1887

Chapter 14 : Nitrogen Source Utilization and Its Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Nitrogen Source Utilization and Its Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap14-2.gif

Abstract:

In and other gram-positive bacteria, nitrogen metabolism genes are regulated by fundamentally different mechanisms. Three proteins—GlnR, TnrA, and CodY—control gene expression in response to nitrogen availability in . TnrA both activates and represses transcription during nitrogen-limited growth. TnrA-like proteins have been identified by sequence analysis in and . Four nitrogen degradative pathways—arginine, histidine, glutamate and urea—are described in this chapter. By several criteria, glutamine serves as the best nitrogen source for , followed by arginine. The regulation and genetics of several nitrogen catabolite pathways are also discussed in the chapter. has two routes for arginine degradation, the arginase-dependent and arginine deiminase-dependent pathways. Expression of both pathways is induced by arginine and repressed by growth in the presence of glucose. Expression of the histidine-degrading enzymes is induced by histidine and subject to nutritional regulation by CodY and CcpA. The expression of the plasmid-encoded genes found in several strains and the chromosomal genes in are nitrogen regulated. Several low-G+C gram-positive bacteria contain genes encoding NrgA-like ammonium transporters proteins. The second gene in the AB operon encodes a protein that resembles the PII signal transduction protein found in the enteric Ntr nitrogen regulatory system and in cyanobacteria.

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14

Key Concept Ranking

Amino Acids
0.5992373
Proteins
0.5909409
Clostridium perfringens
0.51297814
0.5992373
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Proline and arginine degradative pathways. The proline degradative enzymes are as follows: 1, proline oxidase; 2, pyrroline-5-carboxylate dehydrogenase; 6, glutamate dehydrogenase. The enzymes of the arginase degradative pathway are as follows: 3, arginase; 4, ornithine transaminase; 5, urease. The enzymes of the deiminase pathway are as follows: 7, arginine deiminase; 8, ornithine carbamoyltransferase; 9, carbamate kinase. Glutamate semialdehyde is spontaneously converted to pyrroline 5-carboxylate, the more stable cyclic form of glutamate semialdehyde. Two genes encode pyrroline-5-carboxylate dehydrogenase isozymes in Either RocA or YcgN can function in the degradation of proline and arginine ( ). Although does not contain the arginine deiminase pathway, this bacterium can utilize citrulline as a nitrogen source. Interestingly, citrulline utilization requires ornithine transaminase (RocD), not ornithine transcarbamylase (ArgF), in ( ).

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transcriptional organization of the operon. The element (located between +203 and +216) and DNA region required for CodY binding are indicated ( ). The stem-loop structure between and indicates a transcriptional terminator, encodes a regulatory protein required for transcriptional antitermination at this transcriptional terminator ( ).

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Probable isoleucine and valine degradative pathway. The isoleucine and valine degradative enzymes in are as follows: leucine dehydrogenase branched-chain α-keto acid dehydrogenase phosphate butyryl-CoA transferase and butyrate kinase The branched-chain α-keto acid dehydrogenase enzyme is also required for the synthesis of branched-chain fatty acids, which are major acyl components of the cell membrane in ( ).

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Probable threonine degradative pathway. The putative threonine degradative enzymes in are as follows: threonine dehydrogenase 2-amino-3-ketobutyrate CoA ligase glycine cleavage system serine hydroxymethyltransferase and serine deaminase

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Transcriptional organization of the . ABC operon. The three ABC promoters are indicated ( ). The P1 and P3 promoters are SigA-dependent promoters. The P2 promoter is a SigH-dependent promoter. CodY represses transcription of both the P3 and P2 promoters. P3 transcription is repressed by GlnR and activated by TnrA.

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Purine degradative pathway. The purine degradative enzymes in are as follows: adenine deaminase guanine deaminase xanthine dehydrogenase (pucABCDE), uricase allantoinase (pucH), and urease (ureABC). The enzymes that convert allantoic acid to urea (reviewed in reference ) have not yet been identified in .

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Transcriptional organization of the region. The two σ-dependent promoters (−24 −12) and the RocR binding sites (UAS/DAS) are indicated. Expression of the rocG and promoters is activated by RocR and AhrC. RocR binds to the UAS/DAS sequence and activates transcription of the and rocABC promoters ( ). AhrC has been shown to bind to a site located between -20 and +1 in the rocA promoter region ( ). CcpA negatively regulates rocG expression by binding to a cre element located between +39 and +52 in the promoter region ( ).

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap14
1. Atkinson, M. R.,, and S. H. Fisher. 1991. Identification of genes and gene products whose expression is activated during nitrogen-limited growth in Bacillus subtilis. J. Bacteriol. 173: 23 27.
2. Belitsky, B. R.,, P. J. Janssen,, and A. L. Sonenshein. 1995. Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J. Bacteriol. 177: 5686 5695.
3. Belitsky, B. R.,, and A. L. Sonenshein. 1998. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J. Bacteriol. 180: 6298 6305.
4. Belitsky, B. R.,, and A. L. Sonenshein. 1999. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 10290 10295.
5. Belitsky, B. R. Personal communication.
6. Belitsky, B. R.,, L. V. Wray, Jr.,, S. H. Fisher,, D. E. Bohannon,, and A. L. Sonenshein. 2000. Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J. Bacteriol. 182: 5939 5947.
7. Bergara, F.,, J. Iwamasa,, J. C. Patarroyo,, S. Santa Anna-Arriola,, and L. M. Márquez-Magaña. Submitted for publication.
8. Bewley, M. C.,, J. S. Lott,, E. N. Baker,, and M. L. Patchett. 1996. The cloning expression and crystallisation of a thermostable arginase. FEBS Lett. 386: 215 218.
9. Bohannon, D. E.,, and A. L. Sonenshein. 1989. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J. Bacteriol. 171: 4718 4727.
10. Brechtel, C. E.,, and S. C. King. 1998. 4-Aminobutyrate (GABA) transporters from the amine-polyamine-choline superfamily: substrate specificity and ligand recognition profile of the 4-aminobutyrate permease from Bacillus subtilis. Biochem. J. 333: 565 571.
11. Broman, K.,, N. Lauwers,, V. Stalon,, and J.-M. Wiame. 1978. Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J. Bacteriol. 135: 920 927.
12. Brown, S. W.,, and A. L. Sonenshein. 1996 Autogenous regulation of the Bacillus subtilis glnRA operon. J. Bacteriol. 178: 2450 2454.
13. Burne, R. A.,, D. T. Parsons,, and R. E. Marquis. 1989. Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infect, lmmun. 57: 3540 3548.
14. Calogero, S.,, R. Gardan,, P. Glaser,, J. Schweizer,, G. Rapoport,, and M. Débarbouilté. 1994. RocR, a novel regulatory protein controlling arginine utilization in Bacillus subtilis, belongs to the NtrC/NifA family of transcriptional activators. J. Bacteriol. 176: 1234 1241.
15. Casiano-Colon, A.,, and R. E. Marquis. 1988. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol. 54: 1318 1324.
16. Chen, Y. Y.,, K. A. Clancy,, and R. A. Burne. 1996. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect. Immun. 64: 585 592.
17. Chen, Y. Y.,, C. A. Weaver,, D. R. Mendelsohn,, and R. A. Burne. 1998. Transcriptional regulation of the Streptococcus salivarius 57.1 urease operon. J. Bacteriol. 180: 5769 5775.
18. Christians, S.,, and H. Kaltwasser. 1986. Nickel-content of urease from Bacillus pasteurii. Arch. Microbiol. 145: 51 55.
19. Christiansen, L. C.,, S. Shou,, P. Nygaard, and H. H. Saxild. 1997. Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine-and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J. Bacteriol. 179: 2540 2550.
20. Cruz-Ramos, H.,, P. Glaser,, L. V. Wray, Jr.,, and S. H. Fisher. 1997. The Bacillus subtilis ureABC operon. J. Bacteriol. 179: 3371 3373.
21. Cunin, R.,, N. Glansdorff,, A. Piérard,, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50: 314 352.
22. Curran, T. M.,, Y. Ma,, G. C. Rutherford,, and R. E. Marquis. 1998. Turning on and turning off the arginine deiminase system in oral streptococci. Can. J. Microbiol. 44: 1078 1085.
23. Czaplewski, L. G.,, A. K. North,, M. C. M. Smith,, S. Baumberg,, and P. G. Stockley. 1992. Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol. Microbiol. 6: 267 275.
24. Dean, D. R.,, J. A. Hoch,, and A. I. Aronson. 1977 Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J. Bacteriol. 131: 981 987.
25. Débarbouillé, M.,, R. Gardan,, M. Arnaud,, and G. Rapoport. 1999. Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181: 2059 2066.
26. Débarbouillé, M.,, I. Martin-Verstraete,, A. Klier,, and G. Rapoport. 1991. The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both σ 54- and phosphotransferase system-dependent regulators. Proc. Natl. Acad. Sci. USA 88: 2212 2216.
27. Débarbouillé, M.,, I. Martin-Verstraete,, F. Kunst,, and G. Rapoport. 1991. The Bacillus subtilis sigL gene encodes an equivalent of σ 54 from Gram-negative bacteria. Proc. Natl. Acad. Sci. USA 88: 9092 9096.
28. Dupuy, B.,, G. Daube,, M. R. Popoff,, and S. T. Cole. 1997. Chstridium perfringens urease genes are plasmid borne. Infect. Immun. 65: 2313 2320.
29. Ferson, A. E.,, L. V. Wray, Jr.,, and S. H. Fisher. 1996. Expression of the Bacillus subtilis gabP gene is regulated independently in response to nitrogen and amino acid availability. Mol. Microbiol. 22: 693 701.
30. Fisher, S. H., 1993. Utilization of amino acids and other nitrogen-containing compounds, p. 221 228. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
31. Fisher, S. H. 1999. Regulation of nitrogen metabolism in Bacillus subtilis: vive la différence! Mol. Microbiol. 32: 223 232.
32. Fisher, S. H., K. Rohrer, and A. E. Ferson. 1996. Role of CodY in regulation of the Bacillus subtilis hut operon. J. Bacteriol. 178: 3779 3784.
33. Fisher, S. H.,, M. A. Strauch,, M. R. Atkinson,, and L. V. Wray, Jr. 1994. Modulation of Bacillus subtilis catabolite repression by the transition state regulatory protein AbrB. J. Bacteriol. 176: 1903 1912.
34. Gardan, R.,, G. Rapoport,, and M. Débarbouillé. 1995. Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis. J. Bacteriol. 249: 843 856.
35. Gardan, R.,, G. Rapoport, and M. Débarbouillé. 1997. Role of transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol. Microbiol. 24: 825 837.
36. Glaser, P.,, F. Kunst,, M. Arnaud,, M.-P. Coudart,, W. Gonzales,, M.-F. Hullo,, M. Ionescu,, B. Lubochinsky,, L. Marcelino,, I. Moszer,, E. Presecan,, M. Santana,, E. Schneider,, J. Schweizer,, A. Vertès,, G. Rapoport,, and A. Danchin. 1993. Bacillus subtilis genome project: cloning and sequencing of the 97 kilobases region from 325° to 333°. Mol. Microbiol. 10: 371 384.
37. Guédon, E.,, P. Serror,, S. D. Erlich,, P. Renault,, and C. Delorme. Submitted for publication.
38. Gustafson, J.,, A. Strassle,, H. Hächler,, F. H. Kayser,, and B. Berger-Bächi. 1994. The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J. Bacteriol. 176: 1460 1467.
39. Gutowski, J. C.,, and H. J. Schreier. 1992. Interaction of the Bacillus subtilis ginRA repressor with operator and promoter sequences in vivo. J. Bacteriol. 174: 671 681.
40. Harwood, C. R.,, and S. Baumberg. 1977. Arginine hy-droxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 100: 177 188.
41. Hu, P.,, T. Leighton,, G. Ishkhanova,, and S. Kustu. 1999. Sensing of nitrogen limitation by Bacillus subtilis: comparison to enteric bacteria. J. Bacteriol. 181: 5042 5050.
42. Huang, M.,, F. B. Oppermann-Sanio,, and A. Steinbuchel. 1999. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J. Bacteriol. 181: 3837 3841.
43. Ikeda, T. P.,, A. E. Shauger,, and S. Kustu. 1996. Salmonella typhimurium apparently perceives external nitrogen limitation as internal glutamine limitation. J. Mol. Biol. 259: 589 607.
44. Jiang, P.,, J. A. Peliska,, and A. J. Ninfa. 1998. Reconstruction of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37: 12795 12801.
45. Jose, J.,, U. K. Schafer,, and H. Kaltwasser. 1994. Threonine is present instead of cysteine at the active site of urease from Staphylococcus xylosus. Arch. Microbiol. 161: 384 392.
46. Kakimoto, S.,, Y. Sumino,, K. Kawahara,, E. Yamazaki, and 1. Nakatsui. 1990. Purification and characterization of acid urease from Lactobacillus fermentum. Appl. Microbiol. Biotechnol. 32: 538 543.
47. Kanda, M.,, K. Ohgishi,, T. Hanawa,, and Y. Saito. 1997. Arginase of Bocillus brevis Nagano: purification, properties and implication in gramicidin S biosynthesis. Arch. Biochem. Biophys. 344: 37 42.
48. Klingel, U.,, C. M. Miller,, A. K. North,, P. G. Stockley,, and S. Baumberg. 1995. A binding site for activation by the Bacillus subtilis AhrC protein, a repressor/activator of arginine metabolism. Mol. Gen. Genet. 248: 329 340.
49. Koide, A.,, and J. A. Hoch. 1994. Identification of a second oligopeptide transport system in Bacillus subtilis and determination of its role in sporulation. Mol. Microbiol. 13: 417 426.
50. Koide, A.,, M. Perego,, and J. A. Hoch. 1999. ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J. Bacteriol. 181: 4114 4117.
51. Lazazzera, B. A.,, I. G. Kurtser,, R. S. McQuade,, and A. D. Grossman. 1998. An autoregulatory circuit affecting peptide signaling in Bacillus subtilis. J. Bacteriol. 181: 5193 5200.
52. Lecamwasam, M. R.,, K.-W. Wong,, P. Serror,, and A. L. Sonenshein. Unpublished data.
53. Maeda, M.,, M. Hidaka,, A. Nakamura,, H. Masaki,, and T. Uozumi. 1994. Cloning, sequencing and expression of thermophilic Bacillus sp. strain TB-90 urease gene complex in Escherichia coli. J. Bacteriol. 176: 432 442.
54. Magasanik, B., 1996. Regulation of nitrogen utilization, p. 1344 1356. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
55. Maghnouj, A.,, T. F. de Sousa Cabral,, V. Stalon,, and C. Vander Wauven. 1998. The arcABCD gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor ArgR. J. Bacteriol. 180: 6468 6475.
56. Martin-Verstraete, I.,, V. Charrier,, J. Stülke,, A. Galinier,, B. Erni,, G. Rapoport,, and J. Deutscher. 1998. Antagonistic effects of dual PTS-catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR. Mol. Microbiol. 28: 293 303.
57. Martin-Verstraete, I.,, M. Débarbouillé,, A. Klier,, and G. Rapoport. 1989. Induction and metabolite regulation of levanase synthesis in Bacillus subtilis. J. Bacteriol. 171: 1885 1892.
58. McCoy, D. D.,, A. Cetin,, and R. P. Hasinger. 1992. Characterization of urease from Sporosarcina urea. Arch. Microbiol. 157: 411 416.
59. McFall, E.,, and E. B. Newman,. 1996. Amino acids as carbon sources, p. 358 379. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
60. Merrick, M. J. 1993. In a class of its own—the RNA polymerase sigma factor σ 54N). Mol. Microbiol. 10: 903 909.
61. Merrick, M. J.,, and R. A. Edwards. 1995. Nitrogen control in bacteria. Microbiol. Rev. 59: 604 622.
62. Miller, C. M.,, S. Baumberg,, and P. G. Stockley. 1997. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Mol. Microbiol. 26: 37 48.
63. Milohanic, E.,, B. Pron,, the European Listeria Genome Consortium, P. Berche,, and J.-L. Gaillard. 2000. Identification of new loci involved in adhesion of Listeria monocytogenes to eukaryotic cells. European Listeria Genome Consortium. Microbiology 146: 731 739.
64. Mirel, D. B.,, W. F. Estacio,, M. Mathieu,, E. Olmsted,, J. Ramirez,, and L. M. Márquez-Magaña. 2000. Environmental regulation of Bacillus subtilis σ D-dependent gene expression. J. Bacteriol. 182: 3055 3062.
65. Nakano, M. M.,, T. Hoffmann,, Y. Zhu,, and D. Jahn. 1998. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE. J. Bacteriol. 180: 5344 5350.
66. Nakano, M. M.,, F. Yang,, P. Hardin,, and P. Zuber. 1995. Nitrogen regulation of nasA and the nasB operon, which encode genes required for nitrate assimilation in Bacillus subtilis. J. Bacteriol. 177: 573 579.
67. Nakano, Y.,, and K. Kimura. 1991. Purification and characterization of a repressor for the Bacillus cereus ginRA operon. J. Biochem. (Tokyo) 109: 223 228.
68. Ninfa, A. J.,, and M. R. Atkinson. 2000. PII signal transduction proteins. Trends Microbiol. 8: 172 179.
69. Nygaard, P.,, P. Duckert, and H. H. Saxild. 1996. Role of adenine deaminase in purine salvage and nitrogen metabolism and characterization of the ade gene in Bacillus subtitis. J. Bacteriol. 178: 846 853.
70. Oda, M.,, N. Kobayashi,, A. Ito,, Y. Kurusu,, and K. Taira. 2000. cis-Acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences. Mol. Microbiol. 35: 1244 1254.
71. Oda, M.,, A. Sugishita,, and K. Furukawa. 1988. Cloning and nucleotide sequences of histidase and regulatory genes in the Bacillus subtitis hut operon and positive regulation of the operon. J. Bacteriol. 170: 3199 3205.
72. Ohtani, K.,, M. Bando,, T. Swe,, S. Banu,, M. Oe,, H. Hayashi,, and T. Shimizu. 1997. Collagenase gene (colA) is located in the 3'-flanking region of the perfringolysin O ( pfoA) locus in Clostridium perfringens. FEMS Microbiol. Lett. 146: 155 159.
73. Oulid Ali, N.,, and M. Débarbouillé. 2000. Unpublished results.
74. Perego, M.,, C. F. Higgins,, S. R. Pearce,, M. P. Gallagher,, and J. A. Hoch. 1991. The oligopeptide peptide transport system of Bacillus subtilis plays a role in the initiation of sporulation. Mol. Microbiol. 5: 173 185.
75. Reitzer, L. J., 1996. Ammonia assimilation and the biosynthesis of glutamine, glutamate, aspartate, asparagine, L-alanine, and D-alanine, p. 391 407. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
76. Reitzer, L. J., 1996. Sources of nitrogen and their utilization, p. 380 390. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaecter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
77. Robichon, D.,, M. Arnaud,, R. Gardan,, Z. Pragai,, M. O'Reilly,, G. Rapoport,, and M. Débarbouillé. 2000. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-PhoR global regulators. J. Bacteriol. 182: 1226 1231.
78. Robichon, D.,, E. Gouin,, M. D6barbouille,, P. Cossart,, Y. Cenatiempo,, and Y. Hechard. 1997. The rpoN54) gene from Listeria monocytogenes is involved in resistance to Mesentericin Y105, an antibacterial peptide from Leuconostoc mesenteroides. J. Bacteriol. 179: 7591 7594.
79. Rudner, D. Z.,, J. R. LeDeaux,, K. Ireton,, and A. D. Grossman. 1991. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus and is required for sporulation and competence. J. Bacteriol. 173: 1388 1398.
80. Saxild, H. H. Personal communication.
81. Schreier, H. J.,, S. W. Brown,, K. D. Hirschi,, J. F. Nomellini,, and A. L. Sonenshein. 1989. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J. Mol. Biol. 210: 51 63.
82. Schreier, H. J.,, S. H. Fisher,, and A. L. Sonenshein. 1985. Regulation of expression from the glnA promoter of Bacillus subtilis requires the glnA gene product. Proc. Natl. Acad. Sci. USA 82: 3375 3379.
83. Schreier, H. J.,, and A. L. Sonenshein. 1986. Altered regulation of the glnA gene in glutamine synthetase mutants of Bacillus subtilis. J. Bacteriol. 167: 35 43.
84. Serror, P.,, and A. L. Sonenshein. 1996. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178: 5910 5915.
85. Serror, P.,, and A. L. Sonenshein. 1996. Interaction of CodY, a novel Bacillus subtilis DNA-binding protein, with the dpp promoter region. Mol. Microbiol. 20: 843 852.
86. Shimotohno, K. W.,, I. Miwa,, and T. Endo. 1997. Molecular cloning and nucleotide sequence of the arginase gene of Bacillus brevis TT02-8 and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 61: 1459 1464.
87. Shin, B.-S.,, S.-K. Choi,, I. Smith,, and S.-H. Park. 2000. Analysis of tnrA alleles which result in glucose-resistant sporulation phenotype in Bacillus subtilis. J. Bacteriol. 182: 5009 5012.
88. Shingler, V. 1996. Signal sensing by σ 54-dependent regulators: derepression as a control mechanism. Mol. Microbiol. 19: 409 416.
89. Siranosian, K. J.,, K. Ireton,, and A. D. Grossman. 1993. Alanine dehydrogenase ( ald) is required for normal sporulation in Bacillus subtilis. J. Bacteriol. 175: 6789 6796.
90. Slack, F. J.,, J. P. Muellar,, M. A. Strauch,, C. Mathiopoulos,, and A. L. Sonenshein. 1991. Transcriptional regulation of a Bacillus subtilis dipeptide transport operon. Mol. Microbiol. 5: 1915 1925.
91. Slack, F. J.,, P. Serror,, E. Joyce,, and A. L. Sonenshein. 1995. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol. Microbiol. 15: 689 702.
92. Soru, E. 1983. Chemical and immunological properties of Bacillus anthracis arginase and its metabolic involvement. Mol. Cell. Biochem. 50: 173 183.
93. Soupene, E.,, L. He,, D. Yan,, and S. Kustu. 1998. Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc. Natl. Acad. Sci. USA 95: 7030 7043.
94. Spiegelhalter, F.,, and E. Bremer. 1998. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the sigma A- and sigma B-dependent stress-responsive promoters. Mol. Microbiol. 29: 285 296.
95. Strauch, M. A.,, A. I. Aronson,, S. W. Brown,, H. J. Schreier,, and A. L. Sonenshein. 1988. Sequence of the Bacillus subtilis glutamine synthetase gene region. Gene 71: 257 265.
96. Stülke, J.,, M. Arnaud,, G. Rapoport,, and I. Martin-Verstraete. 1998. PRE)—a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol. Microbiol 28: 865 874.
97. Sun, D.,, and P. Setlow. 1993. Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase. J. Bacteriol. 175: 2501 2506.
98. Sun, D. X.,, and P. Setlow. 1991. Cloning, nucleotide sequence, and expression of the Bacillus subtilis ans operon, which codes for L-asparaginase and L-aspartase. J. Bacteriol. 173: 3831 3845.
99. Tynkkynen, S.,, G. Buist,, E. Kunji,, J. Kok,, B. Poolman,, G. Venema,, and A. Haandrikman. 1993. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcuslactis. J. Bacteriol. 175: 7523 7532.
100. Venugopal, V.,, and G. B. Nadkarni. 1977. Regulation of the arginine dehydrolyase pathway in Clostridium sporogenes. J. Bacteriol. 131: 693 695.
101. Vogels, G. D.,, and C. Van Der Drift. 1976. Degradation of purine and pyrimidines by microorganisms. Bacteriol. Rev. 40: 403 468.
102. Wang, L.,, R. Grau,, M. Perego,, M., and J. A. Hoch. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11: 2569 2579.
103. Willecke, K.,, and A. B. Pardee. 1971. Fatty acid-requiring mutants of Bacillus subtilis defective in branched-chain α-keto acid dehydrogenase. J. Biol. Chem. 246: 5264 5272.
104. Wray, L. V., Jr.,, M. R. Atkinson,, and S. H. Fisher. 1994. The nitrogen-regulated Bacillus subtilis nrgAB operon encodes a membrane protein and a protein highly similar to the Escherichia coli glnB-encoded P II protein. J. Bacteriol. 176: 108 114.
105. Wray, L. V., Jr.,, A. E. Ferson,, and S. H. Fisher. 1997. Expression of the Bacillus subtilis ureABC operon is controlled by multiple regulatory factors including CodY, GlnR.TnrA and Spo0H. J. Bacteriol. 179: 5494 5501.
106. Wray, L. V., Jr.,, A. E. Ferson,, K. Rohrer,, and S. H. Fisher. 1996. TnrA, a transcriptional factor required for global nitrogen regulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 8841 8845.
107. Wray, L. V., Jr.,, and S. H. Fisher. 1994. Analysis of the Bacillus subtilis hut operon indicates that histidine-dependent induction is mediated primarily by transcriptional antitermination and that amino acid repression is mediated by two mechanisms: regulation of transcription initiation and inhibition of histidine transport. J. Bacteriol. 176: 5466 5473.
108. Wray, L. V., Jr.,, F. K. Petengill,, and S. H. Fisher. 1994. Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J. Bacteriol. 176: 1894 1902.
109. Wray, L. V., Jr.,, J. M. Zalieckas,, A. E. Ferson,, and S. H. Fisher. 1998. Mutational analysis of the TnrA-binding sites in the Bocillus subtilis nrgAB and gabP promoter regions. J. Bacteriol. 180: 2943 2949.
110. Wray, L. V., Jr.,, J. M. Zalieckas,, and S. H. Fisher. Unpublished results.
111. Wray, L. V., Jr.,, J. M. Zalieckas,, and S. H. Fisher. 2000. Purification and in vitro activities of the Bacillus subtilis TnrA transcription factor. J. Mol. Biol. 300: 29 40.
112. Zhulin, I. B.,, B. L. Taylor,, and R. Dixon. 1997. PAS domain S-boxes in Archaea, bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22: 331 333.
113. Zuniga, M.,, M. Champomier-Verges,, M. Zagorec,, and G. Perez-Martinez. 1998. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J. Bacteriol. 180: 4154 4159.

Tables

Generic image for table
TABLE 1

Nitrogen compounds utilized as sole nitrogen sources by

Gene products and their corresponding genes involved in nitrogen source utilization are indicated. Proteins whose function was identified only by sequence analysis are indicated with a superscript asterisk (*). Genes encoding permeases identified only by sequence analysis have not been included in this table unless the permease gene is cotranscribed with gene(s) encoding degradative enzyme(s).

Regulatory proteins known to control gene expression are indicated on the same line. +, positive regulation; —, negative regulation.

At neutral pH where ammonium is primarily present as NH, analysis of ammonium acquisition in enteric bacteria and yeasts showed that diffusion of NH across biological membranes is sufficient to support good growth. At acidic pH, where the charged species NH predominates, ammonium transport proteins are required for optimal growth on low levels of ammonium ( ).

Asparaginase converts L-asparagine to L-aspartate and NH . L-Aspartate can either be degraded to NH and rumarate by aspartase or be further metabolized by the aspartate-glutamate transaminase AspB. Since aspartase mutant grow very slowly with L-aspartate as a sole nitrogen source, aspartase is the major pathway for aspartate metabolism in Residual growth with aspartate seen in the mutants results from AspB-dependent transamination, because the double mutant cannot grow with aspartate as a nitrogen source ( ).

Because a double mutant grows as well as wild-type cells with glutamate as sole nitrogen source ( ), additional enzymes (most likely transaminases) participate in glutamate utilization.

In wild-type cells, the gene is cryptic owing to a 9-bp insertion in the coding region ( ).

mutants grow as well as wild-type cells with glutamine as sole nitrogen source, indicating that additional enzymes such as glutaminases participate in glutamine metabolism ( ).

The expression of is subject to (i) negative autoregulation and (ii) activation by TnrA ( ).

In the common laboratory 168 strain, the operon is cryptic owing to a frameshift mutation in ( ).

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14
Generic image for table
TABLE 2

Nitrogen degradative pathways in low-G+C gram-positive bacteria

Presence of various enzymes or transporter proteins involved in the utilization of selected nitrogen sources, as determined by biochemical or genetic analysis or by searching genomic databases (as of June 2, 2000). Databases were searched using the gene encoding the indicated protein or the arginine deiminase () gene.

Citation: Fisher S, Débarbouillé M. 2002. Nitrogen Source Utilization and Its Regulation, p 181-191. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error