1887

Chapter 13 : Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap13-2.gif

Abstract:

This chapter provides an overview on respiratory cytochromes, heme proteins, heme biosynthesis and an inventory of heme proteins and heme synthesis enzymes in strain 168. Succinate:quinone oxidoreductase (SQR) in aerobic gram-negative bacteria, e.g., , and in mitochondria generally contains only one heme, and the membrane anchor consists of two polypeptides (SdhC and SdhD). Gram-positive bacteria seem to contain only membrane-anchored cytochrome c. This is explained by the view that cytochrome c functions at the outer side of the cytoplasmic membrane, and in gram-positive bacteria it would be lost from the cell if it was not anchored. The majority of terminal oxidases of oxygen-respiring organisms belong to the heme-copper oxidase superfamily. The combined results of several studies show that cytochrome aa is the most important terminal oxidase in aerobic exponentially growing cells. The chapter provides an overview of tetrapyrrole biosynthesis in , with intermediates and required gene products indicated. The and genes seem to be essential for growth, indicating a more general function of the ResB and ResC proteins in the cell than simply having a role in cytochrome c synthesis, since c-type cytochromes are not essential for growth.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13

Key Concept Ranking

Integral Membrane Proteins
0.48755813
Transcription Start Site
0.4826399
0.48755813
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Types of heme found in . In the structure of heme B, the pyrrole rings are labeled according to the nomenclature of Fisher.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Overview of aerobic respiratory pathways in strain 168. Solid arrows show known electron transfer pathways, and dashed arrows show tentative pathways.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

General structure, composition, and function of SQR in the cytoplasmic membrane, and a comparison of the enzyme in B. subtilis and E. coli. The membrane anchor of B. subtilis SQR consists of one polypeptide (SdhC) and two heme B. That of E. coli consists of two polypeptides (SdhC and SdhD) and one heme B. The diagrams in the lowet patt of the figute illustrate the thetmodynamics of the electron transfer from succinate to quinone at pH 7.0. The oxidation of succinate to fumarate coupled to the reduction of MK to menaquinol is an endergonic reaction (ΔG° = + 22 kJ/mol), whereas the reduction of ubiquinone is exetgonic (AG0 = —15 kJ/mol) (90, 107, 137). In B. subtilis, the electrochemical potential across the cytoplasmic membtane is apparently used as an energy source to drive the “uphill” electron transfer from the high potential proximal heme (bp) to the low potential distal heme (bD). Electron transfer from heme bD to MK is then thermodynamically “downhill.” + and — indicate the outer and inner sides of the cytoplasmic membrane, respectively.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The -type cytochromes present in B. subtilis strain 168. All four cytochromes are membrane bound. The amino acid sequences of the heme C domains of CccA, CccB, and QcrC are very similar, probably reflecting domain swapping during evolution. The heme C domain of CtaC is different from that of the other three cytochromes but very similar to that of cytochrome from several Bacillus species ( ). + and — indicate the sidedness of the cytoplasmic membrane (see legend to Fig. 3 ). n.d. indicates that no data are available. The two black dots in CtaC indicate a dicopper center, Cu- The redox potential indicated with an asterisk is that for the PS3 cytochrome ( ). Physicochemical data and sequence information for the . cytochromesare found in references , and .

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic presentation of the different types of terminal oxidases present in bacteria of the genus The subunits of the various terminal oxidase complexes are designated according to the names of the corresponding genes: cytochrome (Cta), cytochrome (Qox), cytochrome (Cba), cytochrome (Cyd), and cytochrome -2 (Cbd). The different types of heme prosthetic groups (heme A, B, C., D, or O) are indicated as a square. Black dots represent copper centers of the heme-copper oxidases (1 dot = Cu; 2 dots = Cu). The H/e stoichiometry for cytochrome (Cba) is approximately 1.5 ( ).

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic presentation of bacterial cytochrome P450 monooxygenase systems. Two different systems for the transfer of electrons from a reduced pyridine nucleotide to cytochrome P450 are known. (A) In most bacteria, a flavoprotein reductase (ferredoxin reductase) transfers electrons to an iron-sulfur protein (ferredoxin), which in turn delivers the electrons to P450. (B) The CYP102 flavocytochromes are self-sufficient fatty acid monooxygenases consisting of a flavin adenine dinucleotide (FAD), a flavin mononucleotide (FMN) and a heme-containing domain linked together in a single polypeptide. BioI, CYP107J, CYP134A1, CYP107K1, and CYP109B1 probably use an electron transfer system of the type shown in panel A.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Heme synthesis pathways in strain 168. Intermediates and gene products are presented. Dashed arrows indicate that the genes and proteins involved in the pathway have not been identified.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Organization of genes for uroporphyrinogen III and siroheme synthesis from glutamyl-tRNA in the chromosome of and other gram-positive bacteria. The sizes of the genes are not drawn exactly to scale. The gene cluster in is included for comparison. Gene products with similarity to the CysG precorrin-2 dehydrogenase and sirohydrochlorin fer-rochelatase domain and the Cys transmethylase domain are indicated in black and gray, respectively. See the text and Table 3 for more details. References: ( ); ( ); ( ); ( ); ( ); ( ); (prerelease of the genome sequence by Genome Therapeutics Corporation); ( ).

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap13
1. Abramson, J.,, S. Riistama,, G. Larsson,, A. Jasaitis,, M. Svensson-Ek,, L. Laakkonen,, A. Pustinen,, S. Iwata,, and M. Wikström. 2000. The structure of ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7:910917.
2. Ahn, K. S.,, and R. G. Wake. 1991. Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes. Gene 98: 107112.
3. Al-Karadaghi, S.,, M. Hanson,, S. Nikonov,, B. Jönsson,, and L. Hederstedt. 1997. Crystal structure of ferrochelatase: the terminal enzyme in heme synthesis. Structure 5:15011510.
4. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by sigmaF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180:20572062.
5. Beale, S. I., 1996. Biosynthesis of hemes, p. 731748. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, vol. 1. ASM Press, Washington D.C..
6. Belitsky, B. R.,, M. C. Gustafsson,, A. L. Sonenshein,, and C. Von Wachenfeldt. 1997. An lrp-like gene of Bacillus subtilis involved in branched-chain amino acid transport. J. Bacteriol. 179:54485457.
7. Bengtsson, J.,, C. Rivolta,, L. Hederstedt,, and D. Karamata. 1999. Bacillus subtilis contains two small c-type cytochromes with homologous heme domains but different types of membrane anchors. J. Biol. Chem. 274:2617926184.
8. Bengtsson, J.,, H. Tjalsma,, C. Rivolta,, and L. Hederstedt. 1999. Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein. J. Bacteriol. 181:685688.
9. Bergsma, J.,, M. B. M. van Dongen,, and W. N. Konings. 1982. Purification and characterization of NADH dehydrogenase from Bacillus subtilis. Eur. J. Biochem. 128:151157.
10. Boddupalli, S. S.,, R. W. Estabrook,, and J. A. Peterson. 1990. Fatty acid monooxygenation by cytochrome P-450BM-3. J. Biol. Chem. 265:42334239.
11. Bol, D. K.,, and R. E. Yasbin. 1991. The isolation, cloning and identification of a vegetative catalase gene from Bacillus subtilis. Gene 109:3137.
12. Bower, S.,, J. B. Perkins,, R. R. Yocum,, C. L. Howitt,, P. Rahaim,, and J. Pero. 1996. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178:41224130.
13. Bsat, N.,, L. Chen,, and J. D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178:65796586.
14. Bsat, N.,, A. Herbig,, L. Casillas-Martinez,, P. Setlow,, and J. D. Helmann. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189198.
15. Calhoun, M. W.,, J. W. Thomas,, and R. B. Gennis. 1994-The cytochrome oxidase superfamily of redox-driven proton pumps. Trends Biochem. Sci. 19:325330.
16. Capdevila, J. H.,, S. Wei,, C. Helvig,, J. R. Falck,, Y. Belosludtsev,, G. Truan,, S. E. Graham-Lorence,, and J. A. Peterson. 1996. The highly stereoselective oxidation of polyunsaturated fatty acids by cytochrome P450BM-3. J. Biol Chem. 271:2266322671.
17. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179:74207425.
18. Castresana, J.,, M. Lubben,, M. Saraste,, and D. G. Higgins. 1994. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 13:25162525.
19. Chen, L.,, L. Keramati,, and J. D. Helmann. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92:81908194.
20. Chung, J.,, T. Chen,, and D. Missiakas. 2000. Transfer of electrons across the cytoplasmic membrane by DsbD, a membrane protein involved in thiol-disulphide exchange and protein folding in the bacterial periplasm. Mol. Microbiol. 35:10991109.
21. Cole, S. T.,, R. Brosch,, J. Parhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, G. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingwort,, R. Conner,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh, et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
22. Cruz Ramos, H.,, L. Boursier,, I. Moszer,, F. Kunst,, A. Danchin,, and P. Glaser. 1995. Anaerobic transcription activation in Bacillus subtilis: identification of distinct FNR-dependent and -independent regulatory mechanisms. EMBO J. 14:59845994.
23. Dailey, T. A.,, P. Meissner,, and H. A. Dailey. 1994. Expression of a cloned protoporphyrinogen oxidase. J. Biol. Chem. 289:813815.
24. Deshmukh, M.,, G. Brasseur,, and F. Daldal. 2000. Novel Rhodobacter capsuhtus genes required for the biogenesis of various c-type cytochromes. Mol. Microbiol. 35:123138.
25. de Vrij, W.,, A. Azzi,, and W. N. Konings. 1983. Structural and functional properties of cytochrome c oxidase from Bacillus subtilis W23. Eur. J. Biochem. 131:97103.
26. de Vrij, W.,, B. van den Burg,, and W. N. Konings. 1987. Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur. J. Biochem. 166:589595.
27. Drazek, E. S.,, C. A. Hammack,, and M. P. Schmitt. 2000. Corynebocterium diphtheriae genes required for acquisition of iron from haemin and haemoglobin are homologous to ABC haemin transporters. Mol. Microbiol. 36:6884.
28. Eichenbaum, Z.,, E. Muller,, S. A. Morse,, and J. R. Scott. 1996. Acquisition of iron from host proteins by the group A Streptococcus. Infect. Immun. 64:54285429.
29. Engelmann, S.,, C. Lindner,, and M. Hecker. 1995. Cloning, nucleotide sequence, and regulation of katE encoding a sigma B-dependent catalase in Bacillus subtilis. J. Bacteriol. 177:55985605.
30. English, N.,, V. Hughes,, and C. R. Wolf. 1994. Common pathways of cytochrome P450 gene regulation by peroxisome proliferators and barbiturates in Bacillus megaterium ATCC14581. J. Biol. Chem. 269:2683626841.
31. English, N.,, C. N. A. Palmer,, W. L. Alworth,, L. Kang,, V. Hughes,, and C. R. Wolf. 1997. Fatty acid signals in Bacillus megaterium are attenuated by cytochrome P-450-mediated hydroxylation. Biochem. J. 327:363368.
32. Escamilla, J. E.,, and M. C. Benito. 1984. Respiratory system of vegetative and sporulating Bacillus cereus. J. Bacteriol. 160:473477.
33. Estabrook, R. W. 1996. The remarkable P450s: a historical overview of these versatile hemeprotein catalysts. FASEB J. 10:202204.
34. Ferguson-Miller, S.,, and G. T. Babcock. 1996. Heme/copper terminal oxidases. Chem. Rev. 96:28892907.
35. Fujino, E.,, T. Fujino,, S. Karita,, K. Sakka,, and K. Ohmiya. 1995. Cloning and sequencing of some genes responsible for porphyrin biosynthesis from the anaerobic bacterium Clostridium josui. J. Bacteriol. 177:51695175.
36. Fujiwara, Y.,, M. Oka,, T. Hamamoto,, and N. Sone. 1993. Cytochrome c-551 of the thermophilic bacterium PS3, DNA sequence and analysis of the mature cytochrome. Biochim. Biophys. Acta 1144:213219.
37. Fulco, A. J. 1991. P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation. Annu. Rev. Pharmacol. Toxicol. 31:177203.
38. Gai, W. Z.,, S. M. Sun,, N. Sone,, and S. H. Chan. 1990. Cytochrome oxidase from thermophilic bacterium PS3 contains a fourth protein subunit. Biochem. Biophys. Res. Commun. 169:414421.
39. Garcia-Horsman, J. A.,, B. Barquera,, and J. E. Escamilla. 1991. Two different aa3-type cytochromes can be purified from the bacterium Bacillus cereus. Eur. J. Biochem. 199: 761768.
40. Garcia-Horsman, J. A.,, B. Barquera,, D. Gonzalez-Halphen,, and J. E. Escamilla. 1991. Purification and characterization of two-subunit cytochrome aa3 from Bacillus cereus. Mol. Microbiol. 5:197205.
41. Gilmour, R.,, and T. A. Krulwich. 1997. Construction and characterization of a mutant of alkaliphilic Bacillus firmus OF4 with a disrupted cta operon and purification of a novel cytochrome bd. J. Bacteriol. 179:863870.
42. Goldman, B. S.,, and R. G. Kranz. 1998. Evolution and horizontal transfer of an entire biosynthetic pathway for cytochrome c biogenesis: Helicobacter, Deinococcus, Archae and more. Mol. Microbiol. 27:871873.
43. Gordon, E. H. J.,, M. D. Page,, A. C. Willis,, and S. J. Ferguson. 2000. Escherichia coli DipZ: anatomy of a transmembrane protein disulphide reductase in which three pairs of cysteine residues, one in each of three domains, contribute to function. Mol. Microbiol. 35:13601374.
44. Gustafson, M. C. V.,, C. N. A. Palmer,, and C. von Wachenfeldt. Unpublished data.
45. Hagerhäll, C. 1997. Succinate:quinone oxidoreductases. Variations on a conserved theme. Biochim. Biophys. Acta 1320:107141.
46. Hagerhall, C.,, R. Aasa,, C. von Wachenfeldt,, and L. Hed-erstedt. 1992. Two hemes in Bacillus subtilis succinate: menaquinone oxidoreductase (Complex II). Biochemistry 31:74117421.
47. Hagerhall, C.,, H. Fridén,, R. Aasa,, and L. Hederstedt. 1995. Transmembrane topology and axial ligands to hemes in the cytochrome b subunit of Bacillus subtilis succinate: menaquinone reductase. Biochemistry 34:1108011089.
48. Hansson, M.,, M. C. V. Gustafsson,, G. Kannangara,, and L. Hederstedt. 1997. Isolated Bacillus subtilis Hem Y has coproporphyrinogen III to coproporphyrin III oxidase activity. Biochim. Biophys. Acta 1340:97104.
49. Hansson, M.,, and L. Hederstedt. 1994. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX. J. Bacteriol. 176:59625970.
50. Hansson, M.,, and L. Hederstedt. 1992. Cloning and characterization of the Bacillus subtilis hemEHY gene cluster, which encodes protoheme IX biosynthetic enzymes. J. Bacteriol. 174:80818093.
51. Hansson, M.,, and L. Hederstedt. 1994. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur. J. Biochem. 220:201208.
52. Hansson, M.,, L. Rutberg,, I. Schroder,, and L. Hederstedt. 1991. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J. Bacteriol. 173:25902599.
53. Hansson, M.,, and C. von Wachenfeldt. 1993. Heme b (protoheme IX) is a precursor of heme a and heme d in Bacillus subtilis. FEMS Microbiol. Lett. 107:121126.
54. Hederstedt, L.,, J. J. Maguire,, A. J. Waring,, and T. Ohnishi. 1985. Characterization by electron paramagnetic resonance and studies on subunit location and assembly of the iron-sulfur clusters of Bacillus subtilis succinate dehydrogenase. J. Biol. Chem. 260:55545562.
55. Henning, W.,, L. Vo,, J. Albanese,, and B. C. Hill. 1995. High-yield purification of cytochrome aa3, and cytochrome caa3 oxidases from Bacillus subtilis plasma membranes. Biochem. J. 309:279283.
56. Hicks, D. B. 1995. Purification of three catalase isozymes from facultatively alkaliphilic Bacillus firmus OF4. Biochim. Biophys. Acta 1229:347355.
57. Hicks, D. B.,, and T. A. Krulwich. 1995. The respiratory chain of alkaliphilic bacteria. Biochim. Biophys. Acta 1229: 303314.
58. Hicks, D. B.,, R. J. Plass,, and P. G. Quirk. 1991. Evidence for multiple terminal oxidases, including cytochrome d, in facultatively alkaliphilic Bacillus firmus OF4. J. Bacteriol. 173:50105016.
59. Hill, J. J.,, J. O. Alben,, and R. B. Gennis. 1993. Spectroscopic evidence for a heme-heme binuclear center in the cytochrome bd ubiquinol oxidase from Escherichia coli. Proc. Natl. Acad. Sci. USA 90:58635867.
60. Hippler, B.,, G. Homuth,, T. Hoffmann,, C. Hungerer,, W. Schumann,, and D. Jahn. 1997. Characterization of Bacillus subtilis hemN. J. Bacteriol. 179:71817185.
61. Hoffman, T.,, B. Troup,, A. Szabo,, C. Hungerer,, and D. Jahn. 1995. The anaerobic life of Bacillus subtilis: cloning of the genes encoding the respiratory nitrate reductase system. FEMS Microbiol. Lett. 131:219225.
62. Homuth, G.,, A. Rompf,, W. Schumann,, and D. Jahn. 1999. Transcriptional control of Bacillus subtilis hemN and hemZ. J. Bacteriol. 181:59225929.
63. Hou, S.,, R. W. Larsen,, D. Boudko,, C. W. Riley,, E. Karatan,, M. Zimmer,, G. W. Ordal,, and M. Alam. 2000. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540544.
64. Ishizuka, M.,, K. Machida,, S. Shimada,, A. Mogi,, T. Tsuchiya,, T. Ohmori,, Y. Souma,, M. Gonda,, and N. Sone. 1990. Nucleotide sequence of the gene coding for four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. J. Biochem. 108:866873.
65. Iwata, S. 1998. Structure and function of bacterial cytochrome c oxidase. J. Biochem. 123:369375.
66. Iwata, S.,, C. Ostermeier,, B. Ludwig,, and H. Michel. 1995. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 376:660669.
67. Jahn, D.,, E. Verkamp,, and D. Soil. 1992. Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem. Sci. 17:215218.
68. James, W. S.,, F. Gibson,, P. Taroni,, and R. K. Poole. 1989. The cytochrome oxidases of Bacillus subtilis: mapping of a gene affecting cytochrome aa3 and its replacement by cytochrome o in a mutant strain. FEMS Microbiol. Lett. 58:277282.
69. Johansson, P. 1999. Genetics of tetrapyrrole synthesis in Gram-positive bacteria. Ph.D. thesis. Lund University, Lund, Sweden.
70. Johansson, P.,, and L. Hederstedt. 1999. Organization of genes for tetrapyrrole biosynthesis in gram-positive bacteria. Microbiology 145:529538.
71. Jünemann, S. 1997. Cytochrome bd terminal oxidase. Biochim. Biophys. Acta 1321:107127.
72. Kafala, B.,, and A. Sasarman. 1997. Isolation of the Staphylococcus aureus hemCDBL gene cluster coding for early steps in heme biosynthesis. Gene 199:231239.
73. Kai, K.,, S. Noguchi,, and N. Sone. 1997. Over-expression and post-translational modification of termophilic Bacillus cytochrome c-551 in Bacillus subtilis. J. Ferm. Bioeng. 84: 190194.
74. Kitada, M.,, and T. A. Krulwich. 1984. Purification and characterization of the cytochrome oxidase from alkalophilic Bacillus firmus RAB. J. Bacteriol. 158:963966.
75. Kranz, R.,, R. Lill,, B. Goldman,, G. Bonnard,, and S. Merchant. 1998. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol. Microbiol. 29:383396.
76. Kusano, T.,, S. Kuge,, J. Sakamoto,, S. Noguchi,, and N. Sone. 1996. Nucleotide and amino acid sequences for cytochrome caa3-type oxidase of Bacillus stearothermophilus K1041 and non-Michaelis-type kinetic with cytochrome c. Biochim. Biophys. Acta 1273:129138.
77. Kutoh, E.,, and N. Sone. 1988. Quinol-cytochrome c oxidoreductase from the thermophilic bacterium PS3. Purification and properties of a cytochrome bc1 (b6f) complex. J. Biol. Chem. 263:90209026.
78. Lacelle, M.,, M. Kumano,, K. Kurita,, K. Yamane,, P. Zuber,, and M. Nakano. 1996. Oxygen-controlled regulation of the flavohemoglobin gene in Bacillus subtilis. J. Bacteriol. 178:38033808.
79. Lauraeus, M.,, T. Haltia,, M. Saraste,, and M. Wikström. 1991. Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur. J. Biochem. 197:699705.
80. Le Brun, N. E.,, J. Bengtsson,, and L. Hederstedt. 2000. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36:638650.
81. Lemma, E.,, H. Schägger,, and A. Kröger. 1993. The menaquinol oxidase of Bacillus subtilis W23. Arch. Microbiol. 159:574578.
82. Lemma, E.,, J. Simon,, H. Schägger,, and A. Kröger. 1995. Properties of the menaquinol oxidase (Qox) and of qox deletion mutants of Bacillus subtilis. Arch. Microbiol. 163: 432438.
83. Li, H.,, and T. L. Poulos. 1999. Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3). Biochim. Biophys. Acta 1441: 141149.
84. Li, H.,, and T. L. Poulos. 1997. The structure of the cytochrome P450bm-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat. Struct. Biol. 4: 140146.
85. Liu, L.,, M. Zeng,, A. Hausladen,, J. Heitman,, and J. S. Stamler. 2000. Protection from nitrosative stress by yeast flavohemoglobin. Proc. Natl. Acad. Set. USA. 97:46724676.
86. Liu, X.,, and H. W. Taber. 1998. Catabolite regulation of the Bacillus subtilis ctaBCDEF gene cluster. J. Bacteriol. 180:61546163.
87. Loewen, P. C.,, and J. Switala. 1987. Multiple catalases in Bacillus subtilis. J. Bacteriol. 169:36013607.
88. Maguire, J. J.,, K. Magnusson,, and L. Hederstedt. 1986. Bacillus subtilis mutant succinate dehydrogenase lacking covalently bound flavin: identification of the primary defect and studies on the iron-sulfur clusters in mutated and wild-type enzyme. Biochemistry 25:52025208.
89. Mansilla, M. C.,, D. Albanesi,, and D. de Mendoza. 2000. Transcriptional control of the sulfur-regulated cysH operon, containing genes involved in L-cysteine biosynthesis in Bacillus subtilis. J. Bacteriol. 182:58855892.
90. Matsson, M. 2000. Quinone reduction sites and the role of heme in succinate:quinone reductase. Studies in Bacillus subtilis and Paracoccus denitrificans. Ph.D. thesis. Lund University, Lund, Sweden.
91. Matsunaga, I.,, A. Ueda,, N. Fujiwara,, T. Sumimoto,, and K. Ichihara. 1999. Characterization of the ybdT gene product of Bacillus subtilis: novel fatty acid beta-hydroxylating cytochrome P450. Lipids 34:841846.
92. Meisel, J.,, G. Wolf,, and W. P. Hammes. 1994. Heme-dependent cytochrome formation in LactoBacillus maltaromicus. Syst. Appl. Microbiol. 17:2023.
93. Michel, H.,, J. Behr,, A. Harrenga,, and A. Kannt. 1998. Cytochrome c oxidase: structure and spectroscopy. Annu. Rev. Biophys. Biomol. Struct. 27:329356.
94. Miura, Y.,, and A. J. Fulco. 1975. Omega-1, omega-2 and omega-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim. Biophys. Acta 388:305317.
95. Mogi, T.,, K. Saiki,, and Y. Anraku. 1994. Biosynthesis and functional role of haem O and haem A. Mol. Microbiol. 14:391398.
96. Mueller, J. P.,, and H. W. Taber. 1989. Isolation and sequence of ctaA, a gene required for cytochrome aa3 biosynthesis and sporulation in Bacillus subtilis. J. Bacteriol. 171: 49674978.
97. Munro, A. W.,, and J. G. Lindsay. 1996. Bacterial cytochromes P-450. Mol. Microbiol. 20:11151125.
98. Nakano, M. M.,, and P. Zuber. 1998. Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu. Rev. Microbiol. 52:165190.
99. Narhi, L. O.,, and A. J. Fulco. 1986. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J. Biol. Chem. 261:71607169.
100. Nelson, D. R. 1999. Cytochrome P450 and the individuality of species. Arch. Biochem. Biophys. 369:110.
101. Nelson, D. R.,, L. Koymans,, T. Kamataki,, J. J. Stegeman,, R. Feyereisen,, D. J. Waxman,, M. R. Waterman,, O. Gotoh,, M. J. Coon,, R. W. Estabrook,, I. C. Gunsalus,, and D. W. Nebert. 1996. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:142.
102. Neubauer, H.,, I. Pantel,, and F. Gotz. 1999. Molecular characterization of the nitrite-reducing system of Staphylococcus camosus. J. Bacteriol. 181:14811488.
103. Nikaido, K.,, S. Noguchi,, J. Sakamoto,, and N. Sone. 1998. The cbaAB genes for bo3-type cytochrome c oxidase in Bacillus stearothermophilus. Biochim. Biophys. Acta 1397:262267.
104. Nikaido, K.,, J. Sakamoto,, S. Noguchi,, and N. Sone. 2000. Over-expression of cbaAB genes of Bacillus stearothermophilus produces a two-subunit SoxB-type cytochrome c oxidase with proton pumping activity. Biochim. Biophys. Acta 1456:3544.
105. Noguchi, S.,, T. Yamazaki,, A. Yaginuma,, J. Sakamoto,, and N. Sone. 1994. Over-expression of membrane-bound cytochrome c-551 from thermophilic Bacillus PS3 in Bacillus stearothermophilus K1041. Biochim. Biophys. Acta 1188:302310.
106. Ogawa, K.-I.,, E. Akagawa,, K. Yamane,, Z.-W. Sun,, M. LaCelle,, P. Zuber, and M. M. Nakano. 1995. The nosB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis. J. Bacteriol. 177:14091413.
107. Ohnishi, T.,, C. C. Moser,, C. C. Page,, P. L. Dutton,, and T. Yano. 2000. Simple redox-linked proton-transfer design: new insights from structures of quinol-fumarate reductase. Struct. Fold. Des. 8:R23R32.
108. O'Keefe, D. P.,, and P. A. Harder. 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol. Microbiol. 5:20992105.
109. Ortiz de Montellano, P. R. (ed.). 1995. Cytochrome P450: Structure, Mechanism, and Biochemistry. Plenum Press, London, England.
110. Osborne, J. P.,, and R. B. Gennis. 1999. Sequence analysis of cytochrome bd oxidase suggests a revised topology for subunit I. Biochim. Biophys. Acta 1410:3250.
111. Page, M. D.,, Y. Sambongi,, and S. J. Ferguson. 1998. Contrasting routes of c-type cytochrome assembly in mitochondria, chloroplasts and bacteria. Trends Biochem. Sci. 23:103108.
112. Palmer, C. N. A.,, E. Axen,, V. Hughes,, and C. R. Wolf. 1998. The repressor protein, Bm3Rl, mediates an adaptive response to toxic fatty acids in Bacillus megaterium. J. Biol. Chem. 273:1810918116.
113. Perkins, J. B.,, S. Bower,, C. L. Howitt,, R. R. Yocum,, and J. Pero. 1996. Identification and characterization of transcripts from the biotin biosynthetic operon of Bacillus subtilis. J. Bacteriol. 178:63616365.
114. 114 Peterson, J. A.,, I. Sevrioukova,, G. Truan,, and S. E. Graham-Lorence. 1997. P450BM-3; a tale of two domains-or is it three? Steroids 62:117123.
115. Petricek, M.,, L. Rutberg,, I. Schroder,, and L. Hederstedt. 1990. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J. Bacteriol. 172: 22502258.
116. Philippot, L.,, and O. Hojberg. 1999. Dissimilatory nitrate reductases in bacteria. Biochim. Biophys. Acta 1446: 123.
117. Poole, R. K.,, and B. Chance. 1995. Oxidase names: to “3” or not “3”? Microbiology 141:752753.
118. Poole, R. K.,, and M. N. Hughes. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775783.
119. Poulos, T. L. 1995. Cytochrome p 450. Curr. Opin. Struct. Biol. 5:767774.
120. Powers, L.,, M. Lauraeus,, K. S. Reddy,, B. Chance,, and M. Wikstrom. 1994. Structure of the binuclear heme iron-copper site in the quinol-oxidizing cytochrome aa3 from Bacillus subtilis. Biochim. Biophys. Acta 1183:504512.
121. Pritchard, G. G.,, and J. W. Wimpenny. 1978. Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. zymogens grown in the presence of haematin. J. Gen. Microbiol. 104:1522.
122. Proctor, R. A., 2000. Respiration and small-colony variants of Staphylococcus aureus, p. 345350. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, D.C..
123. Puustinen, A.,, and M. Wikstroom. 1991. The heme groups of cytochrome o from Escherichia coli. Proc. Natl. Acad. Sci. USA 88:61226126.
124. Quirk, P. G.,, D. B. Hicks,, and T. A. Krulwich. 1993. Cloning of the eta operon from alkaliphilic Bacillus firmus OF4 and charactetization of the pH-regulated cytochrome caa3 oxidase it encodes. J. Biol. Chem. 268: 678685.
125. Qureshi, M. H.,, T. Fijiwara,, and Y. Fukumori. 1996. Succinate:quinone oxidoreductase (complex II) containing a single heme b in facultative alkaliphilic Bacillus sp. strain YN-2000. J. Bacteriol. 178:30313036.
126. Ravichandran, K. G.,, S. S. Boddupalli,, C. A. Hasermann,, J. A. Peterson,, and J. Deisenhofer. 1993. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science 261:731736.
127. Saiki, K.,, T. Mogi,, M. Ishizuka,, and Y. Anraku. 1994. An Escherichia coli cyoE gene homologue in thermophilic Bacillus PS3 encodes a thermotolerant heme O synthase. FEBS Lett. 351:385388.
128. Sakamoto, J.,, Y. Handa,, and N. Sone. 1997. A novel cytochrome b(o/a)3-type oxidase from Bacillus stearothermophilus catalyzes cytochrome c-551 oxidation. J. Biochem. 122:764771.
129. Sakamoto, J.,, E. Koga,, T. Mizuta,, C. Sato,, S. Noguchi,, and N. Sone. 1999. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. Biochim. Biophys. Acta 1411:147158.
130. Santana, M.,, F. Kunst,, M. F. Hullo,, G. Rapoport,, A. Danchin,, and P. Glaser. 1992. Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa3-600 quinol oxidase. J. Biol. Chem. 267:1022510231.
131. Saraste, M.,, T. Metso,, T. Nakari,, T. Jalli,, M. Lauraeus,, and J. van der Oost. 1991. The Bacillus subtilis cytochromes oxidase. Variations on a conserved protein theme. Eur. J. Biochem. 195:517525.
132. Schiott, T.,, and L. Hederstedt. 2000. Efficient spore synthesis in Bacillus subtilis depends on the CcdA protein. J. Bacteriol. 182:28452854.
133. Schiött, T.,, M. Throne-Hoist,, and L. Hederstedt. 1997. Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome c biogenesis. J. Bacteriol. 179: 45234529.
134. 134- Schiott, T.,, C. von Wachenfeldt,, and L. Hederstedt. 1997. Identification and characterization of the ccdA gene, required for cytochrome c synthesis in Bacillus subtilis. J. Bacteriol. 179:19621973.
135. Schirawski, J.,, T. Hankeln,, and G. Unden. 1998. Expression of the succinate dehydrogenase genes (sdhCAB) from the facultatively anerobic PaeniBacillus macerans during aerobic growth. Arch. Microbiol. 170:304308.
136. Schirawski, J.,, and G. Unden. 1995. Anaerobic respiration of Bacillus macerans with fumarate, TMAO, nitrate and nitrite and regulation of the pathways by oxygen and nitrate. Arch. MicroBiol. 163:148154.
137. Schirawski, J.,, and G. Unden. 1998. Menaquinone-dependent succinate dehydrogenase of bacteria catalyzes reversed electron transport driven by the proton potential. Eur. J. Biochem. 257:210215.
138. Schroder, I.,, L. Hederstedt,, C. G. Kannangara,, and S. P. Gough. 1992. Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem. J. 281:843850.
139. Schroder, I.,, P. Johansson,, L. Rutberg,, and L. Hederstedt. 1994- The hemX gene of the Bacillus subtilis hemAX-CDBL operon encodes a membrane protein, negatively affecting the steady-state cellular concentration of HemA (glutamyl-tRNA reductase). Microbiology 140:731740.
140. Shoolingin-Jordan, P. M. 1998. Structure and mechanism of enzymes involved in the assembly of the tetrapyrrole macrocycle. Biochem. Soc. Trans. 26:326336.
141. Sone, N. 1986. Cytochrome oxidase from thermophilic bacterium PS3. Methods Enzymol. 126:145153.
142. Sone, N.,, and Y. Fujiwara. 1991. Haem O can replace haem A in the active site of cytochrome c oxidase from thermophilic bacterium PS3. FEBS Lett. 288:154158.
143. Sone, N.,, E. Kutoh,, and K. Sato. 1990. A cytochrome o-type oxidase of the thermophilic bacterium PS3 grown under air-limited conditions. J. Biochem. 107:597602.
144. Sone, N.,, E. Kutoh,, and Y. Yanagita. 1989. Cytochrome c-551 from the thermophilic bacterium PS3 grown under air-limited conditions. Biochim. Biophys. Acta 977:329334.
145. Sone, N.,, and T. Takagi. 1990. Monomer-dimer structure of cytochrome-c oxidase and cytochrome bc1complex from the thermophilic bacterium PS3. Biochim. Biophys. Acta 1020:207212.
146. Sone, N.,, and H. Toh. 1994. Membrane-bound Bacillus cytochromes c and their phylogenetic position among bacterial class I cytochromes c. FEMS Microbiol. Lett. 122:203210.
147. Sone, N.,, N. Tsuchiya,, M. Inoue,, and S. Noguchi. 1996. Bacillus stearothermophilus qcr operon encoding rieske FeS protein, cytochrome b6, and a novel-type cytochrome c1 of quinol-cytochtome c reductase. J. Biol. Chem. 271:1245712462.
148. Soulimane, T.,, G. Buse,, G. P. Bourenkov,, H. D. Bar-tunik,, R. Huber, and M. E. Than. 2000. Structure and mechanism of the aberrant ba3-cytochrome c oxidase from Thermus thermophilus. EMBO J. 19:17661776.
149. Stewart, E. J.,, F. Katzen,, and J. Beckwith. 1999. Six conserved cysteines of the membrane protein DsbD are required for the transfer of electrons from the cytoplasm to the periplasm of Escherichia coli. EMBO J. 18:59635971.
150. Sun, G.,, E. Sharkova,, R. Chestnut,, S. Birkey,, M. F. Duggan,, A. Sorokin,, P. Pujic,, S. D. Ehrlich,, and F. M. Hulett. 1995. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178:13741385.
151. Svensson, B.,, K. K. Andersson,, and L. Hederstedt. 1996. Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis. Eur. J. Biochem. 238: 287295.
152. Svensson, B.,, and L. Hederstedt. 1994. Bacillus subtilis CtaA is a heme-containing membrane protein involved in heme A biosynthesis. J. Bacteriol. 176:66636671.
153. Svensson, B.,, M. Lübben,, and L. Hederstedt. 1993. Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol. Microbiol. 10:193201.
154. 154.Takami, H.,, and K. Horikoshi. 2000. Analysis of the genome of an alkaliphilic Bacillus strain from an industrial point of view. Extremophiles 4:99108.
155. Tanaka, T.,, M. Inoue,, J. Sakamoto,, and N. Sone. 1996. Intra- and inter-complex cross-linking of subunits in the quinol oxidase super-complex from thermophilic Bacillus PS3. J. Biochem. 119:482486.
156. Throne-Hoist, M.,, and L. Hederstedt. 2000. The Bacillus subtilis ctaB paralogue, yjdK, can complement the heme A synthesis deficiency of a CtaB-deficient mutant. FEMS Microbiol. Lett. 183:247251.
157. Tochikubo, K. 1971. Changes in terminal respiratory pathways of Bacillus subtilis during germination, outgrowth and vegetative growth. J. Bacteriol. 108:652661.
158. Trumpower, B. L.,, and R. B. Gennis. 1994. Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation. Annu. Rev. Biochem. 63:675716.
159. Tsukihara, T.,, H. Aoyama,, E. Yamashita,, T. Tomizaki,, H. Yamaguchi,, K. Shinzawa-Itoh,, R. Nakashima,, R. Yaono,, and S. Yoshikawa. 1995. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:10691074.
160. van der Oost, J.,, C. von Wachenfeldt,, L. Hederstedt,, and M. Saraste. 1991. Bacillus subtilis cytochrome oxidase mutants: biochemical analysis and genetic evidence for two aa3-type oxidases. Mol. Microbiol. 5:20632072.
161. Vesga, O.,, M. C. Groeschel,, M. F. Otten,, D. Brar,, J. M. Vann,, and R. A. Proctor. 1996. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J. Infect. Dis. 173:739742.
162. Villani, G.,, M. Tattoli,, N. Capitanio,, P. Glaser,, S. Papa,, and A. Danchin. 1995. Functional analysis of sub-units III and IV of Bacillus subtilis aa3-600 quinol oxidase by in vitro mutagenesis and gene replacement. Biochim. Biophys. Acta 1232:6774.
162a.. von Eiff, C.,, C. Heilmann,, R. A. Proctor,, C. Woltz,, G. Peters,, and F. Gotz. 1997. A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J. Bacteriol. 179:47064712.
163. von Wachenfeldt, C.,, and L. Hederstedt. 1990. Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J. Biol. Chem. 265:1393913948.
164. von Wachenfeldt, C.,, and L. Hederstedt. 1992. Molecular biology of Bacillus subtilis cytochromes. FEMS Microbiol. Lett. 100:91100.
165. von Wachenfeldt, C.,, and L. Hederstedt. 1993. Physicochemical characterization of membrane-bound and water-soluble forms of Bacillus subtilis cytochrome c-550. Eur. J. Biochem. 212:499509.
165a.. von Wachenfeldt, C. Unpublished data.
166. Vos, M. H.,, V. B. Borisov,, U. Liebl,, J. L. Martin,, and A. A. Konstantinov. 2000. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: a di-heme active site? Proc. Natl. Acad. Sci. USA 97:15541559.
167. Warren, M. J.,, E. L. Bolt,, C. A. Roessner,, A. I. Scott,, J. B. Spencer,, and S. C. Woodcock. 1994. Gene dissection demonstrates that the Escherichia coli cysG gene encodes a multifunctional protein. Biochem. J. 302:837844.
168. Winstedt, L.,, and C. von Wachenfeldt. 2000. Terminal oxidases of Bacillus subtilis strain 168: one quinol oxidase, cytochrome aa3 or cytochrome bd, is required for aerobic growth. J. Bacteriol. 182:65576564.
168a.. Winstedt, L.,, and C. von Wachenfeldt. Unpublished data.
169. Winstedt, L.,, K. Yoshida,, Y. Fujita,, and C. von Wachenfeldt. 1998. Cytochrome bd biosynthesis in Bacillus subtilis: characterization of the cydABCD operon. J. Bacteriol. 180:65716580.
170. Xie, Z.,, D. Culler,, B. W. Dreyfuss,, R. Kuras,, F.-A. Wollman,, J. Girard-Bascou,, and S. Merchant. 1998. Genetic analysis of chloroplast c-type cytochrome assembly in Chlamydomonas reinhardtii: one chloroplast locus and at least four nuclear loci are required for heme attachment. Genetics 148:681692.
171. Yagi, T. 1993. The bacterial energy-transducing NADH-quinone oxidoreductases. Biochim. Biophys. Acta 1141: 117.
172. Yu, J.,, L. Hederstedt,, and P. J. Piggot. 1995. The cytochrome be complex (menaquinonexytochrome c reductase) in Bacillus subtilis has a nontraditional subunit organization. J. Bacteriol. 177:67516760.
173. Yu, J.,, and N. E. Le Brun. 1998. Studies of the cytochrome subunits of menaquinonexytochrome c reductase (bc complex) of Bacillus subtilis. Evidence for the covalent attachment of heme to the cytochrome b subunit. J. Biol. Chem. 273:88608866.

Tables

Generic image for table
TABLE 1

Heme proteins in subtilis strain 168 identified experimentally or inferred from the genome sequence

A question mark indicates that the type of heme has not been determined experimentally.

Only the structural genes for the respective heme protein are indicated.

The proteins and genes encoding P450 of unknown function in are named according to the systematic P450 nomenclature ( ). For example, cyp102A3 is the gene encoding CYP102A3.

strain W23 contains a P450 gene (cypl09Al or ORF405) without correspondence in strain 168 ( ).

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Generic image for table
TABLE 2

Properties of terminal oxidases found in species

The occurrence in species of several different cytochromes which can bind carbon monoxide and could represent terminal oxidases have been reported ( ). These tentative terminal oxidases have been named cytochrome ο (for oxidase). In its original meaning, the name cytochrome ο was intended to describe function and not heme composition ( ). Since the discovery of heme Ο ( ) ( Fig. 1 ), cytochrome ο has also been used to indicate that heme Ο is present in a particular cytochrome, e.g., cytochrome bo3. Wild-type cells have no heme O-containing cytochromes ( ). However, it has been shown that, depending on the growth conditions, one of the heme sites in cytochrome oxidase of PS3 and in cytochrome of can incorporate either heme A or heme Ο ( ).

The molecular mass of the unprocessed precursor polypeptide is based on the translated DNA sequence of cytochrome and cytochrome and of B. cytochrome and B. cytochrome -2.

The N-terminal segments of QoxA and CtaC have the features of typical lipoprotein signal sequences, and CtaC has been confirmed to bc a lipoprotein ( ).

strain 168; B, anthracis; C., D, haloaurans; E, OF4; F, stearot/iermophilus.

By analogy with cytochrome bd, heme b (low spin) may bc located in subunit 1, and heme (high spin) and may bc ligated between CydA and CydB.

Reference .

is as yet no spectral evidence for the presence of this heme

apparently contains two cytochrome enzymes, both related to B. stearothermophilus CbdAB.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13
Generic image for table
TABLE 3

Genes and proteins for heme biosynthesis in strain 168

Position on the calculated 360° chromosomal map.

A question mark indicates that the function of the protein is not established.

Mass of protein as predicted from the DNA sequence.

Citation: von Wachenfeldt C, Hederstedt L. 2002. Respiratory Cytochromes, Other Heme Proteins, and Heme Biosynthesis, p 163-179. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error