1887

Chapter 20 : Vitamin Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Vitamin Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap20-2.gif

Abstract:

This chapter reviews current information on the nature and regulation of the genes involved in the synthesis of riboflavin, biotin, folic acid, thiamine, lipoic acid, and pantothenic acid in , and of cobalamin in . More is known about riboflavin (rib) genes in than in any other microorganism. It is possible that flavin mononucleotide (FMN) itself directly regulates riboflavin gene expression, since various nucleotides, including flavin mononucleotides and riboflavin, are reported to bind specifically to RNA aptamers. Folic acid derivatives, such as tetrahydrofolate, are required as coenzymes in numerous one-carbon-atom transfer reactions in and other organisms. The major folic acid biosynthetic operon, located at 7°, encodes nine genes, six of which are required for folate synthesis. Cobalamin (vitamin B) is the most structurally complex molecule of all the vitamins synthesized by bacteria. More than 30 biosynthetic genes are required for the biosynthesis of cobalamin. Much work remains to isolate and characterize the remaining cobalamin biosynthetic genes of ( and operons) and to understand how and why an obligate aerobe contains a operon that requires an anaerobic environment to function in .

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20

Key Concept Ranking

Gene Expression and Regulation
0.49959883
Transcription Start Site
0.48720792
Acetyl Coenzyme A
0.47395405
Lipoic Acid Synthesis
0.43917927
Lipoic Acid Synthase
0.42187744
0.49959883
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The riboflavin biosynthetic pathway of . The corresponding intermediates shown are those produced by and structure 1, GTP; structure 2, 2,5-diamino-6-(ribosylamino)-4 (3H)-pyrimidinone-5′ phosphate; structure 3, 5-amino-6-(ribosylamino)-2,4 (1H, 3H)-pyrimidinedione-5-phosphate; structure 4, 5-amino-6-(ribitylamino)-2,4 (lH, 3H)-pyrimidine-dione-5′-phosphate; structure 5, 5-amino-6-(ribitylamino)-2,4 (1H, 3H)-pynmidinedione; structure 6, ribulose-5′-phosphate; structure 7, 3,4-dihydroxy-2-butanone 4-phosphate; structure 8, 6,7-dimethyl-8-ribityllumazine; structure 9, riboflavin. Reprinted from Perkins et al. ( ) with permission.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of a possible termination/antitermination model for regulation of the rib operon. The top diagram shows the 5′ leader region, including the operator region, the riboflavin structural genes, start sites of transcription (↱) for promoters recognized by the vegetative form of RNA polymerase ( ), and inactivated and activated transcription termination sites (→ ←, ). Under riboflavin limitation, transcription of the riboflavin operon is derepressed, resulting in at least two polycistronic mRNA species, indicated by the thick arrows. The middle and bottom diagrams show premature transcription termination mediated by a hypothetical flavin-activated repressor (black oval) or an effector molecule, such as FMN, that stabilizes formation of a cloverleaf structure (♣) of the 5′ mRNA leader, resulting in formation of the terminator.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of a possible model for regulation of the operon. The top diagram shows the biotin operon, including the operator, the biotin structural genes, the start site of transcription from a promoter recognized by the vegetative form of RNA polymerase, and the transcription terminators. Under biotin limitation, transcription of the operon is derepressed, resulting in two mRNA transcripts, indicated by the thick arrows. The less abundant 7.2-kb transcript includes all seven genes in the operon, and the more abundant 5.1-kb transcript covers the first five genes ( ). Deletion of a rho-independent terminatorlike sequence located between and prevents accumulation of the 5.1-kb transcript and enhances accumulation of the ∼7-kb transcript ( ). Biotin and BirA regulate both transcripts. The bottom diagram shows a possible classical repressor/operator mechanism mediated by an AMP-biotin-activated repressor (BirA; black oval). Under biotin excess, the activated repressor binds to the operator region, preventing initiation of RNA synthesis. Symbols are described in the legend to Fig. 2 .

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The biotin biosynthetic pathways of and . The question marks indicate that the pathways for the synthesis of the intermediates pimeloyl coenzyme A in and pimelic acid in and are not known. The last reaction is catalyzed by the gene product; the potential sulfur donor and the additional proteins and cofactors listed are based on recent in vitro studies using BioB ( ). Adapted with permission ( ).

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Folic acid biosynthetic pathway. Adapted from Perkins and Pero ( ) and de Saizieu et al. ( ). Where known, the genes encoding the enzymes are indicated.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic representation of the folate operon and its transcripts. Transcription of the nine-gene folate operon initiates from a promoter upstream of . Northern blot experiments indicated that three transcripts originate from this promoter: a 2.1-kb transcript covering and a 5.9-kb transcript covering the first eight genes in the operon, and a 7.5-kb transcript including the entire nine-gene operon ( ). Putative transcription terminators can be found in the genome sequence just downstream of after and after . A second promoter, just upstream of directs transcription of a 1.5-kb RNA covering lysS. Modified from de Saizieu et al. ( ) with permission of the Society for General Microbiology.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Comparison of folate biosynthetic gene arrangements in and . Gene names are indicated below the arrows, and enzyme designations are given above. Adapted from Lacks et al. ( ) with permission.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

The thiamin biosynthetic pathways of and . Known and putative genes are listed in parentheses next to their gene counterparts. Formation of hydroxyethylthiazole phosphate (HET-P) utilizes either () or (). The asterisk denotes biosynthetic enzymes for which the crystal structure has been solved. The gene of has been cloned ( ), but its assignment to a coding region has not been reported.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap20
1. Achari, A.,, D. O. Somers,, J. N. Champness,, P. K. Bryant,, J. Rosemond,, and D. K. Stammers. 1997. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4:490497.
2. Azevedo, V.,, A. Sorokin,, D. Ehrlich,, and P. Serror. 1993. The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci. Mol. Microbiol. 10:397405.
3. Babitzke, P.,, P. Gollnick,, and C. Yanofsky. 1992. The mtrAB operon of Bacillus subtilis encodes GTP cyclohydrolase I (MtrA), an enzyme involved in folic acid biosynthesis, and MtrB, a regulator of tryptophan biosynthesis. J. Bacteriol. 174:20592064.
4. Bacher, A.,, S. Eberhardt,, and G. Richter,. 1996. Biosynthesis of riboflavin, p. 657664. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Celluhr and Molecuhr Biology. American Society for Microbiology, Washington, D.C..
5. Baigori, M.,, R. Grau, H. B. Morbidoni, and D. de Mendoza. 1991. Isolation and characterization of Bacillus subtilis mutants blocked in the synthesis of pantothenic acid. J. Bacteriol. 173:42404242.
6. Battersby, A. R. 1994. How nature builds the pigments of life: the conquest of vitamin B12. Science 264:15511557.
7. Beck, R.,, E. Raux,, C. Thermes,, A. Rambach,, and M. Warren. 1997. CbiX: a novel metal-binding protein involved in sirohaem biosynthesis in Bacillus megaterium. Biochem. Soc. Trans. 25:77S.
8. Begley, T. P. 1996. The biosynthesis and degradation of thiamin (vitamin Bl). Nat. Prod. Rep. 13:177185.
9. Begley, T. P.,, D. M. Downs,, S. E. Ealick,, F. W. McLafferty,, A. P. van Loon,, S. Taylor,, N. Campobasso,, H. J. Chiu,, C. Kinsland,, J. J. Reddick,, and J. Xi. 1999. Thiamin biosynthesis in prokaryotes. Arch. Microbiol. 171:293300.
10. Begley, T. P.,, C. Kinsland,, S. Taylor,, M. Tandon,, R. Nicewonger,, M. Wu,, H.-J. Chiu,, N. Kelleher,, N. Campobasso,, and Y. Zhang. 1998. Cofactor biosynthesis: a mechanistic perspective. Top. Curr. Chem. 195:93142.
11. Begley, T. P.,, J. Xi,, C. Kinsland,, S. Taylor,, and E. McLafferty. 1999. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr. Opin. Chem. Biol. 3:623629.
12. Birch, O. M.,, M. Fuhrmann,, and N. M. Shaw. 1995. Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J. Biol. Chem. 270:1915819165.
13. Bognar, A. L.,, C. Osborne,, and B. Shane. 1987. Primary structure of the Escherichia coli folC gene and its folylpolyglutamate synthetase-dihydrofolate synthetase product and regulation of expression by an upstream gene. J. Biol. Chem. 262:1233712342.
14. Bower, S.,, J. Perkins,, R. R. Yocum,, P. Serror,, A. Sorokin,, P. Rahaim,, C. L. Howitt,, N. Prasad,, S. D. Ehrlich,, and J. Pero. 1995. Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. J. Bacteriol. 177:25722575.
15. Bower, S.,, J. B. Perkins,, R. R. Yocum,, C. L. Howitt,, P. Rahaim,, and J. Pero. 1996. Cloning, sequencing, and characterization of the Bacillus subtilis biotin biosynthetic operon. J. Bacteriol. 178:41224130.
16. Bresler, S. E.,, E. I. Cherepenko,, T. P. Chernik,, V. L. Kalinin,, and D. A. Perumov. 1970. Investigation of the operon of riboflavin synthesis in Bacillus subtilis. I. Genetic mapping of the linkage group. Genetika 6:116124.
17. Bretzel, W.,, W. Schurter,, B. Ludwig,, E. Kupfer,, S. Doswald,, M. Pfister,, and A. P. G. M. van Loon. 1999. Commercial riboflavin production by recombinant Bacillus subtilis: down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechnol. 22:1926.
18. Brey, R. N.,, C. D. B. Banner,, and J. B. Wolf. 1986. Cloning of multiple genes involved with cobalamin (vitamin B12) biosynthesis in Bacillus megaterium. J. Bacteriol. 167:623630.
19. Brown, G. M.,, and J. M. Williamson,. 1987. Biosynthesis of folic acid, riboflavin, thiamine, and pantothenic acid, p. 521538. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low, Jr.,, B. Magasanik,, M. Schaechter, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium, vol. 1. American Society for Microbiology, Washington, D.C..
20. Bui, B. T. S.,, F. Escalettes,, G. Chottard,, D. Florentin,, and A. Marquet. 2000. Enzyme mediated sulfide production for the reconstitution of (2Fe-2S) clusters into apobiotin synthase of E. coli, sulfide transfer from cystein to biotin. Eur. J. Biochem. 267:26882694
21. Bui, B. T. S.,, D. Florentin,, F. Fournier,, O. Ploux,, A. Mejean,, and A. Marquet. 1998. Biotin synthesis mechanism: on the origin of sulfur. FEBS Lett. 440:226230.
22. Bui, B. T. S.,, D. Florentin,, A. Marquet,, R. Benda,, and A. X. Trautwein. 1999. Mössbauer studies of Escherichia coli biotin synthase: evidence for reversible interconversion between [2F-2S]2+ and [4F-4S]2+ clusters. FEBS Lett. 459:411414.
23. Busby, R. W.,, J. P. M. Schelvis,, D. S. Yu,, G. T. Babcock,, and M. A. Marietta. 1999. Lipoic acid biosynthesis: LipA is an iron-sulfur protein. J. Am. Chem. Soc. 121:47064707.
24. Carballido-Lopez, R.,, J. P. Rawlins,, and J. Errington. Unpublished results.
25. Chiu, H. J.,, J. J. Reddick,, T. P. Begley,, and S. E. Ealick. 1999. Crystal structure of thiamin phosphate synthase from Bacillus subtilis at 1.2 angstroms. Biochemistry 38:64606470.
26. Compobasso, N.,, I. I. Mathews,, T. P. Begley,, and S. E. Ealick. 2000. Crystal structure of 4-methyl-5-β -hydroxyethylthiazole kinase from Bacillus subtilis at 1.5 A resolution. Biochemistry 39:78687877.
27. Cronan, J. E., Jr. 1989. The E. coli bio operon: transcriptional repression by an essential protein modification enzyme. Cell 58:427429.
28. Debussche, L.,, D. Thibaut,, B. Cameron,, J. Crouzet,, and F. Blanche. 1993. Biosynthesis of the corrin macrocycle of coenzyme B12 in Pseudomonas denitrificans. J. Bacteriol. 175:74307440.
29. DeMoll, E., 1996. Biosynthesis of biotin and lipoic acid., p. 704709. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
30. de Saizieu, A.,, P. Vankan,, and A. P. van Loon. 1995. Enzymatic characterization of Bacillus subtilis GTP cyclohydrolase. I. Evidence for a chemical dephosphorylation of dihydroneopterin triphosphate. Biochem. J. 306:371377.
31. de Saizieu, A.,, P. Vankan,, C. Vockler,, and A. P. G. M. van Loon. 1997. The trp RNA-binding attenuation protein (TRAP) regulates the steady-state levels of transcripts of the Bacillus subtilis folate operon. Microbiology 143:979989.
32. De Voss, J. J.,, and J. E. Stok. 1997. Purification and characterisation of P450-BioI. FASEB J. 11:A812.
33. Du, H.,, R. Tarpey,, and P. Babitzke. 1997. The trp RNA-binding attenuation protein regulates TrpG synthesis by binding to the trpG ribosome binding site of Bacillus subtilis. J. Bacteriol. 179:25822586.
34. Duin, E. C.,, M. E. Lafferty,, B. R. Crouse,, R. M. Allen,, I. Sanyal,, D. H. Flint,, and M. K. Johnson. 1997. [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36:1181111820.
35. Eichler, K.,, S. Taylor,, C. Vockler,, Y. Zhang,, V. Delague,, T. Begley,, and A. P. G. M. van Loon. Unpublished results.
36. Eichler, K.,, C. Vockler,, R. Carballido-Lopez,, and A. P. G. M. van Loon. 1997. Investigation of the biotechnological potential of folic acid biosynthesis in Bacillus subtilis, p. 46. Abstr. 9th International Conference on Bacilli, Lausanne, Switzerland.
37. Eisenberg, M. A., 1987. Biosynthesis of biotin and lipoic acid, p. 544550. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low, Jr.,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium. American Society for Microbiology, Washington, D.C..
38. Florentin, D.,, B. T. S. Bui,, A. Marquet,, T. Ohshiro,, and Y. Izumi. 1994. On the mechanism of biotin synthetase of Bacillus sphaericus. C. R. Acad. Sci. Paris 317:485488.
39. Fujio, T.,, M. Hayashi,, A. Ilda,, T. Nishi,, and T. Hagihara. 1990. Process for producing thaimine phosphate. European Patent Application EP 0417953.
40. Fujisawa, A.,, T. Abe,, I. Ohsawa,, K. Kamogawa,, and Y. Izumi. 1993. Bioconversion of dethiobiotin to biotin by a cell-free system of a bioYB transformant of Bacillus sphaericus. FEMS Microbiol. Lett. 110:14.
41. Gelfand, M. S.,, A. A. Mironov,, J. Jomantas,, Y. I. Kozlov,, and D. A. Perumov. 1999. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet. 15:439442.
42. Gibson, K. J.,, D. A. Pelletier,, and S. I. M. Turner. 1999. Transfer of sulfur to biotin from biotin synthase (BioB protein). Biochem. Biophys. Res. Commun. 254:632635.
43. Gloeckler, R.,, I. Ohsawa,, D. Speck,, C. Ledoux,, S. Bernard,, M. Zinsius,, D. Villeval,, T. Kisou,, K. Kamogawa, and Y. Lemoine. 1990. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene 87:6370.
44. Green, A. J.,, S. L. Rivers,, M. Cheesman,, G. A. Reid,, L. Quaroni,, I. D. G. Macdonald,, S. K. Chapman,, and A. W. Munro. Expression, purification and characterisation of cytochrome P450 BioI: a novel P450 involved in biotin synthesis in Bacillus subtilis. J. Biol. Inorg. Chem., in press.
45. Green, J. M.,, B. P. Nichols,, and R. G. Matthews,. 1996. Folate biosynthesis, reduction, and polyglutamylation, p. 665673. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
46. Guianvarc’h, D.,, D. Florentin,, B. T. S. Bui,, F. Nunri,, and A. Marquet. 1997. Biotin synthase, a new member of the family of enzymes which uses S-adenosylmethionine as the source of deoxyadenosyl radical. Biochem. Biophys. Res. Commun. 236:402406.
47. Hampele, I. C.,, A. D’Arcy,, G. E. Dale,, D. Kostrewa,, J. Nielsen,, C. Oefner,, M. G. Page,, H. J. Schonfeld,, D. Stuber,, and R. L. Then. 1997. Structure and function of the dihydropteroate synthase from Staphyhcoccus aureus. J. Mol. Biol. 268:2130.
48. Harker, M.,, and P. M. Bramley. 1999. Expression of prokaryotic l-deoxy-D-xylulose-5-phosphatases in Escherichia coli increases carotenoid and ubiquinone biosynthesis. FEBS Lett. 448:115119.
49. Hennig, M.,, A. D’Arcy,, I. C. Hampele,, M. G. P. Page,, C. Oefner,, and G. E. Dale. 1998. Crystal structure and reaction mechanism of 7,8-dihydroneopterin aldolase from Staphylococcus aureus. Nat. Struct. Biol. 5:357362.
50. Hohmann, H. Unpublished results.
51. Hiimbelin, M.,, V. Griesser,, T. Keller,, W. Schuter,, M. Haiker,, H.-P. Hohmann,, H. Ritz,, G. Richter,, A. Bacher,, and A. P. G. M. van Loon. 1999. GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of a Bacillus subtilis strain used for riboflavin production. J. Ind. Microbiol. Biotechnol. 22:17.
52. Ifuku, O.,, N. Koga,, S. Haze,, J. Kishimoto,, and Y. Wachi. 1994. Flavodoxin is required for conversion of dethiobiotin to biotin in Escherchia coli. Eur. J. Biochem. 224:173178.
53. Iwakura, M.,, and T. Tanaka. 1992. Dihyrofolate reductase from Bacillus subtilis and its artificial derivatives—expression, purification, and characterization. J. Biochem. 111:638642.
54. Izumi, Y.,, Y. Kano,, K. Inagaski,, N. Kawase,, Y. Tani,, and H. Yamada. 1981. Characterization of biotin biosynthetic enzymes of Bacillus sphaericus: a desthiobiotin producing bacterium. Agric. Biol. Chem. 45:19831989.
55. Jackowski, S., 1996. Biosynthesis of pantothenic acid and coenzyme A, p. 687694. In F. C. Neidhardt,, R. Curtess III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
56. Kambampati, R.,, and C. T. Lauhon. 1999. IscS is a sulfurtransferase for the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. Biochemistry 38:1656116568.
57. Kawasaki, T.,, and Y. Nose. 1969. Thiamine regulatory mutants in Escherichia coli. J. Biochem. 65:417425.
58. Kawasaki, T.,, H. Sanemori,, Y. Egi,, S. Yoshida,, and K. Yamada. 1976. Biochemical studies on pyrithiamine-resistant mutants of Escherichia coli. J. Biochem. 79:10351042.
59. Kil, Y. V.,, V. N. Mironov,, I. Y. Gorishin,, R. A. Kreneva,, and D. A. Perumov. 1992. Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region. Mol. Gen. Genet. 233:483486.
60. Kiyasu, T.,, A. Asakura,, Y. Nagahashi,, and T. Hoshino. 2000. Contribution of cystein desulfurase (NifS protein) to the biotin synthase reaction of Escherichia coli. J. Bacteriol. 182:28792885.
61. Kreneva, R. A.,, and D. A. Perumov. 1990. Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol. Gen. Genet. 222:467469.
62. Kunst, F.,, N. Ogasawara,, H. Yoskikawa,, and A. Danchin. 1997. Probable lipoic acid synthetase. Direct submission GenBank accession no. 032129.
63. Kurth, R.,, J. Paust,, and W. Hahnlein. 1996. Riboflavin, p. 521530. In Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed, vol. A27. VCH Verlagsgesellschaft, Weinheim, Germany.
64. Lacks, S. A.,, B. Greenberg,, and P. Lopez. 1995. A cluster of four genes encoding enzymes for five steps in the folate biosynthetic pathway of Streptococcus pneumoniae. J. Bacteriol. 177:6674.
65. Lauhon, C. T.,, and R. Kambampati. 2000. The iscS gene in Escherichia coli is required for the biosynthesis of 4-thiouridine, thiamin, and NAD. J. Biol. Chem. 275:2009620103.
66. Lauhon, C. T.,, and J. W. Szostak. 1995. RNA aptamers that bind flavin and nicotinamide redox cofactors. J. Am. Chem. Soc. 117:12461257.
67. Lee, C. Y.,, and E. A. Meighen. 1992. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem. Biophys. Res. Commun. 186:690697.
68. Lee, C. Y.,, D. J. O’Kane,, and E. A. Meighen. 1994. Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum. J. Bacteriol. 176:21002104.
69. Lee, H.,, V. M. Reyes,, and J. Kraut. 1996. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4. Biochemistry 35:70127020.
70. Lemoine, Y.,, A. Wach,, and J. M. Jeltsch. 1996. To be free or not: the fate of pimelate in Bacillus sphaericus and in Escherichia coli. Mol. Microbiol. 19:645647.
71. Llorente, B.,, C. Fairhead,, and B. Dujon. 1999. Genetic redundancy and gene fusion in the genome of the baker’s yeast Saccharomyces cerevisiae: functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol. Microbiol. 32:11401152.
72. Lopez, P.,, and S. A. Lacks. 1993. A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyl-dihydropterin pyrophosphokinase activities. J. Bacteriol. 175:22142220.
73. Mack, M.,, A. P. G. M. van Loon,, and H.-P. Hohmann. 1998. Regulation of riboflavin biosynthesis in Bacillus subtilis is affected by the activity of the favokinase/flavin adenine dinucleotide synthetase encoded by ribC. J. Bacteriol. 180:950955.
74. Margolis, P. S.,, A. Driks,, and R. Losick. 1993. Spoliation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175:528540.
75. Marini, P.,, S. J. Li,, D. Gardiol,, J. J. E. Cronan,, and D. de Mendoza. 1995. The genes encoding the biotin carboxyl carrier protein and biotin carboxylase subunits of Bacillus subtilis acetyl coenzyme A carboxylase, the first enzyme of fatty acid synthesis. J. Bacteriol. 177:70037006.
76. Marquet, A.,, B. T. S. Bui,, and D. Florentin. 2001. Biosynthesis of biotin and lipoic acid. Vitam. Horm. 61:51101
77. Mejean, A.,, B. T. S. Bui,, D. Florentin,, O. Ploux,, Y. Izumi,, and A. Marquet. 1995. Highly purified biotin synthase can transform dethiobiotin into biotin in the absence of any other protein, in the presence of photoreduced deazaflavin. Biochem. Biophys. Res. Commun. 217: 12311237.
78. Miranda-Ríos, J.,, C. Morera,, H. Taboada,, A. Dávalos,, S. Encarnación,, J. Mora,, and M. Soberon. 1997. Expression of thiamin biosynthetic genes (thiCOGE) and production of symbiotic terminal oxidase cbb3 in Rhizobium etli. J. Bacteriol. 179:68876893.
79. Mironov, V. N.,, D. A. Perumov,, A. S. Kraev,, A. I. Stepanov,, and K. G. Skryabin. 1990. Unusual structure in the regulation region of the Bacillus subtilis riboflavin biosynthesis operon. Molekulyamaya Biohgiya 24:256261.
80. Moine, G.,, and H.-P. Hohmann. 1996. Vitamin Bl (Thiamin), p. 506521. In Ullmann’s Encychpedia of Industrial Chemistry, 5th ed, vol. A27. VCH Verlagsgesellschaft, Weinheim, Germany.
81. Morozov, G. I.,, P. M. Rabinovich,, S. V. Bandrin,, and A. I. Stepanov. 1984. Organization of Bacillus subtilis riboflavin operon. Mol. Genet. Mikrobiol. Virusol. 7:4246.
82. Mueller, E. G.,, and P. M. Palenchar. 1999. Using genomic information to investigate the function of ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis. Protein Sci. 8:24242427.
83. Nar, H.,, R. Huber,, W. Meining,, A. Bracher,, M. Fischer,, C. Hosl,, H. Ritz,, C. Schmid,, W. S., and A. Bacher. 1996. Structure and mechanism of GTP cyclohydrolase I of Escherichia coli. Biochem. Soc. Trans. 24:37S.
84. Nicewonger, R.,, C. A. Costello,, and T. P. Begley. 1996. Mechanistic studies on thiaminase I. 3. Stereochemistry of the thiaminase I and the bisulfite-catalyzed degradation of chiral monodeuterothiamin. J. Org. Chem. 61:41724174.
85. Nishiya, Y.,, and T. Imanaka. 1998. Purification and characterization of a novel glycine oxidase from Bacillus subtilis. FEBS Lett. 438:263266.
86. Ollagnier-de Choudens, S.,, and M. Fontecave. 1999. The lipoate synthase from Escherichia coli is an iron-sulfur protein. FEBS Lett. 453:2528.
87. Ollagnier-De Choudens, S.,, Y. Sanakis,, K. S. Hewitson,, P. Roach,, J. E. Baldwin,, E. Munck,, and M. Fontecave. 2000. Iron-sulfur center of biotin synthase and lipoate synthase. Biochemistry 39:41654173.
88. Osmani, A. H.,, G. S. May,, and S. A. Osmani. 1999. The extremely conserved pyroA gene of Aspergillus nidufons is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J. Biol. Chem. 274:2356523569.
89. O’Toole, G. A.,, M. R. Rondon,, J. R. Trzebiatowski,, S. J. Suh,, and J. C. Escalante-Semerena,. 1996. Biosynthesis and utilization of adenosyl-cobalamin (coenzyme B12), p. 710720. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
90. Ouzounis, C. A.,, and N. C. Kyrpides. 1997. ThiD-TenA: a gene pair fusion in Eukarotes. J. Mol. Evol. 45:708711.
91. Pai, C. H. 1975. Genetics of biotin biosynthesis in Bacillus subtilis. J. Bacteriol. 121:18.
92. Pang, A. S.-H.,, S. Nathoo,, and S.-L. Wong. 1991. Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J. Bacteriol. 173:4654.
93. Perkins, J. Personal communication.
94. Perkins, J. B.,, S. Bower,, C. L. Howitt,, R. R. Yocum,, and J. Pero. 1996. Identification and characterization of transcripts from the biotin biosynthetic operon of Bacillus subtilis. J. Bacteriol. 178:63616365.
95. Perkins, J. B.,, and J. G. Pero,. 1993. Biosynthesis of riboflavin, biotin, folic acid and cobalamin, p. 319334. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
96. Perkins, J. B.,, J. G. Pero,, and A. Sloma. 1998. Riboflavin overproducing strains of bacteria. U.S. patent 5,837,528.
97. Perkins, J. B.,, A. Sloma,, T. Hermann,, K. Theriault,, E. Zachgo,, T. Erdenberger,, N. Hannett,, N. P. Chatterjee,, V. Williams II,, G. A. Rufo, Jr.,, R. Hatch,, and J. Pero. 1999. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. J. Ind. Microbiol. Biotechnol. 22: 818.
98. Ploux, O.,, P. Soularue,, A. Marquet,, R. Gloeckler,, and Y. Lemoine. 1992. Investigations of the first step of biotin biosynthesis in Bacillus sphaericus. Purification and characterization of the pimeloyl-CoA synthetase, and uptake of pimelate. Biochem. J. 287:685690.
99. Raux, E.,, A. Lanois,, A. Rambach,, M. J. Warren,, and C. Thermes. 1998. Cobalamin (vitamin B12) biosynthesis: functional characterization of the Bacillus megaterium cbi genes required to convert uroporphyrinogen III into cobyrinic acid a,c-diamide. Biochem. J. 335:167173.
100. Raux, E.,, A. Lanois,, M. J. Warren,, A. Rambach,, and C. Thermes. 1998. Cobalamin (vitamin B12) biosynthesis: identification and characterization of the Bacillus megaterium cobI operon. Biochem. J. 335:159166.
101. Raux, E.,, H. L. Schubert,, J. M. Roper,, K. S. Wilson,, and M. J. Warren. 1999. Vitamin B12: insights into biosynthesis’s mount improbable. Bioorg. Chem. 27:100118.
102. Reddick, J. J.,, C. Kinsland,, R. Nicewonger,, T. Christian,, D. M. Downs,, M. E. Winkler,, and T. P. Begley. 1998. Overexpression, purification, and characterization of two pyrimidine kinases involved in the biosynthesis of thiamin: 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase and 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate kinase. Tetrahedron 54:1598315991.
103. Richter, G.,, M. Fischer,, C. Krieger,, S. Eberhardt,, H. Lüttgen,, I. Gerstenschläger,, and A. Bacher. 1997. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis. J. Bacteriol. 179:20222028.
104. Richter, G.,, H. Ritz,, G. Katzenmeier,, R. Volk,, A. Kohnle,, F. Lottspeich,, D. Allendorf,, and A. Bacher. 1993. Biosynthesis of riboflavin: cloning, sequencing, and mapping, and expression of the gene coding for GTP cyclohydrolase II of Escherichia coli. J. Bacteriol. 175:40454051.
105. Richter, G.,, R. Volk,, C. Krieger,, H.-W. Lahm,, U. Röthlisberger,, and A. Bacher. 1992. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate of Escherichia coli. J. Bacteriol. 174:40504056.
106. Roth, J. R.,, J. G. Lawrence,, M. Rubenfield,, S. Kieffer-Higgins,, and G. M. Church. 1993. Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J. Bacteriol. 175:33033316.
107. Ryals, J.,, R.-Y. Hsu,, M. N. Lipsett,, and H. Bremer. 1982. J. Bacteriol. Isolation of single-site Escherichia coli mutants deficient in thiamine and 4-thiouridine syntheses: identification of a nuvC mutant. 151:899904.
108. Sanyal, I.,, G. Cohen,, and D. H. Flint. 1995. Biotin synthase: purification, characterization as a [2Fe-2S] cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry 33:36253631.
109. Sanyal, I.,, K. Gibson,, and D. Flint. 1996. Escherichia coli biotin synthase: an investigation into the factors required for its activity and its sulfur donor. Arch. Biochem. Biophys. 326:4856.
110. Sauer, U.,, D. C. Cameron,, and J. E. Bailey. 1998. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol. Bioeng. 59:227238.
111. Sauer, U.,, V. Hatzimanikatis,, J. E. Bailey,, M. Hochuli,, T. Szyperski,, and K. Wuthrich. 1997. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat. Biotechnol. 15:448452.
112. Schubert, H. L.,, K. S. Wilson,, E. Raux,, S. C. Woodcock,, and M. J. Warren. 1998. The X-ray structure of a cobalamin biosynthetic enzyme, cobalt-precorrin-4 methyltransferase. Nat. Struct. Biol. 5:585593.
113. Shaw, N. M.,, O. M. Birch,, A. Tinschert,, V. Venetz,, R. Dietrich,, and L. Savoy. 1998. Biotin synthase from Escherichia coli: isolation of an enzyme-generated intermediate and stoichiometry of S-adenosylmethionine use. Biochem. J. 330:10791085.
114. Skovran, E.,, and D. M. Downs. 2000. Metabolic defects caused by mutations in the isc gene cluster in Salmonella enterica serovar typhimurium: implications for thiamine synthesis. J. Bacteriol. 182:38963903.
115. Slock, J.,, D. P. Stahly,, C.-Y. Han,, E. W. Six,, and I. P. Crawford. 1990. An apparent Bacillus subtilis folic acid biosynthetic operon containg pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 172:72117226.
116. Solovieva, I. M.,, R. A. Kreneva,, D. J. Leak,, and D. A. Perumov. 1999. The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. Microbiology 145:6773.
117. Solovieva, I. M.,, R. A. Kreneva,, B. M. Polanuer,, I. I. Kozlov,, and D. A. Perumov. 1998. Cloning and biochemical identification of the ribR gene in Bacillus subtilis. Genetika. 34:839842.
118. Stamford, N. P.,, J. Crouzet,, B. Cameron,, A. I. Alanine,, A. R. Pitt,, A. A. Yeliseev,, and A. R. Battersby. 1996. Biosynthesis of vitamin B12: the preparative multi-enzyme synthesis of precorrin-3A and 20-methylsirohydrochlorin (a 2,7,20-trimethylisobacteriochlorin). Biochem. J. 313: 335342.
119. Stammers, D. K.,, A. Achari,, D. O. Somers,, P. K. Bryant,, J. Rosemond,, D. L. Scott,, and J. N. Champ-ness. 1999. 2.0 A X-ray structure of the ternary complex of 7,8-dihydro-6-hydroxymethylpterinpyrophosphokinase from Escherichia coli with ATP and a substrate analogue. FEBS Lett. 456:4953.
120. Stoner, G. L.,, and M. A. Eisenberg. 1975. Biosynthesis of 7,8-diaminopelargonic acid from 7-keto-8-aminopelar-gonic acid and S-adenosyl-L-methionine. J. Biol. Chem. 250:40374043.
121. Taylor, S. V.,, N. L. Kelleher,, C. Kinsland,, H.-J. Chiu,, C. A. Costello,, A. D. Blackstrom,, F. W. Mclafferty,, and T. P. Begley. 1998. Thiamin biosynthesis in Escherichia coli. J. Biol. Chem. 273:1655516560.
122. Toburen-Bots, I.,, and H. Hagedorn. 1977. Studies on the thiamine transport system in Bacillus cereus. Arch. Microbiol. 13:2331.
123. Ugulava, N. B.,, B. R. Gibney,, and J. T. Jarrett. 2000. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2FE-2S] to [4Fe-4S] clusters. Biochemistry 39:52065214.
124. Van Arsdell, S.,, R. R. Yocum,, J. B. Perkins,, and J. G. Pero. 1999. Overcoming DAPA amintotransferase bottlenecks in biotin vitamers. European Patent Application EP 0892066.
125. Webb, E.,, K. Claas,, and D. Downs. 1998. thiBPQ encodes an ABC transporter required for transport of thiamine and thiamine pyrophosphate in Salmonella typhimurium. J. Biol. Chem. 273:89468950.
126. Webb, E.,, K. Claas,, and D. M. Downs. 1997. Characterization of thiI, a new gene involved in thiazole biosynthesis in Salmonella typhimurium. J. Bacteriol. 179:43994402.
127. Webb, E.,, F. Febres,, and D. Downs. 1996. Thiamine pyrophosphate (TPP) negatively regulates transcription of some thi genes of Salmonella typhimurium. J. Bacteriol. 178:25332538.
128. White, R. L.,, and I. D. Spenser,. 1996. Biosynthesis of thiamin, p. 680686. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C..
129. Wolf, J. B.,, and R. N. Brey. 1986. Isolation and genetic characterizations of Bacillus megaterium cobalamin biosynthesis-deficient mutants. J. Bacteriol. 166: 5158.
130. Worst, D. J.,, M. M. Gerrits,, C. M. Vandenbroucke-Grauls,, and J. G. Kuster. 1998. Helicobacter pylori ribBA-mediated riboflavin production is involved in iron acquistion. J. Bacteriol. 180:14731479.
131. Yang, M.,, A. D. Saizieu,, A. P. G. M. van Loon,, and P. Golinick. 1995. Translation of trpG in Bacillus subtilis is regulated by the trp RNA-binding attentuation protein (TRAP). J. Bacteriol. 177:42724278.
132. Zhang, Y.,, and T. P. Begley. 1997. Cloning, sequencing, and regulation of thiA, a thiamin biosynthesis gene from Bacillus subtilis. Gene 198:7382.
133. Zhang, Y.,, S. V. Taylor,, H. J. Chiu,, and T. P. Begley. 1997. Characterization of the Bacillus subtilis thiC operon involved in thiamine biosynthesis. J. Bacteriol. 179:30303035.

Tables

Generic image for table
TABLE 1

Riboflavin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and National Center for Biotechnology Information (NCB1) (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 2

Biotin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov)websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 3

Folic acid biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20
Generic image for table
TABLE 4

Thiamin biosynthetic and regulatory genes in

Data from SubtiList (http://genolist.pasteur.fr/SubtiList) and NCBI (http://www.ncbi.nih.gov) websites.

Citation: Perkins J, Pero J. 2002. Vitamin Biosynthesis, p 271-286. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error