1887

Chapter 16 : Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap16-2.gif

Abstract:

This chapter provides an overview on biosynthesis of amino acids. Glutamine and glutamate occupy a special place in nitrogen metabolism because virtually all nitrogen-containing groups of biological molecules are derived from these two amino acids, glutamate being the major donor of nitrogen. The major pathway of glutamate synthesis in many bacteria is catalyzed by glutamate synthase (GOGAT or GltAB) through reductive transamidation of a-ketoglutarate. Glutamate can also be generated through degradation of several amino acids (glutamine, arginine, proline, aspartate, ?-aminobutyrate, histidine). The major regulator appears to be the leucine-responsive protein, Lrp, a global transcriptional regulator, that carries out many of its functions in response to leucine or alanine availability. BC and D gene of unknown function is cotranscribed with the A gene and was suggested to be involved in phenylalanine synthesis. Some of the polyamine synthesis genes are organized in two operons, AB and ED. In , proline is synthesized from glutamate in three enzymatic steps. A mutants, defective in γ- glutamyl phosphate reductase, are auxotrophic for proline, indicating that this is the only important pathway of de novo proline biosynthesis. The complex regulation of the genes in stands in sharp contrast with the constitutive expression of the BA and C genes in . The BA-dependent pathway of proline synthesis, similar to that of , is also found in , , , and, as deduced by genome analysis, in most other low-G+C gram-positive bacteria.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16

Key Concept Ranking

Transcription Start Site
0.56964755
Aromatic Amino Acids
0.52598536
0.56964755
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General scheme of biosynthetic pathways for amino acids of the glutamate and aspartate families, their derivatives, and alanine. See Fig. 4 to 6 , 8 , and 9 for more details. The pathway of methionine biosynthesis is described in chapter 18. Synthesis of D-alanine and D-glutamate is described in chapter 4.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The regulatory region. A likely transcription start site and the direction of transcription of the operon are indicated by a right-angle arrow. The −10 and −35 promoter regions are shown as shaded boxes. and are similar dyad-symmetry sequences, separated by two helical turns of DNA, which apparently serve as GlnR-binding sites ( ); overlaps the —35 region. A GlnR dimer binds both sequences in vivo and in vitro ( ). The site can also be bound by another repressor protein, TnrA ( ). Mutations in the regulatory region ( ) and in GlnR ( ), altering regulation of the operon, are available.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The intergenic region. The transcription start sites and directions of transcription of the and genes are indicated by right-angle arrows. The −10 and −35 promoter regions of and are shown as shaded boxes above and below the DNA line, respectively. Box I and Box II are the apparent GltC-binding, dyad-symmetry sequences ( ), separated by two helical turns of DNA. Binding of GltC, probably as a dimer, to Box I, immediately downstream of the transcription start site, is virtually constitutive and serves to negatively regulate GltC expression ( ). The ability of another GltC dimer to bind to Box II apparently depends on a conformational change induced by an unidentified effector and on the interaction with a GltC dimer bound to the first site. A TnrA binding sequence is located immediately downstream of the transcription start site ( ). Mutations in the GltC and TnrA binding sites, altering expression from the and promoters, confirm the model of regulation ( ). Mutant forms of GltC, affecting its interaction with the regulatory region, are available ( ).

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The pathway of lysine, diaminopimelate, and dipicolinate biosynthesis.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

The pathway of threonine biosynthesis.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

The pathway of arginine biosynthesis.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

The regulatory region. The transcription start site and direction of transcription of the operon are indicated by a right-angle arrow. The −10 and −35 promoter regions are shown as shaded boxes. The binding site of AhrC or its ortholog ArgR overlaps the argC −10 and −35 regions ( ). AhrC/ArgR binding appears to involve arginine- and DN ?-dependent dimerization of two tamers ( ). The consensus sequence for AhrC/ArgR binding is not easily apparent (but see also reference ). A low-affinity site for AhrC is present within the coding region of the gene ( ). AhrC also binds to the promoter (cited in reference ). The three-dimensional structure of ?. ArgR, showing the winged helix-turn-helix motif, has been determined ( ). Mutations in ArgR affecting its DNA-binding properties are available ( ); such mutations were also isolated for licheniformis ArgR ( ).

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

The pathway of polyamine biosynthesis.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

The pathway of proline biosynthesis.

Citation: Belitsky B. 2002. Biosynthesis of Amino Acids of the Glutamate and Aspartate Families, Alanine, and Polyamines, p 203-231. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap16
1. Ahn, K. S.,, and R. G. Wake. 1991. Variations and coding features of the sequence spanning the replication terminus of Bacillus subtilis 168 and W23 chromosomes. Gene 98: 107112.
2. Alcántara, C.,, J. Cervera,, and V. Rubio. 2000. Carbamate kinase can replace in vivo carbamoyl phosphate synthetase. Implications for the evolution of carbamoyl phosphate biosynthesis. FEBS Lett. 484:261264.
3. Alonso, J. C.,, A. C. Stiege,, and G. Luder. 1993. Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol. Gen. Genet. 239:129136.
4. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
5. Anderson, B. M.,, C. D. Anderson,, R. L. Van Tassell,, D. M. Lyerly,, and T. D. Wilkins. 1993. Purification and characterization of Clostridium difficile glutamate dehydrogenase. Arch. Biochem. Biophys. 300:483488.
6. Antia, M.,, D. S. Hoare,, and E. Work. 1957. The stereoisomers of αє-diaminopimelic acid. 3. Properties and distribution of diaminopimelic acid racemase, an enzyme causing interconversion of the LL and meso isomers. Biochem.J. 65:448459.
7. Aronson, A. I.,, E. Henderson,, and A. Tincher. 1967. Participation of the lysine pathway in dipicolinic acid synthesis in Bacillus cereus T. Biochem. Biophys. Res. Commun. 26:454460.
8. Asada, Y.,, K. Tanizawa,, Y. Kawabata,, H. Misono,, and K. Soda. 1981. Purification and properties of meso-diaminopimelate decarboxylase from Bacillus sphaericus. Agric. Biol. Chem. 45:15131514.
9. Asada, Y.,, K. Tanizawa,, S. Sawada,, T. Suzuki,, H. Misono,, and K. Soda. 1981. Stereochemistry of meso-αє-diaminopimelate decarboxylase reaction: the first evidence for pyridoxal 5′-phosphate dependent decarboxylation with inversion of configuration. Biochemistry 20:68816886.
10. Baker, P. J.,, K. L. Britton,, P. C. Engel,, G. W. Farrants,, K. S. Lilley,, D. W. Rice,, and T. J. Stillman. 1992. Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins 12:7586.
11. Barnes, I. J.,, A. Bondi, and K. E. Fuscaldo. 1971. Genetic analysis of lysine auxotrophs of Staphylococcus aureus. J. Bacteriol. 105:553555.
12. Barnes, I. J.,, A. Bondi,, and A. G. Moat. 1969. Biochemical characterization of lysine auxotrophs of Staphylococcus aureus.J. Bacteriol. 99:169174.
13. Bartlett, A. T. M.,, and P. J. White. 1986. Regulation of the enzymes of lysine biosynthesis in Bacillus sphaericus NCTC 9602 during vegetative growth. J. Gen. Microbiol. 132:31693178.
14. Bartlett, A. T. M.,, and P. J. White. 1985. Species of Bacillus that make a vegetative peptidoglycan containing lysine lack diaminopimelate epimerase but have diaminopimelate dehydrogenase. J. Gen. Microbiol. 131:21452152.
14a. Bartsch, K.,, R. Schneider,, and A. Schulz. 1996. Stereospecific production of the herbicide phosphinothricin (gufosinate): purification of aspartate transaminase from Bacillus stearothermophilus, cloning of the corresponding gene, aspC, and application in a coupled transaminase process. Appl. Environ. Microbiol. 62:37943799.
15. Baumberg, S.,, and U. Klingel,. 1993. Biosynthesis of arginine and proline and related compounds, p. 299306. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
16. Belitsky, B. R.,, M. Arnaud,, R. Gardan,, G. Rapoport,, and A. L. Sonenshein. Unpublished data.
17. Belitsky, B. R.,, J. Brill,, E. Bremer,, and A. L. Sonenshein. 2001. Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J. Bacteriol. 183:43894392.
18. Belitsky, B. R.,, P. J. Janssen,, and A. L. Sonenshein. 1995. Sites required for GltC-dependent regulation of Bacillus subtilis glutamate synthase expression. J. Bacteriol. 177:56865695.
19. Belitsky, B. R.,, and A. L. Sonenshein. Unpublished data.
20. Belitsky, B. R.,, and A. L. Sonenshein. 1997. Altered transcription activation specificity of a mutant form of Bacillus subtilis GltR, a LysR family member. J. Bacteriol. 179:10351043.
21. Belitsky, B. R.,, and A. L. Sonenshein. 1999. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96:1029010295.
22. Belitsky, B. R.,, and A. L. Sonenshein. 1997. GenBank accession number AF006720.
23. Belitsky, B. R.,, and A. L. Sonenshein. 1995. Mutations in GltC that increase Bacillus subtilis gltA expression. J. Bacteriol. 177:56965700.
24. Belitsky, B. R.,, and A. L. Sonenshein. 1998. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J. Bacteriol. 180:62986305.
25. Belitsky, B. R.,, L. V. Wray, Jr.,, S. H. Fisher,, D. E. Bohannon,, and A. L. Sonenshein. 2000. Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J. Bacteriol. 182:59395947.
26. Benachenhou-Lahfa, N.,, P. Forterre,, and B. Labedan. 1993. Evolution of glutamate dehydrogenase genes: evidence for two paralogous protein families and unusual branching patterns of the archaebacteria in the universal tree of life. J. Mol. Evol. 36:335346.
27. Bender, R. A. 1991. The role of the NAC protein in the nitrogen regulation of Klebsiella Maerogenes. Mol Microbiol. 5: 25752580.
28. Biswas, C.,, E. Gray,, and H. Paulus. 1970. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. III. Purification and subunit structure of the enzyme. J. Biol. Chem. 245:49004906.
29. Biswas, C.,, and H. Paulus. 1973. Multivalent feedback inhibition of aspartokinase in Bacillus polymyxa. IV. Arrangement and function of the subunits. J. Biol. Chem. 248:28942900.
30. Bogdahn, M.,, J. R. Andreesen,, and D. Kleiner. 1983. Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum. Arch. Microbiol. 134:167169.
31. Bogdahn, M.,, and D. Kleiner. 1986. Inorganic nitrogen metabolism in two cellulose-degrading Clostridia. Arch. Microbiol. 145:159161.
32. Bogdahn, M.,, and D. Kleiner. 1986. N2 fixation and NH4+ assimilation in the thermophilic anaerobes Clostridium tkermosaccharolyticum and Clostridium thermoautotrophicum. Arch. Microbiol. 144:102104.
33. Bohannon, D. E.,, M. S. Rosenkrantz,, and A. L. Sonenshein. 1985. Regulation of Bacillus subtilis glutamate synthase genes by the nitrogen source. J. Bacteriol. 163:957964.
34. Bohannon, D. E.,, and A. L. Sonenshein. 1989. Positive regulation of glutamate biosynthesis in Bacillus subtilis. J. Bacteriol. 171:47184727.
35. Bolotin, A.,, P. Wincker,, S. Mauger,, O. Jaillon,, K. Malarme,, J. Weissenbach,, S. D. Ehrlich,, and A. Sorokin. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis 1L1403. Genome Res. 11:731753.
36. Borris, D. P.,, and J. N. Aronson. 1969. Relationship of L-alanine and L-glutamate dehydrogenases of Bacillus thuringienses. Biochim. Biophys. Acta 191:716718.
37. Borst, D. W.,, R. M. Blumenthal,, and R. G. Matthews. 1996. Use of an in vivo titration method to study a global regulator: effect of varying Lrp levels on expression of gltBDF in Escherichia coli. J. Bacteriol. 178:69046912.
38. Brill, J.,, and E. Bremer. Unpublished data.
39. Bringel, F.,, L. Frey,, S. Boivin,, and J.-C. Hubert. 1997. Arginine biosynthesis and regulation in Lactobacillus plantarum: the carA gene and the argCJBDF cluster are divergently transcribed. J. Bacteriol. 179:26972706.
40. Britton, K. L.,, P. J. Baker,, D. W. Rice,, and T. J. Still-man. 1992. Structural relationship between the hexameric and tetrameric family of glutamate dehydrogenases. Eur. J. Biochem. 209:851859.
41. Brown, J. R.,, Y. Masuchi,, F. T. Robb,, and W. F. Doolittle. 1994. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J. Mol. Evol. 38:566576.
42. Brown, S. W.,, and A. L. Sonenshein. 1996. Autogenous regulation of the Bacillus subtilis glnRA operon. J. Bacteriol. 178:24502454.
43. Buckel, W.,, and H. A. Barker. 1974. Two pathways of glutamate fermentation by anaerobic bacteria. J. Bacteriol. 117:12481260.
44. Burchall, J. J.,, R. A. Niederman,, and M. J. Wolin. 1964. Amino group formation and glutamate synthesis in Streptococcus bovis. J. Bacteriol. 88:10381044.
45. Burchall, J. J.,, E. C. Reichelt,, and M. J. Wolin. 1964- Purification and properties of the asparagine synthetase of Streptococcus bovis. J. Biol. Chem. 239:17941798.
46. Buxton, R. S.,, and J. B. Ward. 1980. Heat-sensitive lysis mutants of Bacillus subtilis 168 blocked at 3 different stages of peptidoglycan synthesis. J. Gen. Microbiol. 120:283294.
47. Camarena, L.,, S. Poggio,, N. Garcia,, and A. Osorio. 1998. Transcriptional repression of gdhA in Escherichia coli is mediated by the Nac protein. FEMS Microbiol. Lett. 167:5156.
48. Cami, B.,, C. Clepet,, and J. C. Patte. 1993. Evolutionary comparisons of three enzymes of the threonine biosynthetic pathway among several microbial species. Biochimie 75:487495.
49. Campanile, C.,, G. Forlani,, A. L. Basso,, R. Marasco,, E. Ricca,, M. Sacco,, L. Ferrara,, and M. De Felice. 1993. Identification and characterization of the proBA operon of Streptococcus bovis. Appl. Environ. Microbiol. 59:519522.
50. Cantoni, R.,, M. Labo,, E. De Rossi,, and G. Riccardi. 1996. Sequence of the Bacillus stearothermophilus gene encoding aspartokinase II. Gene 169:135136.
51. Cardineau, G. A.,, and R. I. Curtiss. 1987. Nucleotide sequence of the asd gene of Streptococcus mutans. Identification of the promoter region and evidence for attenuatorlike sequences preceding the structural gene. J. Biol. Chem. 262:33443353.
52. Cavari, B. Z.,, and N. Grossowicz. 1973. Properties of homoserine dehydrogenase in a thermophilic bacterium. Biochim. Biophys. Acta 302:183190.
52a. Chambaud, I.,, R. Heilig,, S. Ferris,, V. Barbe,, D. Samson,, F. Galisson,, I. Moszer,, K. Dybvig,, H. Wroblewski,, A. Viari,, E. P. Rocha,, and A. Blanchard. 2001. The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis. Nucleic Acids Res. 29:21452153.
53. Chatterjee, M. 1986. Aspartokinase of lysine excreting and non-excreting strains of Bacillus megaterium. Curr. Sci. 55: 11761179.
54. Chatterjee, M.,, S. D. Chatterjee,, and A. K. Banerjee. 1990. Dihydrodipicolinate synthase of lysine excreting and nonexcreting strains of Bacillus megaterium. Acta Biotechnol. 10:382384.
55. Chatterjee, S. P.,, and P. J. White. 1982. Activities and regulation of the enzymes of lysine biosynthesis in a lysine-excreting strain of Bacillus megaterium. J. Gen. Microbiol. 128:10731082.
56. Chen, G. J.,, and J. B. Russell. 1989. Transport of glutamine by Streptococcus bovis and conversion of glutamine to pyroglutamic acid and ammonia. J. Bacteriol. 171:29812985.
57. Chen, N. Y.,, F. M. Hu,, and H. Paulus. 1987. Nucleotide sequence of the overlapping genes for the subunits of Bacillus subtilis aspartokinase II and their control regions. J. Biol. Chem. 262:87878798.
58. Chen, N. Y.,, S. Q. Jiang,, D. A. Klein,, and H. Paulus. 1993. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J. Biol. Chem. 268:94489465.
59. Chen, N. Y.,, and H. Paulus. 1988. Mechanism of expression of the overlapping genes of Bacillus subtilis aspartokinase II. J. Biol. Chem. 263:95269532.
60. Chopin, A.,, V. Biaudet,, and S. D. Ehrlich. 1998. Analysis of the Bacillus subtilis genome sequence reveals nine new T-box leaders. Mol. Microbiol. 29:662664.
61. Consalvi, V.,, S. Millevoi,, R. Chiaraluce,, M. de Rosa,, and R. Scandurra. 1995. Refolding of glutamate dehydrogenase from Bacillus acidocaldarius after guanidinium chloride-induced unfolding. Biochem. Mol. Biol. Int. 35:397407.
62. Costilow, R. N.,, and D. Cooper. 1978. Identity of proline dehydrogenase and Δ1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes. J. Bacteriol. 134:139146.
63. Cunin, R.,, N. Glansdorff,, A. Pierard,, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol. Rev. 50:314352.
64. Curnow, A. W.,, K. Hong,, R. Yuan,, S. Kim,, O. Martins,, W. Winkler,, T. M. Henkin,, and D. Soli. 1997. Glu-tR-NAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. USA 94:1181911826.
65. Czaplewski, L. G.,, A. K. North,, M. C. Smith,, S. Baumberg,, and P. G. Stockley. 1992. Purification and initial characterization of AhrC: the regulator of arginine metabolism genes in Bacillus subtilis. Mol. Microbiol. 6:267275.
66. Dainty, R. H. 1972. Glutamate biosynthesis in Clostridium pasteurianum and its significance in nitrogen metabolism. Biochem. J. 126:10551056.
67. Dainty, R. H.,, and J. L. Peel. 1970. Biosynthesis of amino acids in Clostridium pasteurianum. Biochem. J. 117:573584.
68. Daniel, R. A., and J. Errington. 1993. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J. Mol. Biol. 232:468483.
69. Dean, D. R.,, J. A. Hoch,, and A. I. Aronson. 1977. Alteration of the Bacillus subtilis glutamine synthetase results in overproduction of the enzyme. J. Bacteriol. 131:981987.
70. De Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete,, R. Sobral,, S. Gill,, M. Chung,, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5:163175.
71. Deshpande, K. L.,, and J. F. Kane. 1980. Glutamate synthase from Bacillus subtilis: in vitro reconstitution of an active amidotransferase. Biochem. Biophys. Res. Commun. 93: 308314.
72. Deuel, T. F.,, A. Ginsburg,, J. Yeh,, E. Shelton,, and E. R. Stadtman. 1970. Bacillus subtilis glutamine synthetase. Purification and physical characterization. J. Biol. Chem. 245:51955205.
73. Deuel, T. F.,, and S. Prusiner. 1974. Regulation of glutamine synthetase from Baciiius subtilis by divalent cations, feedback inhibitors, and L-glutamine. J. Biol. Chem. 249: 257264.
74. Dion, M.,, D. Charlier,, H. Wang,, D. Gigot,, A. Savchenko,, J. N. Hallet,, N. Glansdorff,, and V. Sakanyan. 1997. The highly thermostable arginine repressor of Bacillus stearothermophilus: gene cloning and repressor-operator interactions. Mol. Microbiol. 25:385398.
75. Donohue, T. J.,, and R. W. Bernlohr. 1981. Properties of the Bacillus licheniformis A5 glutamine synthetase purified from cells grown in the presence of ammonia or nitrate. J. Bacteriol. 147:589601.
76. Donohue, T. J.,, and R. W. Bernlohr. 1981. Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase. J. Bacteriol. 148:174182.
76a. Dudley, E.,, and J. Steele. 2001. Lactococcus lactis LM0230 contains a single aminotransferase involved in aspartate biosynthesis, which is essential for growth in milk. Microbiology 147:215224.
76b. Duncan, P. A.,, B. A. White,, and R. I. Mackie. 1992. Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1. Appl. Environ. Microbiol. 58:40324037.
77. Elagöz, A.,, A. Abdi,, J.-C. Hubert,, and B. Kammerer. 1996. Structure and organisation of the pyrimidine biosynthesis pathway genes in Lactobacillus plantarum: a PCR strategy for sequencing without cloning. Gene 182:3743.
78. Elmerich, C. 1972. Le cycle du glutamate, point de depart du mitabolisme de l'azote, chez Bacillus megaterium. Eur. J. Biochem. 27:216224.
79. Elmerich, C.,, and J. P. Aubert. 1971. Synthesis of glutamate by a glutamine: 2-oxoglutarate amidotransferase (NADP oxidoreductase) in Bacillus megaterium. Biochem. Biophys. Res. Commun. 42:371376.
80. Emmett, M.,, and W. E. Kloos. 1979. The nature of arginine auxotrophy in cutaneous populations of staphylococci. J. Gen. Microbiol. 110:305314.
81. Epstein, I.,, and N. Grossowicz. 1975. Purification and properties of glutamate dehydrogenase from a thermophilic bacillus. J. Bacteriol. 122:12571264.
82. Faires, N.,, S. Tobisch,, S. Bachem,, I. Martin-Verstraete,, M. Hecker,, and J. Stulke. 1999. The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. J. Mol. Microbiol. Biotechnol. 1:141148.
83. Fawcett, P.,, P. Eichenberger,, R. Losick,, and P. Young-man. 2000. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97:80638068.
83a. Ferretti, J. J.,, W. M. McShan,, D. Ajdic,, D. J. Savic,, G. Savic,, K. Lyon,, C. Primeaux,, S. Sezate,, A. N. Suvorov,, S. Kenton,, H. S. Lai,, S. P. Lin,, Y. Qian,, H. G. Jia,, F. Z. Najar,, Q. Ren,, H. Zhu,, L. Song,, J. White,, X. Yuan,, S. W. Clifton,, B. A. Roe,, and R. McLaughlin. 2001. Complete genome sequence of an Ml strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98:46584663.
84. Fierro-Monti, I. P.,, S. J. Reid,, and D. R. Woods. 1992. Differential expression of a Clostridium acetobutylicum anti-sense RNA: implications for regulation of glutamine synthetase. J. Bacteriol. 174:76427647.
85. Fillinger, S.,, S. Boschi-Muller,, S. Azza,, E. Dervyn,, G. Branlant,, and S. Aymerich. 2000. Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J. Biol. Chem. 275:1403114037.
86. Fisher, S. H. 1999. Regulation of nitrogen metabolism in Bacillus subtilis: vive la difference! Mol. Microbiol. 32: 223232.
87. Fisher, S. H.,, M. S. Rosenkrantz,, and A. L. Sonenshein. 1984· Glutamine synthetase gene of Bacillus subtilis. Gene 32:427138.
88. Forman, M.,, and A. Aronson. 1972. Regulation of dipicolinic acid biosynthesis in sporulating Bacillus cereus. Characterization of enzymic changes and analysis of mutants. Biochem. J. 126:503513.
89. Fraser, C. M.,, J. D. Gocayne,, O. White,, M. D. Adams,, R. A. Clayton,, R. D. Fleischmann,, C. J. Bult,, A. R. Kerlavage,, G. Sutton,, J. M. Kelley, et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270:397403.
90. Fuchs, T. M.,, B. Schneider,, K. Krumbach,, L. Eggeling,, and R. Gross. 2000. Characterization of a Bordetella pertussis diaminopimelate (DAP) biosynthesis locus identifies dapC, a novel gene coding for an N-succinyl-L,L-DAP aminotransferase. J. Bacteriol. 182:36263631.
91. Gardan, R.,, G. Rapoport,, and M. Debarbouille. 1997. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol. Microbiol. 24: 825837.
92. Ghim, S. Y.,, P. Nielsen,, and J. Neuhard. 1994. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus. Microbiology 140: 479491.
93. Gilboe, D. P.,, J. D. Friede,, and L. M. Henderson. 1968. Effect of hydroxylysine on the biosynthesis of lysine in Streptococcus faecalis. J. Bacteriol. 95:856863.
94. Glansdorff, N., 1996. Biosynthesis of arginine and polyamines, p. 408433. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella:Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
95. Glass, J. I.,, E. J. Lefkowitz,, J. S. Glass,, C. R. Heiner,, E. Y. Chen,, and G. H. Cassell. 2000. The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:757762.
96. Glykos, N. M.,, A. Holzenburg,, and S. E. Phillips. 1998. Low-resolution structural characterization of the arginine repressor/activator from Bacillus subtilis: a combined X-ray crystallographic and electron microscopical approach. Acta Crystallogr. D Biol. Crystallogr. 54:215225.
97. Goldfine, H.,, and E. R. Stadtman. 1960. Propionic acid metabolism. 5. The conversion of beta-alanine to propionic acid by cell-free extracts of Clostridium propionicum. J. Biol. Chem. 235:22382245.
98. Goodman, H. J.,, and D. R. Woods. 1993. Cloning and nucleotide sequence of the Butyrivibrio fibrisolvens gene encoding a type III glutamine synthetase. J. Gen. Microbiol. 139:14871493.
99. Grandgenett, D. P.,, and D. P. Stahly. 1971. Control of diaminopimelate decarboxylase by L-lysine during growth and sporulation of Bacillus cereus. J. Bacteriol. 106:551560.
100. Grandgenett, D. P.,, and D. P. Stahly. 1968. Diaminopimelate decarboxylase of sporulating bacteria. J. Bacteriol. 96:20992109.
101. Grandgenett, D. P.,, and D. P. Stahly. 1971. Repression of diaminopimelate decarboxylase by L-lysine in different Bacillus species. J. Bacteriol. 105:12111212.
102. Graves, L. M.,, and R. L. Switzer. 1990. Aspartokinase III, a new isozyme in Bacillus subtilis 168. J. Bacteriol. 172: 218223.
103. Gray, B. H.,, and R. W. Bernlohr. 1969. The regulation of aspartokinase in Bacillus licheniformis. Biochim. Biophys. Acta 178:248261.
104. Griffith, C. J.,, and J. Carlsson. 1974. Mechanism of ammonia assimilation in streptococci. J. Gen. Microbiol. 82: 253260.
105. Guirard, B. M.,, and E. E. Snell. 1980. Purification and properties of ornithine decarboxylase from Lactobacillus sp. 30a. J. Biol. Chem. 255:59605964.
106. Gustafson, J.,, A. Strassle,, H. Hachler,, F. H. Kayser,, and B. Berger-Bachi. 1994. The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. J. Bacteriol. 176:14601467.
107. Gutowski, J. C.,, and H. J. Schreier. 1992. Interaction of the Bacillus subtilis glnRA repressor with operator and promoter sequences in vivo. J. Bacteriol. 174:671681.
108. Hackert, M. L.,, D. W. Carroll,, L. Davidson,, S. O. Kim,, C. Momany,, G. L. Vaaler,, and L. Zhang. 1994. Sequence of ornithine decarboxylase from Lactobacillus sp. strain 30a. J. Bacteriol. 176:73917394.
109. Hahn, J.,, G. Inamine,, Y. Kozlov,, and D. Dubnau. 1993. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol. Microbiol. 10:99111.
110. Hailing, S. M.,, and D. P. Stahly. 1976. Dihydrodipicolinic acid synthase of Bacillus licheniformis. Quaternary structure, kinetics, and stability in the presence of sodium chloride and substrates. Biochim. Biophys. Acta 452:580596.
111. Hammer, B. A.,, and E. A. Johnson. 1988. Purification, properties, and metabolic roles of NAD+-glutamate dehydrogenase in Clostridium botulinum 113B. Arch. Microbiol. 150:460464.
112. Hampton, M. L.,, N. G. McCormick,, N. C. Behforouz,, and E. Freese. 1971. Regulation of two aspartokinases in Bacillus subtilis. J. Bacteriol. 108:11291134.
113. Hardman, J. K.,, and T. C. Stadtman. 1963. Metabolism of omega-amino acids. III. Mechanism of conversion of gamma-aminobutyrate to gamma-hydroxybutyrate by Clostridium aminobutyricum. J. Biol. Chem. 238:20812087.
114. Harwood, C. R.,, and S. Baumberg. 1977. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J. Gen. Microbiol. 100:177188.
115. Helling, R. B. 1998. Pathway choice in glutamate synthesis in Escherichia coli. J. Bacteriol. 180:45714575.
116. Helling, R. B. 1994. Why does Escherichia coli have two primary pathways for synthesis of glutamate? J. Bacteriol. 176:46644668.
117. Hemmilä, I. A.,, and P. I. Mantsala. 1978. Purification and properties of glutamate synthase and glutamate dehydrogenase from Bacillus megaterium. Biochem. J. 173:4552.
118. Himmelreich, R.,, H. Hubert,, H. Plagens,, E. Pirkl,, B. C. Li,, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:44204449.
119. Hitchcock, M. J.,, B. Hodgson,, and J. L. Linforth. 1980. Regulation of lysine- and lysine-plus-threonine-inhibitable aspartokinases in Bacillus brevis. J. Bacteriol. 142:424432.
120. Hoch, J., A., and J. Mathews. 1972. Genetic studies in Bacillus subtilis, p. 113116. In H. O. Halvorson,, R. Hanson,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
121. Hoganson, D. A.,, C. D. Smith,, and D. P. Stahly,. 1978. Regulation of aspartokinase activity in Bacillus cereus, p. 304307. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
122. Hoganson, D. A.,, and D. P. Stahly. 1975. Regulation of dihydrodipicolinate synthase during growth and sporulation of Bacillus cereus. J. Bacteriol. 124:13441350.
123. Holtham, C. A.,, K. Jumel,, C. M. Miller,, S. E. Harding,, S. Baumberg,, and P. G. Stockley. 1999. Probing activation of the prokaryotic arginine transcriptional regulator using chimeric proteins. J. Mol. Biol. 289:707727.
124. Hornby, D. P.,, and P. C. Engel. 1984. Characterization of Peptostreptococcus asaccharolyticus glutamate dehydrogenase purified by dye-ligand chromatography. J. Gen. Microbiol. 130:23852394.
125. Hubbard, J. S.,, and E. R. Stadtman. 1967. Regulation of glutamine synthetase. V. Partial purification and properties of glutamine synthetase from Bacillus licheniformis. J. Bacteriol. 94:10071015.
126. Iijima, T.,, M. D. Diesterhaft,, and E. Freese. 1977. Sodium effect of growth on aspartate and genetic analysis of a Bacillus subtilis mutant with high aspartase activity. J. Bacteriol. 129:14401447.
127. Inamine, G. S.,, and D. Dubnau. 1995. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J. Bacteriol. 177:30453051.
128. Ishii, I.,, H. Takada,, K. Terao,, T. Kakegawa,, K. Igarashi,, and S. Hirose. 1994. Decrease in spermidine content during logarithmic phase of cell growth delays spore formation of Bacillus subtilis. Cell. Mol. Biol. 40: 925931.
129. Ishino, Y.,, P. Morgenthaler,, H. Hottinger,, and D. Soll. 1992. Organization and nucleotide sequence of the glutamine synthetase (glnA) gene from Lactobacillus delbrueckii subsp. bulgaricus. Appl. Environ. Microbiol. 58: 31653169.
130. Issaly, I. M.,, and A. S. Issaly. 1974. Control of ornithine carbamoyltransferase activity by arginase in Bacillus subtilis. Eur. J. Biochem. 49:485495.
131. Jagusztyn-Krynicka, E. K.,, M. Smorawinska,, and R. Curtiss III. 1982. Expression of Streptococcus mutans aspartate-semialdehyde dehydrogenase gene cloned into plasmidpBR322. J. Gen. Microbiol. 128:11351145.
132. Jahns, T. 1992. Occurrence of cold-labile NAD-specific glutamate dehydrogenase in Bacillus species. FEMS Microbiol. Lett. 75:187192.
133. Jahns, T.,, and H. Kaltwasser. 1993. Properties of the cold-labile NAD+-specific glutamate dehydrogenase from Bacillus cereus DSM 31. J. Gen. Microbiol. 139: 775780.
134. Janssen, P. J.,, D. T. Jones,, and D. R. Woods. 1990. Studies on Clostridium acetobutylicum glnA promoters and antisense RNA. Mol. Microbiol. 4:15751583.
135. Janssen, P. J.,, W. A. Jones,, D. T. Jones,, and D. R. Woods. 1988. Molecular analysis and regulation of the glnA gene of the gram-positive anaerobe Clostridium acetobutylicum. J. Bacteriol. 170:400408.
136. Jeng, I. M.,, R. Somack,, and H. A. Barker. 1974. Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A. Biochemistry 13:28982903.
137. Jensen, R. A.,, and W. Gu. 1996. Evolutionary recruitment of biochemically specialized subdivisions of family I within the protein superfamily of aminotransferases. J. Bacteriol. 178:21612171.
138. Johnson, W. M.,, and D. W. Westlake. 1972. Purification and characterization of glutamic acid dehydrogenase and alpha-ketoglutaric acid reductase from Peptococcus aerogenes. Can. J. Microbiol. 18:881892.
139. Joyner, A. E., Jr.,, and R. L. Baldwin. 1966. Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol. 92:13211330.
140. Kal'cheva, E. O.,, M. M. Faiziev,, V. O. Shanskaia,, and S. S. Maliuta. 1993. Regulation of enzymes of the first and last stage of lysine biosynthesis in Streptococcus bovis and Enterococcus faecium. Mol. Gen. Microbiol. Virusol. 1993:1316.
141. Kal'cheva, E. O.,, V. O. Shanskaya,, and S. S. Malyuta. 1994. Analysis of key enzyme activities involved in aspartate amino acid biosynthesis in Streptococcus bovis. Biochemistry (Moscow) 59:7376.
142. Kalcheva, E. O.,, M. M. Faiziev,, and S. S. Malyuta. 1997. Isolation and comparative analysis of diaminopimelate decarboxylase from Streptococcus bovis and Bacillus subtilis. Mol. Gen. Mikrobiol. Virusol. 1997:3437.
143. Kalcheva, E. O.,, M. M. Faiziev,, V. O. Shanskaya,, and S. S. Maluta. 1994. Regulation of two aspartokinase isozymes in Streptococcus bovis. Can. J. Microbiol. 40: 224227.
144. Kalcheva, E. O.,, V. O. Shanskaya,, and S. S. Maliuta. 1994. Activities and regulation of the enzymes involved in the first and the third steps of the aspartate biosynthetic pathway in Enterococcus faecium. Arch. Microbiol. 161: 359362.
145. Kanamori, K.,, R. L. Weiss,, and J. D. Roberts. 1987. Ammonia assimilation in Bacillus polymyxa. 15N NMR and enzymatic studies. J. Biol. Chem. 262:1103811045.
146. Kanamori, K.,, R. L. Weiss,, and J. D. Roberts. 1989. Ammonia assimilation pathways in nitrogen-fixing Chstridium kluyverii and Clostridium butyricum. J. Bacteriol. 171:21482154.
147. Kanamori, K.,, R. L. Weiss,, and J. D. Roberts. 1988. Glutamate biosynthesis in Bacillus azotofixans. 15N NMR and enzymatic studies. J. Biol. Chem. 263:28172823.
148. Kanamori, K.,, R. L. Weiss,, and J. D. Roberts. 1987. Role of glutamate dehydrogenase in ammonia assimilation in nitrogen-fixing Bacillus macerans. J. Bacteriol. 169: 46924695.
149. Kane, J. F.,, J. Wakim,, and R. S. Fischer. 1981. Regulation of glutamate dehydrogenase in Bacillus subtilis. J. Bacteriol. 148:10021005.
150. Karaivanova, I. M.,, P. Weigel,, M. Takahashi,, C. Fort,, A. Versavaud,, G. Van Duyne,, D. Charlier,, J. N. Hal-let,, N. Glansdorff,, and V. Sakanyan. 1999. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties. J. Mol. Biol. 291:843855.
151. Kenklies, J.,, R. Ziehn,, K. Fritsche,, A. Pich,, and J. R. Andreesen. 1999. Proline biosynthesis from L-ornithine in Clostridium sticklandii: purification of ?1-pyrroline-5-carboxylate reductase, and sequence and expression of the encoding gene, proC. Microbiology 145:819826.
152. Kikuchi, Y.,, H. Kojima,, T. Tanaka,, Y. Takatsuka,, and Y. Kamio. 1997. Characterization of a second lysine decarboxylase isolated from Escherichia coli. J. Bacteriol. 179:44864492.
153. Kim, S. I.,, J. E. Germond,, D. Pridmore,, and D. Soil. 1996. Lactobacillus bulgaricus asparagine synthetase and asparaginyl-tRNA synthetase: coregulation by transcription antitermination? J. Bacteriol. 178:24592461.
154. Kimura, K. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. I. Purification and properties. J. Biochem. 77:405413.
155. Kimura, K.,, and T. Goto. 1977. Dihydrodipicolinate reductases from Bacillus cereus and Bacillus megaterium. J. Biochem. 81:13671373.
156. Kimura, K.,, and T. Goto. 1975. A new flavin enzyme catalyzing the reduction of dihydrodipicolinate in sporulating Bacillus subtilis. II. Kinetics and regulatory function. J. Biochem. 77:415420.
157. Kimura, K.,, T. Goto,, and S. Ujita,. 1978. Two differentiable types of dihydrodipicolinate reductase from spore-forming bacilli, p. 308311. In G. Chambliss, and J. C. Vary (ed.), Spores VII. American Society for Microbiology, Washington, D.C.
158. Kimura, K.,, A. Miyakawa,, T. Imai,, and T. Sasakawa. 1977. Glutamate dehydrogenase from Bacillus subtilis PCI 219. I. Purification and properties. J. Biochem. 81:467476.
159. Kleiner, D. 1979. Regulation of ammonium uptake and metabolism by nitrogen fixing bacteria. III. Clostridium pasteurianum. Arch. Microbiol. 120:263270.
160. Kochhar, S.,, and H. Paulus. 1996. Lysine-induced premature transcription termination in the lysC operon of Bacillus subtilis. Microbiology 142:16351639.
161. Krishnan, I. S.,, R. K. Singhal,, and R. D. Dua. 1986. Purification and characterization of glutamine synthetase from Clostridium pasteurianum. Biochemistry 25:15891599.
162. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
163. Kuramitsu, H. K.,, and R. M. Watson. 1973. Regulation of aspartokinase activity in Clostridium perfringens. J. Bacteriol. 115:882888.
164. Kuramitsu, H. K.,, and S. Yoshimura. 1971. Catalytic and regulatory properties of meso-diaminopimelate-sensitive aspartokinase from Bacillus stearothermophilus. Arch. Biochem. Biophys. 147:683691.
165. Kuramitsu, H. K.,, and S. Yoshimura. 1972. Elevated diaminopimelate-sensitive aspartokinase activity during sporulation of Bacillus stearothermophilus. Biochim. Biophys.Acta 264:152164.
165a. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K.-I. Aoki,, Y. Nagai, et al. 2001. Whole genome sequencing of methicillin-resistant Staphyhcoccus aureus. Lancet 357: 12251240.
166. Lapujade, P.,, M. Cocaign-Bousquet,, and P. Loubiere. 1998. Glutamate biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118. Appl. Environ. Microbiol. 64:24852489.
167. Ledwidge, R.,, and J. S. Blanchard. 1999. The dual biosynthetic capability of N-acetylornithine aminotransferase in arginine and lysine biosynthesis. Biochemistry 38: 30193024.
168. Lehrer, H. I.,, and M. E. Jones. 1962. Repression of ornithine transcarbamoyltransferase of Bacillus subtilis. Biochim. Biophys. Acta 65:360362.
169. Leisinger, T., 1996. Biosynthesis of proline, p. 434441. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Liu,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Sahnonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C.
170. Li, X.,, G. M. Weinstock,, and B. E. Murray. 1995. Generation of auxotrophic mutants of Enterococcus faecalis. J. Bacteriol. 177:68666873.
171. Limauro, D.,, A. Falciatore,, A. L. Basso,, G. Forlani,, and M. De Felice. 1996. Proline biosynthesis in Streptococcus thermophilus: characterization of the proBA operon and its products. Microbiology 142:32753282.
172. Lu, Y.,, N. Y. Chen,, and H. Paulus. 1991. Identification of oecA mutations in Bacillus subtilis as nucleotide substitutions in the untranslated leader region of the aspartokinase II operon. J. Gen. Microbiol. 137:11351143.
173. Lu, Y.,, T. N. Shevtchenko,, and H. Paulus. 1992. Fine-structure mapping of cis-acting control sites in the lysC operon of Bacillus subtilis. FEMS Microbiol. Lett. 71:2327.
174. Lyerly, D. M.,, L. A. Barroso,, and T. D. Wilkins. 1991. Identification of the latex test-reactive protein of Clostridium difficile as glutamate dehydrogenase. J. Clin. Microbiol. 29:26392642.
175. Maas, W. K. 1994. The arginine repressor of Escherichia coli. Microbiol. Rev. 58:631640.
176. Madsen, S. M., B. Albrechtsen, E. B. Hansen, and H. Israelsen. 1996. Cloning and transcriptional analysis of two threonine biosynthetic genes from Lactococcus lactis MG1614. J. Bacteriol. 178:36893694.
177. Maghnouj, A.,, T. F. de Sousa Cabral,, V. Stalon,, and C. Vander Wauven. 1998. The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis, and its activation by the arginine repressor argR. J. Bacteriol. 180:64686475.
177a. Makarova, K. S.,, A. A. Mironov,, and M. S. Gelfand. 2001. Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol. 2(Research):0013.10013.8.
178. Malumbres, M.,, L. M. Mateos,, C. Guerrero,, and J. F. Martin. 1995. Molecular cloning of the hom-thrC-thrB cluster from Bacillus sp. ULM1: expression of the thrC gene in Escherichia coli and corynebacteria, and evolutionary relationships of the threonine genes. Folia Microbiol. 40:595606.
179. Mäntsälä, P. 1985. Thermophilic NAD-dependent glutamate dehydrogenase from Bacillus stearothermophilus. Biochem. Int. 10:955962.
180. Marc, F.,, P. Weigel,, C. Legrain,, Y. Almeras,, M. Santrot,, N. Glansdorff,, and V. Sakanyan. 2000. Characterization and kinetic mechanism of mono- and bifunctional ornithine acetyltransferase from thermophilic microorganisms. Eur.J. Biochem. 267:52175226.
181. Martinussen, J.,, and K. Hammer. 1998. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically. J. Bacteriol. 180:43804386.
181a. Martinussen, J.,, J. Schallert,, B. Andersen,, and K. Hammer. 2001. The pyrimidine operon pyrRPB-carA from Lactococcus lactis. J. Bacteriol. 183:27852794.
182. Matsuoka, K.,, and K. Kimura. 1986. Glutamate synthase from Bacillus subtilis PCI 219. J. Biochem. 99:10871100.
183. Matsuoka, K.,, T. Kurebayashi,, and K. Kimura. 1985. Regulation and properties of glutamine synthetase purified from Bacillus cereus. J. Biochem. 98:12111219.
184. Mattioli, R.,, M. Bazzicalupo,, G. Federici,, E. Gallon,, and M. Polsinelli. 1979. Characterization of mutants of Bacillus subtilis resistant to S-(2-aminoethyl)cysteine. J. Gen. Microbiol. 114:223225.
185. Mavrides, C.,, and M. Comerton. 1978. Aminotransferases for aromatic amino acids and aspartate in Bacillus subtilis. Biochim. Biophys. Acta 524:6067.
186. McCarron, R. M.,, and Y. F. Chang. 1978. Aspartokinase of Streptococcus mutants: purification, properties, and regulation. J. Bacteriol. 134:483491.
187. Meers, J. L.,, D. W. Tempest,, and C. M. Brown. 1970. Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J. Gen. Microbiol. 64:187194.
188. Mehta, P. K.,, T. I. Hale,, and P. Christen. 1993. Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur. J. Biochem. 214:549561.
189. Mills, D. A.,, and M. C. Flickinger. 1993. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes. Appl. Environ. Microbiol. 59:29272937.
190. Miñambres, B.,, E. R. Olivera,, R. A. Jensen,, and J. M. Luengo. 2000. A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J. Biol. Chem. 275:3952939542.
191. Misono, H.,, and K. Soda. 1980. Properties of meso-α,є-diaminopimelate D-dehydrogenase from Bacillus sphaericus. J. Biol. Chem. 255:1059910605.
192. Misono, H.,, H. Togawa,, T. Yamamoto,, and K. Soda. 1979. Meso-α,є-diaminopimelate D-dehydrogenase: distribution and the reaction product. J. Bacteriol. 137:2227.
193. Moir, D.,, and H. Paulus. 1977. Properties and subunit structure of aspartokinase II from Bacillus subtilis VB217. J. Biol. Chem. 252:46484651.
194. Momany, C.,, S. Ernst,, R. Ghosh,, N. L. Chang,, and M. L. Hackert. 1995. Crystallographic structure of a PLP-dependent ornithine decarboxylase from Lactobacillus 30a to 3.0 A resolution. J. Mol. Biol. 252:643655.
195. Morsdorf, G.,, and H. Kaltwasser. 1989. Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sporosarcinaureae. Arch. Microbiol. 152:125131.
196. Moszer, I. 1998. The complete genome of Bacillus subtilis: from sequence annotation to data management and analysis. FEBS Lett. 430:2836.
197. Mountain, A.,, and S. Baumberg. 1980. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol. Gen. Genet. 178:691701.
198. Mountain, A.,, J. McChesney,, M. C. Smith,, and S. Baumberg. 1986. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J. Bacteriol. 165: 10261028.
199. Mountain, A.,, M. C. Smith,, and S. Baumberg. 1990. Nucleotide sequence of the Bacillus subtilis argF gene encoding ornithine carbamoyltransferase. Nucleic Acids Res. 18:4594.
200. Muse, W. B.,, and R. A. Bender. 1998. The nac (nitrogen assimilation control) gene from Escherichia coli. J. Bacteriol. 180:11661173.
201. Muth, W. L.,, and R. N. Costilow. 1974. Ornithine cyclase (deaminating). II. Properties of the homogeneous enzyme. J. Biol. Chem. 249:74577462.
202. Nakano, Y.,, C. Kato,, E. Tanaka,, K. Kimura,, and K. Horikoshi. 1989. Nucleotide sequence of the glutamine synthetase gene (glnA) and its upstream region from Bacillus cereus. J. Biochem. 106:209215.
203. Nakano, Y.,, and K. Kimura. 1991. Purification and characterization of a repressor for the Bacillus cereus glnRA operon. J. Biochem. 109:223228.
204. Nakano, Y.,, and K. Kimura. 1990. Temperature-sensitive mutant of Bacillus subtilis glutamine synthetase obtained by random mutation. J. Biochem. 108:116121.
205. Nakano, Y.,, E. Tanaka,, C. Kato,, K. Kimura,, and K. Horikoshi. 1989. The complete nucleotide sequence of the glutamine synthetase gene (glnA) of Bacillus subtilis. FEMS Microbiol. Lett. 48:8186.
206. Neway, J. O.,, and R. L. Switzer. 1983. Purification, characterization, and physiological function of Bacillus subtilis ornithine transcarbamylase. J. Bacteriol. 155:512521.
207. Newman, E. B.,, R. T. Lin,, and R. D'Ari,. 1996. The leucine/Lrp regulon, p. 15131525. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecuhr Biobgy, 2nd ed. American Society for Microbiology, Washington, D.C.
208. Ni, J.,, V. Sakanyan,, D. Charlier,, N. Glansdorff,, and G. D. Van Duyne. 1999. Structure of the arginine repressor from Bacillus stearothermophilus. Nat. Struct. Biol. 6:427432.
209. Nicoloff, H.,, J.-C. Hubert,, and F. Bringel. 1997. In Lactobacillus plantarum, carbamoyl phosphate is synthesized by two carbamoyl-phosphate synthetases (CPS): carbon dioxide differentiates the arginine-repressed from the pyrimidine-regulated CPS. J. Bacteriol. 182:34163422.
210. Nobe, Y.,, S. Kawaguchi,, H. Ura,, T. Nakai,, K. Hirotsu,, R. Kato,, and S. Kuramitsu. 1998. The novel substrate recognition mechanism utilized by aspartate aminotransferase of the extreme thermophile Thermus thermophilus HB8. J. Biol. Chem. 273:2955429564.
211. North, A. K.,, M. C. Smith,, and S. Baumberg. 1989. Nucleotide sequence of a Bacillus subtilis arginine regulatory gene and homology of its product to the Escherichia coli arginine repressor. Gene 80:2938.
212. Norton, S. J.,, and Y. T. Chen. 1969. Beta-aspartylhydroxamic acid: its action as a feedback inhibitor and a repressor of asparagine synthetase in Lactobacillus arabinosus. Arch. Biochem. Biophys. 129:560566.
213. Norton, S. J.,, and Y. T. Chen. 1970. Diaminopimelate decarboxylase from Lactobacillus arabinosus. Biochim. Biophys. Acta 198:610612.
214. Ogura, M.,, M. Kawata-Mukai,, M. Itaya,, K. Takio,, and T. Tanaka. 1994. Multiple copies of the proB gene enhance degS-dependent extracellular protease production in Bacillus subtilis. J. Bacteriol. 176:56735680.
215. Ohtani, K.,, M. Bando,, T. Swe,, S. Banu,, M. Oe,, H. Hayashi,, and T. Shimizu. 1997. Collagenase gene (colA) is located in the 3′-flanking region of the perfringolysin O (pfoA) locus in Clostridium perfringens. FEMS Microbiol. Lett. 146:155159.
216. Økstad, O. A.,, M. Gominet,, B. Purnelle,, M. Rose,, D. Lereclus,, and A. B. Kolstø. 1999. Sequence analysis of three Bacillus cereus loci carrying PlcR-regulated genes encoding degradative enzymes and enterotoxin. Microbiology 145:31293138.
216a. Okwumabua, O.,, J. S. Persaud,, and P. G. Reddy. 2001. Cloning and characterization of the gene encoding the glutamate dehydrgenase of Streptococcus suis serotype 2. Clin. Diagn. Lab. Immunol. 8:251257.
217. Oliver, G.,, G. Gosset,, R. Sanchez-Pescador,, E. Lozoya,, L. M. Ku,, N. Flores,, B. Becerril,, F. Valle,, and F. Bolivar. 1987. Determination of the nucleotide sequence for the glutamate synthase structural genes of Escherichia coli K-12. Gene 60:111.
218. Op den Camp, H. J.,, K. D. Liem,, P. Meesters,, J. M. Hermans,, and C. Van der Drift. 1989. Purification and characterization of the NADP-dependent glutamate dehydrogenase from Bacillus fastidiosus. Antonie Leeuwenhoek 55:303311.
219. O'Reilly, M.,, and K. M. Devine. 1994. Sequence and analysis of the citrulline biosynthetic operon argC-F from Bacillus subtilis. Microbiology 140:10231025.
220. O'Reilly, M.,, K. Woodson,, B. C. Dowds,, and K. M. Devine. 1994. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. Mol. Microbiol. 11: 8798.
221. Pan, F. L.,, and J. G. Coote. 1979. Glutamine synthetase and glutamate synthase activities during growth and sporulation in Bacillus subtilis. J. Gen. Microbiol. 112: 373377.
222. Parsot, C. 1986. Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase. EMBO J. 5:30133019.