1887

Chapter 15 : The Pho Regulon

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Pho Regulon, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap15-2.gif

Abstract:

This chapter focuses on genes expressed during the phosphate deficiency response, with special emphasis on genes of the Pho regulon that are directly regulated by the PhoP-PhoR two-component systems. The study of phosphate metabolism in species in general and in in particular has been complicated by several factors that reflect the developmental complexity of the organism. PhoP or the N-terminal PhoP domain is a dimer in solution independent of its phosphorylation state. Although both PhoP and PhoP~P can bind to Pho regulon promoters, only PhoP~P is able to stimulate transcription initiation at any promoter tested. The regulatory coupling of the PhoP-PhoR and ResD-ResE signal transduction systems is illustrated in a working model consistent with current data. The Pho regulon of is directly regulated by PhoB (RR) and PhoR (HK). The signal transduction network emphasizes the importance of regulation upstream of PhoP and PhoR such that decreased Pi is not sufficient for Pho induction in certain mutant backgrounds or in certain growth conditions. The long linker region of over 180 aa in PhoR may include a second domain in addition to a PAS domain next to the catalytic domain. Although the catalytic domain of PhoR () has been shown to be sufficient for Pi-limited Pho induction and subsequent repression, it cannot be supposed that the N-terminal 248 aa of PhoR have no function. More likely, there is redundant regulation controlling the Pho regulon.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15

Key Concept Ranking

Transcription Start Site
0.56077343
Operon Components
0.45476508
Cell Wall Components
0.43614388
Core Promoter
0.42314225
Upstream Promoter
0.40707758
0.56077343
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) PhoP core binding region found between bp −20 and −60 in promoters activated by PhoP∼P. The core contains four repeats of conserved 6-bp sequence that is believed to bind two dimers based largely on mutagenesis of the PhoD promoter. (B) Determination of the conserved sequence for PhoP binding site repeats. The TTAACA-like sequences from 11 Pho regulon promoters were aligned. The tabulated numbers represent the number of times a specific nucleotide appears at that position. The boldface number identifies the most frequent nucleotide at that position. The promoters and the number of consensus repeats used from each included tu&A (8 consensus repeats) ( ), (6 repeats) ( ), (4 repeats) ( ), pfioB (4 repeats) ( ), tagA (4 repeats) ( ), tagD (2 repeats) ( ), (6 repeats) ( ), resA (2 repeats) ( ), (2 repeats) ( ), (4 repeats) ( ), and (4 repeats) ( ). (C) Tally of the frequency at which the assigned consensus nucleotide appears at each position in the 46 repeats.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Insertion and/or deletion mutagenesis of promoter. (A) The wild-type promoter. Solid rectangles represent 1 1 1 ACA-like sequences at approximately −25, −35, −45, −55, −185, and −195 relative to the transcription start site. A straight arrow (→ or ←) shows the 5′ to 3′ direction of two consensus repeats (two solid rectangles separated by nonconserved sequence) believed to bind one PhoP dimer. Two dimer-binding sites separated by approximately five nonconserved bp make up the PhoP core binding region. Diagonal lines (//) indicates that the distance between upstream binding site and core binding region is not to scale. The bent arrow indicates the start of the PhoD coding sequence. Percent of transcription activity is designated 100% for the wild-type promoter. (B) Insertion mutation between consensus repeats in a putative dimer-binding site. Triangle (Δ) indicates the point of insertion of 5 or 10 bp. (C) Insertion between two dimer binding sites (Δ). (D) Insertion between core binding region and upstream secondary binding site (Δ). (E) Deletion of upstream secondary PhoP binding site. (F) Inverted orientation of secondary 5′ PhoP dimer binding site (↔). The effect of each promoter mutation (B, C., D, E, and F) is given as percent transcription activity compared with the wild-type promoter. Where two numbers are given, the first number reports results for a 5-bp insertion that would change the face of the helix, and the second number reports results for a 10-bp insertion that should restore the face of the helix, albeit with a 10-bp distance change.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model depicting the signal transduction network leading to Pho induction in a phosphate deficiency response. Proteins are indicated by ovals, and genes/operons are symbolized by rectangles. Solid lines indicate that direct interaction has been demonstrated. Dashed lines are utilized for interactions that could either be direct or indirect. Positive regulation is labeled with an arrow and a plus sign (+), while repression is noted by an arrow and a minus sign (−). Two-component system members are labeled as either the histidine kinase (HK) or response regulator (RR).

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The PhoR protein. The domains and the predicted topology of wild-type PhoR protein. Numbers indicate the approximate boundaries of each domain. Solid boxes represent the transmembrane sequence. The hatched box represents the conserved catalytic domain. TM1, the first transmembrane sequence; P, periplasmic or extracytoplasmic domain; TM2, the second transmembrane sequence; C2, the cytoplasmic linking domain containing a putative PAS domain adjacent to the catalytic domain; diagonal-striped box, the conserved catalytic domain; H360, the conserved histidine residue; O, outside of membrane; I, inside cytoplasmic membrane.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap15
1. Antelmann, H.,, C. Scharf,, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics approach and transcriptional analysis. J. Bacteriol. 182: 4478 4490.
2. Archibald, A. R.,, I. C. Hancock,, and C. R. Harwood,. 1993. Cell wall structure, synthesis and turn over, p. 381 410. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
3. Azevedo, V.,, A. Sorokin,, S. D. Ehrlich,, and P. Serror. 1993. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol. Microbiol. 10: 397 405.
4. Birkey, S. 1998. Ph.D. thesis. University of Illinois, Chicago.
5. Birkey, S. M.,, W. Liu,, X. Zhang,, M. F. Duggan,, and F. M. Hulett. 1998. Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: Bacillus subtilis PhoP directly regulates production of ResD. Mol. Microbiol. 30: 943 953.
6. Bookstein, C.,, C. W. Edwards,, N. V. Kapp,, and F. M. Hulett. 1990. The Bacillus subtilis 168 alkaline phosphatase III gene: impact of a phoAlll mutation on total alkaline phosphatase synthesis. J. Bacteriol. 172: 3730 3737.
7. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multi-component phosphorelay. Cell 64: 545 552.
8. Chesnut, R. S.,, C. Bookstein,, and F. M. Hulett. 1991. Separate promoters direct expression of phoAIII, a member of the Bacillus subtilis alkaline phosphatase multigene family, during phosphate starvation and sporulation. Mol. Microbiol. 5: 2181 2190.
8a. Chestnut, R. S.,, and F. M. Hulett. Unpublished data.
9. Eder, S.,, W. Liu,, and F. M. Hulett. 1999. Mutational analysis of the phoD promoter in Bacillus subtilis: implications for PhoP binding and promoter activation of Pho regulon promoters. J. Bacteriol. 181: 2017 2025.
10. Eder, S.,, L. Shi,, K. Jensen,, K. Yamane,, and F. M. Hulett. 1996. A Bacillus subtilis secreted phosphodiesterase/alkaline phosphatase is the product of a Pho regulon gene, phoD. Microbiology 142: 2041 2047.
11. EUwood, D. C.,, and D. W. Tempest. 1969. Control of teichoic acid and teichuronic acid biosynthesis in chemostat cultures of Bacillus subtilis var. niger. Biochem. J. 111: 1 5.
12. Fabret, C.,, V. A. Feher,, and J. A. Hoch. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J. Bacteriol. 181: 1975 1983.
13. Hahnen, E.,, L. Znamenskaya,, D. Koczan,, I. Leshchinskaya,, and G. Hobom. 2000. A novel secreted ribonuclease from Bacillus intermedius: gene structure and regulatory control. Gen. Genet. 263: 571 580.
14. Hulett, F. M., 1993. Regulation of phosphorous metabolism, p. 229 235. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiohgy, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
15. Hulett, F. M. 1996. The signal-transduction network for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 933 939.
16. Hulett, F. M.,, C. Bookstein,, and K. Jensen. 1990. Evidence for two structural genes for alkaline phosphatase in Bacillus subtilis. J. Bacteriol. 172: 735 740.
17. Hulett, F. M.,, E. E. Kim,, C. Bookstein,, N. V. Kapp,, C. W. Edwards,, and H. W. Wyckoff. 1991. Bacillus subtis alkaline phosphatases III and IV. Cloning, sequencing, and comparisons of deduced amino acid sequence with Escherichia coli alkaline phosphatase three-dimensional structure. J. Biol. Chem. 266: 1077 1084
18. Hulett, F. M.,, J. Lee,, L. Shi,, G. Sun,, R. Chesnut,, E. Sharkova,, M. F. Duggan,, and N. Kapp. 1994. Sequential action of two-component genetic switches regulates the PHO regulon in Bacillus subtilis. J. Bacteriol. 176: 1348 1358.
19. Hulett, F. M.,, G. Sun,, and W. Liu,. 1994. The PHO regulon of Bacillus subtilis is regulated by sequential action of two genetic switches, p. 50 54. In A. Torriani-Gorini,, E. Yagil,, and S. Silver (ed.), Phosphate in Microorganisms. American Society for Microbiology, Washington, D. C.
20. Hulett, F. M.,, and C. W. Price. Unpublished data.
21. Jensen, K. K.,, E. Sharkova,, M. F. Duggan,, Y. Qi,, A. Koide,, J. A. Hoch,, and F. M. Hulett. 1993. Bacillus subtilis transcription regulator, Spo0A, decreases alkaline phosphatase levels induced by phosphate starvation. J. Bacteriol. 175: 3749 3756.
22. Kapp, N. V.,, C. W. Edwards,, R. S. Chesnut,, and F. M. Hulett. 1990. The Bacillus subtilis phoAIV gene: effects of in vitro inactivation on total alkaline phosphatase production. Gene 96: 95 100.
23. Kim, J. W.,, T. Peterson,, G. Bee,, and F. M. Hulett. 1998. Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus. FEMS Microbiol. Lett. 159: 47 58.
24. Lahooti, M.,, and C. R. Harwood. 1999. Transcriptional analysis of the Bacillus subtilis teichuronic acid operon. Microbiobgy 145: 3409 3417.
25. Lange, R.,, C. Wagner,, A. de Saizieu,, N. Hint,, J. Molnos,, M. Stieger,, P. Caspers,, M. Kamber,, W. Keck, and K. E. Amrein. 1999. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene 237: 223 234.
26. Le Brun, N. E.,, J. Bengtsson,, and L. Hederstedt. 2000. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol. Microbiol. 36: 638 650.
27. Lee, J. K.,, C. W. Edwards,, and F. M. Hulett. 1991. Bacillus licheniformis APase I gene promoter: a strong well-regulated promoter in B. subtilis. J. Gen. Microbiol. 137: 1127 1133.
28. Liu, W. 1997. Biochemical and genetic analyses establish a dual role for PhoP in Bacillus subtilis Pho regulation. Ph.D. thesis. University of Illinois, Chicago.
29. Liu, W.,, S. Eder,, and F. M. Hulett. 1998. Analysis of Bacillus subtilis tagAB and tagDEF expression during phosphate starvation identifies a repressor role for PhoP-P. J. Bacteriol. 180: 753 758.
30. Liu, W.,, and F. M. Hulett. 1997. Bacillus subtilis PhoP binds to the phoB tandem promoter exclusively within the phosphate starvation-inducible promoter. J. Bacteriol. 179: 6302 6310.
31. Liu, W.,, and F. M. Hulett. 1998. Comparison of PhoP binding to the tuaA promoter with PhoP binding to other Pho-regulon promoters establishes a Bacillus subtilis Pho core binding site. Microbiology 144: 1443 1450.
32. Liu, W.,, Y. Qi,, and F. M. Hulett. 1998. Sites internal to the coding regions of phoA and pstS bind PhoP and are required for full promoter activity. Mol. Microbiol. 28: 119 130.
33. Mauel, C.,, A. Bauduret,, C. Chervet,, S. Beggah,, and D. Karamata. 1995. In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. Microbiology 141: 2379 2389.
34. Mauel, C.,, M. Young,, and D. Karamata. 1991. Genes concerned with synthesis of poly (glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J. Gen. Microbiol. 137: 929 941.
35. Mauel, C.,, M. Young,, P. Margot,, and D. Karamata. 1989. The essential nature of teichoic acids in Bacillus subtilis as revealed by insertional mutagenesis. Mol. Gen. Genet. 215: 388 394.
36. Mauel, C.,, M. Young,, A. Monsutti-Grecescu,, S. A. Marriott,, and D. Karamata. 1994. Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140: 2279 2288.
37. Msadek, T. 1999. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol. 7: 201 207.
38. Nakano, M.,, Y. Zhu,, M. LaCelle,, X. Zhang,, and F. M. Hulett. 2000. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis. Mol. Microbiol. 37: 1198 1207.
39. Nakano, M. M.,, and F. M. Hulett. 1997. Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol. Lett. 157: 1 7.
40. Nakano, M. M.,, Y. Zhu,, K. Haga,, H. Yoshikawa,, A. L. Sonenshein,, and P. Zuber. 1999. A mutation in the 3-phosphoglycerate kinase gene allows anaerobic growth of Bacillus subtilis in the absence of ResE kinase. J. Bacteriol. 181: 7087 7097.
41. Novak, R.,, A. Cauwels,, E. Charpentier,, and E. Tuomanen. 1999. Identification of a Streptococcus pneumoniae gene locus encoding proteins of an ABC phosphate transporter and a two-component regulatory system. J. Bacteriol. 181: 1126 1133.
42. Ozanne, P. G., 1980. Phosphate nutrition of plants—a general treatise, p. 559 585. In E. Khasswenh (ed.), The Role of Phosphorus in Agriculture. American Society of Agronomy, Madison, Wis.
43. Pagni, M.,, V. LazareviC,., B. Soldo,, and D. Karamata. 1999. Assay for UDPglucose 6-dehydrogenase in phosphate-starved cells: gene tuaD of Bacillus subtilis 168 encodes the UDPglucose 6-dehydrogenase involved in teichuronic acid synthesis. Microbiology 145: 1049 1053.
44. Qi, Y. 1998. Ph.D. thesis. University of Illinois, Chicago.
45. Qi, Y.,, and F. M. Hulett. 1998. PhoP-P and RNA polymerase sigmaA holoenzyme are sufficient for transcription of Pho regulon promoters in Bacillus subtilis: PhoP-P activator sites within the coding region stimulate transcription in vitro. Mol. Microbiol. 28: 1187 1197.
46. Qi, Y.,, and F. M. Hulett. 1998. Role of PhoP~P in transcriptional regulation of genes involved in cell wall anionic polymer biosynthesis in Bacillus subtilis. J. Bacteriol. 180: 4007 4010.
47. Qi, Y.,, Y. Kobayashi,, and F. M. Hulett. 1997. The pst operon of Bacillus subtilis has a phosphate-regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. J. Bacteriol. 179: 2534 2539.
48. Robichon, D.,, M. Arnaud,, R. Gardan,, Z. Pragai,, M. O'Reilly,, G. Rapoport,, and M. Debarbouille. 2000. Expression of a new operon from Bacillus subtilis, ykzB-ykoL, under the control of the TnrA and PhoP-phoR global regulators. J. Bacteriol. 182: 1226 1231.
49.Shi, L. 1999. Ph.D. thesis. University of Illinois, Chicago.
50. Shi, L.,, and F. M. Hulett. 1999. The cytoplasmic kinase domain of PhoR is sufficient for the low phosphate-inducible expression of Pho regulon genes in Bacillus subtilis. Mol. Microbiol. 31: 211 222.
51. Shi, L.,, W. Liu,, and F. M. Hulett. 1999. Decay of activated Bacillus subtilis Pho response regulator, PhoP-P, involves the PhoR-P intermediate. Biochemistry 38: 10119 10125.
52. Soldo, B.,, V. LazareviC,., M. Pagni,, and D. Karamata. 1999. Teichuronic acid operon of Bacillus subtilis 168. Mol. Microbiol. 31: 795 805.
53. Soldo, B.,, V. LazareviC,., M. Pagni,, C. Mauel,, and D. Karamata. 1995. Abstract no. M14, p. 50. Abstr. 8th International Conference on Bacilli, Stanford, Calif.
54. Stock, J. B.,, A. J. Ninfa,, and A. M. Stock. 1989. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450 490.
55. Sun, G.,, S. M. Birkey,, and F. M. Hulett. 1996. Three two-component signal-transduction systems interact for Pho regulation in Bacillus subtilis. Mol. Microbiol. 19: 941 948.
56. Sun, G.,, E. Sharkova,, R. Chesnut,, S. Birkey,, M. F. Duggan,, A. Sorokin,, P. PujiC,., S. D. Ehrlich,, and F. M. Hulett. 1996. Regulators of aerobic and anaerobic respiration in Bacillus subtilis. J. Bacteriol. 178: 1374 1385.
57. Takemaru, K.,, M. Mizuno,, and Y. Kobayashi. 1996. A Bacillus subtilis gene cluster similar to the Escherichia coli phosphate-specific transport (pst) operon: evidence for a tandemly arranged pstB gene. Microbiology 142: 2017 2020.
58. Throup, J. P.,, K. K. Koretke,, A. P. Bryant,, K. A. Ingraham,, A. F. Chalker,, Y. Ge,, A. Marra,, N. G. Wallis,, J. R. Brown,, D. J. Holmes,, M. Rosenberg,, and M. K. Burnham. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35: 566 576.
59. Wanner, B. L. 1996. Phosphorus Assimihtion and Control of the Phosphate Regulon, 2nd ed. vol. 1. ASM Press, Washington, D.C.
60. Zhang, X.,, and F. M. Hulett. 2000. ResD signal transduction regulator of aerobic respiration in Bacillus subtilis; ctaA promoter regulation. Mol. Microbiol. 37: 1208 1219.
61. Zhulin, I. B.,, B. L. Taylor,, and R. Dixon. 1997. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 22: 331 333.
62. Znamenskaya, L. V.,, L. A. Gabdrakhmanova,, E. B. Chernokalskaya,, I. B. Leshchinskaya,, and R. W. Hartley. 1995. Phosphate regulation of biosynthesis of extracellular RNases of endospore-forming bacteria. FEBS Lett. 357: 16 18.
63. Znamenskaya, L. V.,, O. A. Vershinina,, V. I. Vershinina,., I. B. Leshchinskaya,, and R. W. Hartley. 1999. Expression of the genes for guanyl-specific ribonucleases from Bacillus intermedius and Bacillus pumilus is regulated by the two component signal transduction system PhoP-PhoR in B. subtilis. FEMS Microbiol. Lett. 173: 217 222.

Tables

Generic image for table
TABLE 1

Pho regulon genes/operons

In vivo transcript was dependent on PhoP and/or PhoR during phosphate deprivation.

PhoP and/or PhoP∼P footprint within the promoter region.

PhoP-P was required for activation or repression of in vitro transcription with σ RNP.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Generic image for table
TABLE 2

Mutational analysis determining interactions among regulatory genes

% change in APase expression, either reduced or hyperinduced, compared with the parental strain, JH642.

% change in expression, either reduced or hyperinduced, compared with the parental strain, JH642.

Spontaneous-compensatory mutation.

does not map to res, or locus; under investigation.

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15
Generic image for table
TABLE 3

Percent identity matrices

Citation: Hulett F. 2002. The Pho Regulon, p 193-201. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error