, E. Holmgren,, and L. Rutberg. 1979. Characterization of a succinate dehydrogenase complex solubilized from the cytoplasmic membrane of Bacillus subtilis with the nonionic detergent Triton X-100. J. Bacteriol. 138:370376.
41. Hemila, H.,, A. Palva,, L. Paulin,, S. Arvidson,, and I. Palva. 1990. Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase. J. Bacteriol. 172:50525063.
42. Higa, A. I.,, and J. J. Cazzulo. 1976. The citrate synthase from Bacillus stearothermophilus. Experientia 32:13731374.
43. Hoch, J. A. Personal communication.
44. Hoch, J. A. 1993. Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu. Rev. Microbiol. 47:441465.
45. Hoch, J. A.,, and H. J. Coukoulis. 1978. Genetics of the alpha-ketoglutarate dehydrogenase complex of Bacillus subtilis. J. Bacteriol. 133:265269.
46. Hones, J.,, and P. Pfleiderer. 1985. Chemical modification of the essential arginine in malate dehydrogenases. Biol. Chem. Hoppe Seyler366:11091112.
47. Horswill, A. R.,, and J. C. Escalante-Semerena. 1999. Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J. Bacteriol. 181:56155623.
48. Ireton, K.,, S. Jin,, A. D. Grossman,, and A. L. Sonenshein. 1995. Krebs cycle function is required for activation of the Spo0A transcription factor in Bacillus subtilis. Proc. Nad. Acad. Sci. USA 92:28452849.
49. Jin, S.,, M. De Jesus-Berrios,, and A. L. Sonenshein. 1996. A Bacillus subtilis malate dehydrogenase gene. J. Bacteriol. 178:560563.
50. Jin, S.,, P. A. Levin,, K. Matsuno,, A. D. Grossman,, and A. L. Sonenshein. 1997. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J. Bacteriol. 179:47254732.
51. Jin, S.,, and A. L. Sonenshein. 1996. Characterization of the major citrate synthase of Bacillus subtilis. J. Bacteriol. 178:36583660.
52. Jin, S.,, and A. L. Sonenshein. 1994 Identification of two distinct Bacillus subtilis citrate synthase genes. J. Bacteriol. 176:46694679.
53. Jin, S.,, and A. L. Sonenshein. 1994Transcriptional regulation of Bacillus subtilis citrate synthase genes. J. Bacteriol. 176:46804690.
54. Johnson, D. E.,, and R. S. Hanson. 1974. Bacterial citrate syntheses: purification, molecular weight and kinetic mechanism. Biochim. Biophys. Acta 350:336353.
55. Johnson, J. D.,, J. G. Mehus,, K. Tews,, B. I. Milavetz,, and D. O. Lambeth. 1998. Genetic evidence for the expression of ATP- and GTP-specific succinyl- CoA synthetases in multicellulareucaryotes. J. Biol. Chem. 273:2758027586.
56. Jourlin-Castelli, C.,, N. Mani,, M. M. Nakano,, and A. L. Sonenshein. 2000. CcpC., a novel regulator of the LysR family required for glucose repression of the citB gene in Bacillus subtilis. J. Mol. Biol. 295:865878.
57. Kapatral, V.,, X. Bina,, and A. M. Chakrabarty. 2000. Succinyl coenzyme A synthetase of Pseudomonas aeruginosa with a broad specificity for nucleoside triphosphate (NTP) synthesis modulates specificity for NTP synthesis by the 12-kilodalton form of nucleoside diphosphate kinase. J. Bacteriol. 182:13331339.
58. Kawai, S.,, H. Suzuki,, K. Yamamoto,, M. Inui,, H. Yukawa,, and H. Kumagai. 1996. Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene. Appl. Environ. Microbiol. 62:26922700.
59. Kim, H.-J.,, S.-I. Kim,, A. Roux,, and A. L. Sonenshein. Unpublished results.
60.. Kim, S.-I.,, and A. L. Sonenshein. Unpublished results.
61. Kobayashi, K.,, S. Doi,, S. Negoro,, I. Urabe,, and H. Okada. 1989. Structure and properties of malic enzyme from Bacillus stearothermophilus. J. Biol. Chem. 264:32003205.
62. Kristjansson, H.,, and C. Ponnamperuma. 1980. Purification and properties of malate dehydrogenase from the extreme thermophile Bacillus caldolyticus. Orig. Life 10:185192.
63. Krom, B. P.,, J. B. Warner,, W. N. Konings,, and J. S. Lolkema. 2000. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis. J. Bacteriol. 182:63746381.
64. LaPorte, D. C.,, P. E. Thorsness,, and D. E. Koshland, Jr. 1985. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. J. Biol. Chem. 260:1056310568.
65. Lessard, I. A.,, G. J. Domingo,, A. Borges,, and R. N. Per-ham. 1998. Expression of genes encoding the E2 and E3 components of the Bacillus stearothermophilus pyruvate dehydrogenase complex and the stoichiometry of subunit interaction in assembly in vitro. Eur. J. Biochem. 258:491501.
66. Maloy, S. R.,, and W. D. Nunn. 1982. Genetic regulation of the glyoxylate shunt in Escherichia coli K-12. J. Bacteriol. 149:173180.
67. Matsuno, K.,, T. Blais,, A. W. Serio,, T. Conway,, T. M. Henkin,, and A. L. Sonenshein. 1999. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J. Bacteriol. 181:33823391.
68. Matsuno, K.,, and A. L. Sonenshein. Unpublished results.
69. Melchiorsen, C. R.,, K. V. Jokumsen,, J. Villadsen,, M. G. Johnsen,, H. Israelsen,, and J. Arnau. 2000. Synthesis and posttranslational regulation of pyruvate formate-lyase in Lactococcus lactis. J. Bacteriol. 182:47834788.
70. Melin, L.,, L. Rutberg,, and A. von Gabain. 1989. Transcriptional and posttranscriptional control of the Bacillus subtilis succinate dehydrogenase operon. J. Bacteriol. 171: 21102115.
71. Moir, A.,, I. M. Feavers,, and J. R. Guest. 1984. Characterization of the fumarase gene of Bacillus subtilis 168 cloned and expressed in Escherichia coli K12. J. Gen. Microbiol. 130:30093017.
72. Molenaar, D.,, M. E. van Der Rest,, A. Drysch,, and R. Yu-cel. 2000. Functions of the membrane-associated and cyto-plasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.J. Bacteriol. 182:68846891.
73. Murphey, W. H.,, C. Barnaby,, F. J. Lin,, and N. O. Kaplan. 1967. Malate dehydrogenases. II. Purification and properties of Bacillus subtilis, Bacillus stearothermophilus, and Escherichia coli malate dehydrogenases. J. Biol. Chem. 242: 15481559.
74. Nakano, M. M.,, Y. P. Dailly,, P. Zuber,, and D. P. Clark. 1997. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J. Bacteriol. 179:67496755.
75. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu. Rev. Microbiol. 52:165190.
76. Nakano, M. M.,, P. Zuber,, and A. L. Sonenshein. 1998. Anaerobic regulation of Bacillus subtilis Krebs cycle genes. J.Bacteriol. 180:33043311.
77. Ohne, M. 1974. Regulation of aconitase synthesis in Bacillus subtilis: induction, feedback repression, and catabolite repression. J. Bacteriol. 117:12951305.
78. Ohne, M. 1975. Regulation of the dicarboxylic acid part of the citric acid cycle in Bacillus subtilis. J. Bacteriol. 122: 224234.
79. Ohne, M.,, B. Rutberg,, and J. A. Hoch. 1973. Genetic and biochemical characterization of mutants of Bacillus subtilis defective in succinate dehydrogenase. J. Bacteriol. 115: 738745.
80. Ohshima, T.,, and S. Tanaka. 1993. Dye-linked L-malate dehydrogenase from thermophilic Bacillus species DSM 465. Purification and characterization. Eur. J. Biochem. 214:3742.
81. Park, S. L.,, and H. N. Guttman. 1973. Purification and properties of Lactobacillus plantarum inducible malic enzyme. J. Bacteriol. 116:263270.
82. Pellicer, M. T.,, J. Badia,, J. Aguilar,, and L. Baldoma. 1996. glc locus of Escherichia coli: characterization of genes encoding the subunits of glycolate oxidase and the glc regulator protein. J. Bacteriol. 178:20512059.
83. Price, V. A.,, I. M. Feavers,, and A. Moir. 1989. Role of sigma H in expression of the fumarase gene (citG) in vegetative cells of Bacillus subtilis 168. J. Bacteriol. 171: 59335939.
84. Prodromou, C.,, P. J. Artymiuk,, and J. R. Guest. 1992. The aconitase of Escherichia coli. Nucleotide sequence of the aconitase gene and amino acid sequence similarity with mitochondrial aconitases, the iron-responsive-element-binding protein and isopropylmalate isomerases. Eur. J. Biochem. 204:599609.
85. Ratnayake-Lecamwasam, M.,, P. Serror,, K.-W. Wong,, and A. L. Sonenshein. 2001. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes Dev. 15:10931103.
86. Ratnayake-Lecamwasam, M.,, M. Strauch,, and A. L. Sonenshein. Unpublished data.
87. Reaney, S. K.,, S. J. Bungard,, and J. R. Guest. 1993. Molecular and enzymological evidence for two classes of fumarase in Bacillus stearothermophilus (var. non-diastati-cus).J. Gen. Microbiol. 139:403416.
88. Reitzer, L. J., 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, as-paragine, L-alanine, and D-alanine, p. 391407. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
89. Resnekov, O.,, L. Melin,, P. Carlsson,, M. Mannerlov,, A. von Gabain,, and L. Hederstedt. 1992. Organization and regulation of the Bacillus subtilis odhAB operon, which encodes two of the subenzymes of the 2-oxoglutarate dehydrogenase complex. Mol. Gen. Genet. 234:285296.
90. Rosenkrantz, M. S.,, D. W. Dingman,, and A. L. Sonenshein. 1985. Bacillus subtilis citB gene is regulated syner-gistically by glucose and glutamine. J. Bacteriol. 164: 155164.
91. Rouault, T.,, and R. Klausner. 1997. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell Regul. 35:119.
92. Rutberg, B.,, and J. A. Hoch. 1970. Citric acid cycle: gene-enzyme relationships in Bacillus subtilis. J. Bacteriol. 104:826833.
93. Schirawski, J.,, T. Hankeln,, and G. Unden. 1998. Expression of the succinate dehydrogenase genes (sdTiCAB) from the facultatively anaerobic PaeniBacillus macerans during aerobic growth. Arch. Microbiol. 170:304308.
94. Shikata, S.,, K. Ozaki,, S. Kawai,, S. Ito,, and K. Okamoto. 1988. Purification and characterization of NADP+-linked isocitrate dehydrogenase from an alkalophilic Bacillus. Biochim. Biophys. Acta 952:282289.
95. Singh, S.,, K. Matsuno,, D. C. LaPorte,, and L. J. Banaszak. Crystal structure of B. subtilis isocitrate dehydrogenase at 1.55 A: insights into the nature of substrate specificity exhibited by E. coli isocitrate dehydrogenase kinase/phosphatase. J. Biol. Chem., in press.
96. Stein, A.,, and W. Firshein. 2000. Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex.J. Bacteriol. 182:21192124.
97. Stern, J. R.,, and G. Bambers. 1966. Glutamate biosynthesis in anaerobic bacteria. I. The citrate pathways of glutamate synthesis in Cioscridium kluyueri. Biochemistry 5: 11131118.
98. St. Julian, G.,, L. A. Bulk, Jr.,, and R. S. Hanson. 1975. Physiology of sporeforming bacteria associated with insects: metabolism of Bacillus popilliae grown in third-instar Popillia japonica Newman larvae. Appl. Microbiol. 30: 2025.
99. Strauch, M. Personal communication.
100. Sundaram, T. K.,, I. P. Wright,, and A. E. Wilkinson. 1980. Malate dehydrogenase from thermophilic and mesophilic bacteria. Molecular size, subunit structure, amino acid composition, immunochemical homology, and catalytic activity. Biochemistry 19:20172022.
101. Swift, K. E. 1999. M.S. thesis. Tufts University, Boston, Mass..
102. Takahashi, S.,, K. Abbe,, and T. Yamada. 1982. Purification of pyruvate formate-lyase from Streptococcus mutatis and its regulatory properties. J. Bacteriol. 149:10341040.
103. Tanaka, N.,, and R. S. Hanson. 1975. Regulation of the tricarboxylic acid cycle in gram-positive, facultatively anaerobic bacilli. J. Bacteriol. 122:215223.
104. Tatti, K. M.,, H. L. D. Carter,, A. Moir,, and C. P. Moran, Jr. 1989. Sigma H-directed transcription of cifG in Bacillus subtilis. J. Bacteriol. 171:59285932.
105. Textor, S.,, V. F. Wendisch,, A. A. De Graaf,, U. Muller,, M. I. Linder,, D. Linder,, and W. Buckel. 1997. Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch. Microbiol. 168:428436.
106. Tobisch, S.,, D. Zuhlke,, J. Bernhardt,, J. Stulke,, and M. Hecker. 1999. Role of CcpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J. Bacteriol. 181:69967004.
107. Uratani-Wong, B.,, J. M. Lopez,, and E. Freese. 1981. Induction of citric acid cycle enzymes during initiation of sporulation by guanine nucleotide deprivation. J. Bacteriol. 146:337344.
108. van Der Rest, M. E.,, C. Frank,, and D. Molenaar. 2000. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli. J. Bacteriol. 182:68926899.
109. Walsh, K.,, and D. E. Koshland, Jr. 1985. Branch point control by the phosphorylation state of isocitrate dehydrogenase. A quantitative examination of fluxes during a regulatory transition. J. Biol. Chem. 260:84308437.
110. Walter, T.,, and A. Aronson. 1999. Specific binding of the E2 subunit of pyruvate dehydrogenase to the upstream region of Bacillus thuringiensis protoxin genes. J. Biol. Chem. 274:79017906.
111. Wang, H.,, K. A. Baldwin,, D. J. O'Sullivan,, and L. L. McKay. 2000. Identification of a gene cluster encoding Krebs cycle oxidative enzymes linked to the pyruvate car-boxylase gene in Lactococcus lactis ssp. lactis C2. J. Dairy Sci. 83:19121918.
112. Weitzman, P. D. 1981. Unity and diversity in some bacterial citric acid-cycle enzymes. Adv. Microb. Physiol. 22: 185244.
113. Willecke, K.,, E. M. Gries,, and P. Oehr. 1973. Coupled transport of citrate and magnesium in Bacillus subtilis. J. Biol. Chem. 248:807814.
114. Wynne, S. A.,, D. J. Nicholls,, M. D. Scawen,, and T. K. Sundaram. 1996. Tetrameric malate dehydrogenase from a thermophilic Bacillus: cloning, sequence and overex-pression of the gene encoding the enzyme and isolation and characterization of the recombinant enzyme. Biochem. J. 317:235245.
115. Yamada, T.,, S. Takahashi-Abbe,, and K. Abbe. 1985. Effects of oxygen on pyruvate formate-lyase in situ and sugar metabolism of Streptococcus mutans and Streptococcus san-guis. Infect. Immun. 47:129134.
116. Ye, R. W.,, W. Tao,, L. Bedzyk,, T. Young,, M. Chen,, and L. Li. 2000. Global gene expression profiles of Bacillus subtilis grown under anaerobic conditions. J. Bacteriol. 182:44584465.
117. Yoshida, A. 1965. Purification and chemical characterization of malate dehydrogenase of Bacillus subtilis. J. Biol. Chem. 240:11131117.
118. Yousten, A. A.,, and R. S. Hanson. 1972. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis. J. Bacteriol. 109:886894.

Tables

Generic image for table
TABLE 1

Enzymes and genes of the Krebs citric acid cycle and related pathways

Based on studies with PDHC (65). One E2 60-mer associates with 30–60 El tetramers and 30–60 E3 dimers.

PDHC and OGDC contain identical E3 components.

The overall structure of OGDC is likely to be analogous to that of PDHC., although the El subenzyme is encoded in a single gene for OGDC and in two genes for PDHC.

Based on studies with SCS ( ).

Identity at protein sequence level based on Blast 2 alignment of sequences obtained from SubtiList (http://genolist.pasteur.fr/SubtiList/) and Colibri (http://geno-list.pasteur.fr/Colibri/) databases. A minus sign indicates no significant similarity.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Generic image for table
TABLE 2

Krebs cycle gene organization in low-G+C gram-positive bacteria

Gene assignments and organization depicted hete wete based in part on data available as of November 2000 at the following websites: SubtiList (http://genolist.pasteur. fr/SubtiList/), The Institute for Genome Research (http://www.tigr.org/tdb/mdb/mdbcomplete.html), The Sanger Centre (http://www.sanger.ac.uk/Projects/), the National Library of Medicine (http://www.ncbi.nlm.nih.gov/BLAST/), the Japan Marine Science and Technology Center (http://www.jamstec.go.jp/jamstece/bio/DEEPSTAR/exbase.html), and the University of Oklahoma (http://www.genome.ou.edu/bstearo-blast.html). Only the . and . sequences were completed and annotated at the time of analysis. A minus sign indicates the absence of a coding sequence of substantial similarity when the genome in question was probed with the relevant coding sequence.

Abbreviations of species names: Bacillus strain 168; Bha, halodurans strain C-125; Ban, Ames; Bst, strain 10; , ; , strain RP62A; Smu, strain UAB159; , type 4; Manfredo; , strain V583; Clostridium strain 630; ssp. C2; Clostridium acetobutylicum ATCC 824.

For definitions of abbreviations of enzymes, see Table 1 .

ND, not detected. The incomplete sequence of the genome (as of November 2000) did not contain a significant homolog of and lacked the N-terminal coding region of C.

The reported sequence of the B gene has an apparent frameshift mutation at residue 46.

The H gene is not linked to ZC

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12
Generic image for table
TABLE 3

Putative pathway for propionate metabolism

Identity at protein sequence level as defined by BestFit analysis.

acetyl-CoA synthetase and long-chain acyl-CoA synthetases are homologs of S. PrpE, but none is encoded by a gene linked to the locus.

Citation: Sonenshein A. 2002. The Krebs Citric Acid Cycle, p 151-162. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error