1887

Chapter 22 : Ribosomes, Protein Synthesis Factors, and tRNA Synthetases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap22-2.gif

Abstract:

The biosynthesis and activity of the translational apparatus, encompassing rRNA, ribosomal proteins, tRNA, aminoacyl-tRNA synthetases, translation factors, and modifying enzymes, represent a major investment of cellular resources. This chapter summarizes available information about translational gene organization and expression in and other gram-positive organisms, incorporating new information from the genome sequence, and provides comparisons to the extensive information available about these systems in . Additional ribosomal protein genes are scattered around the genome, either alone or in small groups. All are transcribed in the same direction as DNA replication, with the exception of rpsD, rpsT, and rpmB. Translation elongation requires elongation factor (EF)-Tu to bring aminoacylated tRNA into the A site of the elongating ribosome, EF-Ts to recycle EF-Tu from its inactive GDP-bound state to the GTP-bound state required for tRNA binding, and EFG, which is required for translocation of the ribosome along the mRNA. There are 86 tRNA genes in the genome, most of which are organized in large rrn-associated clusters while others are scattered around the genome. The formylation of methionine on initiator tRNA-Met is carried out by the product of the gene, which is located downstream of the , the product of which removes the formyl group from the amino terminus of newly synthesized proteins.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22

Key Concept Ranking

Gene Expression and Regulation
0.5409646
Elongation Factor Tu
0.44613332
Amino Acid Addition
0.4401515
Transcription Elongation Factors
0.40713897
0.5409646
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gene organization in the major cluster of ribosomal protein genes. The major cluster in located at around 12°, includes genes corresponding to the and clusters, which are located at 90 min and 74 min, respectively. Bent arrows indicate putative promoters, and stem loops indicate putative transcriptional terminators, identified by experimental analysis or inspection of the sequence (see text); in the cluster, // indicates a 17-kb region between t and

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ribosomal protein and rRNA genes in . Positions are based on a 360° map and are derived from the SubtiList database. The gene arrangement in the cluster is shown in Fig. 1 .

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap22
1. Aboshikawa, M. A.,, G. C. Rowland,, and G. Coleman. 1995. Nucleotide and deduced amino acid sequence of the gene for a novel protein with a possible regulatory function encoded in the (3 operon of Staphylococcus aureus. FEMS Microbiol. Lett. 126:305310.
2. Aoki, H.,, K. Dekany,, S.-L. Adams,, and M. C. Ganoza. 1997. The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J. Biol. Chem. 272:3225432259.
3. Asai, T.,, C. Condon,, J. Voulgaris,, D. Zaporojets,, B. Shen,, M. Al-Omar,, C. Squires,, and C. L. Squires. 1999. Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J. Bacteriol. 181:38033809.
4. Baughman, G.,, and M. Nomura. 1983. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell 34:979988.
5. Boor, K. J.,, M. L. Duncan,, and C. W. Price. 1995. Genetic and transcriptional organization of the region encoding the 3 subunit of Bacillus subtilis RNA polymerase. J. Biol. Chem. 270:2032920336.
6. Boylan, S. A.,, J.-W. Suh,, S. M. Thomas,, and C. W. Price. 1989. Gene encoding the alpha core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for initiation factor 1 and ribosomal proteins B, S13, S11 and L17. J. Bacteriol. 171:25532562.
7. Bremer, H.,, and P. P. Dennis,. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, p. 15531569. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
8. Condon,, C, H. Putzer,, and M. Grunberg-Manago. 1996. Processing of the leader RNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 69926997.
9. Craigen, W. J.,, and C. T. Caskey. 1986. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322:273275.
10. Curnow, A. W.,, K.-W. Hong,, R. Yuan,, S.-l. Kim,, O. Martins,, W. Winkler,, T. M. Henkin,, and D. Soll. 1997. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. USA 94:1181911826.
11. Curnow, A. W.,, D. L. Tumbula,, J. T. Pelaschier,, B. Min,, and D. Soil. 1998. Glutamyl-tRNA(Gln) amido-transferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. USA 95: 1283812843.
12. DeLaVega, F. M.,, J. M. Galindo,, I. G. Old,, and G. Guarneros. 1996. Microbial genes homologous to the peptidyl-tRNA hydrolase-encoding gene of Escherichia coli. Gene 169:97100.
13. Deneer, H. G., and G. B. Spiegelman. 1987. Bacillus subtilis rRNA promoters are growth rate regulated in Escherichia coli. J. Bacterid. 169:9951002.
14. Ellwood, M.,, and M. Nomura. 1980. Deletion of a ribosomal nucleic acid operon in Escherichia coli. J. Bacteriol. 143:10771080.
15. Gagnon, Y.,, R. Breton,, H. Putzer,, M. Pelchat,, M. Grunberg-Manago,, and J. Lapointe. 1994. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J. Biol. Chem. 269:74737482.
16. Gourse, R. L.,, T. Gaal,, S. E. Aiyar,, M. M. Barker,, S. T. Estrem,, C. A. Hirvonen,, and W. Ross. 1998. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. Cold Spring Harbor Symp. Quant. Biol. 63:131139.
17. Green, C. J.,, and B. S. Void. 1993. Staphylococcus aureus has clustered tRNA genes. J. Bacteriol. 175:50915096.
18. Green, C. J.,, and B. S. Void,. 1993. Transfer RNA, tRNA processing, and tRNA synthetases, p. 683698. In J. A. Hoch,, R. Losick,, and A. L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
19. Green, R.,, and H. F. Noller. 1999. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38:17721779.
20. Grentzmann, G.,, D. Brechemier-Baey,, V. Heurgue,, and R. H. Buckingham. 1995. Function of polypeptide chain factor RF-3 in Escherichia coli: RF-3 action in termination is predominantly at UGA-containing stop signals. J. Biol. Chem. 270:1059510600.
21. Grunberg-Manago, M., 1996. Regulation of the expression of aminoacyl-tRNA synthetases and translation factors, p. 14321457. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
22. Grundy, F. J.,, and T. M. Henkin. 1991. The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J. Bacteriol. 173:45954602.
23. Grundy, F. J.,, and T. M. Henkin. 1992. Characterization of the Bacillus subtilis rpsD regulatory target site. J. Bacteriol. 174:67636770.
24. Grundy, F. J.,, and T. M. Henkin. 1993. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74:475482.
25. Gurtler, V. 1999. The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 238:241252.
26. Henkin, T. M., 1993. Ribosomal structure and genetics, p. 669682. In J. A. Hoch,, R. Losick,, and A. L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
27. Henkin, T. M. 1994. tRNA-directed transcription antitermination. Mol. Microbiol. 13:381387.
28. Henkin, T. M.,, and G. H. Chambliss. 1984. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol. Gen. Genet. 193:364369.
29. Henkin, T. M.,, B. L. Glass,, and F. J. Grundy. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J. Bacteriol. 174:1299.
30. Henkin, T. M.,, S. H. Moon,, L. C. Mattheakis,, and M. Nomura. 1989. Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli. Nucl. Acids Res. 17:74697486.
31. Hilbert, H.,, R. Himmelreich,, H. Plagens,, and R. Herrmann. 1996. Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res. 24:628639.
32. Inagaki, Y.,, Y. Bessho,, and S. Osawa. 1993. Lack of pep-tide-release activity responding to codon UGA in Mycoplasma capricolum. Nucleic Acids Res. 21:13351338.
33. Isono, K.,, and S. Isono. 1976. Lack of ribosomal protein SI in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 73:767770.
34. Janosi, L., 1. Shimizu, and A. Kaji. 1994. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl. Acad. Sci. USA 91:42494253.
35. Jeong, S. M.,, H. Yoshikawa,, and H. Takahashi. 1993. Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol . Microbiol. 10:133142.
36. Kanaya, S.,, Y. Yamada,, Y. Kudo,, and T. Ikemura. 1999. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238:142155.
37. Kannan, T. R.,, and J. B. Baseman. 2000. Expression of UGA-containing Mycoplasma genes in Bacillus subtilis. J. Bacteriol. 182:26642667.
38. Karzai, A. W.,, M. M. Susskind,, and R. T. Sauer. 1999. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 18:37933799.
39. Keener, J.,, and M. Nomura,. 1996. Regulation of ribosome synthesis, p. 14171431. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
40. Keiler, K. C, P. R. Waller, and R. T. Sauer. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990993.
41. Koivula, T.,, and H. Hemila. 1991. Nucleotide sequence of a Lactococcus lactis gene cluster encoding adenylate kinase, initiation factor 1 and ribosomal proteins. J. Gen. Microbiol. 137:25952600.
42. Kossen, K.,, and O. C. Uhlenbeck. 1999. Cloning and biochemical characterization of Bacillus subtilis YxiN, a DEAD protein specifically activated by 23S rRNA: delineation of a novel sub-family of bacterial DEAD proteins. Nucleic Acids Res. 27:38113820.
43. Krasny, L.,, J. R. Mesters,, L. N. Tieleman,, B. Kraal,, V. Fucik,, R. Hilgenfeld,, and J. Jonak. 1998. Structure and expression of elongation factor Tu from Bacillus stearother' mophilus. J. Mol. Biol. 283:371381.
44. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
45. Lapointe, J.,, L. Duplain,, and M. Proulx. 1986. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNA in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln in vitro. J. Bacteriol. 165:8893.
46. Li, X.,, L. Lindahl,, Y. Sha,, and J. M. Zengel. 1997. Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-σ cluster. J. Bacteriol. 179:70467054.
47. Lindahl, L.,, F. Sor,, R. H. Archer,, M. Nomura,, and J. M. Zengel. 1990. Transcriptional organization of the S10, spc and a operons of Escherichia coli. Biochim. Biophys. Acta 1050:337342.
48. Loughney, K.,, E. Lund,, and J. E. Dahlberg. 1983. Deletion of a rRNA gene set in Bacillus subtilis. J. Bacteriol. 154:529532.
49. Lovett, P. S.,, N. P. Ambulos,, Jr., W. Mulbry,, N. Noguchi,, and E. J. Rogers. 1991. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol. 173:18101812.
50. Matsugi, J.,, and K. Murao. 1999. Search for a selenocys-teine tRNA in Bacillus subtilis. Nucleic Acids Symp. 42: 209210.
51. Nishino, T.,, J. Gallant,, P. Shalit,, L. Palmer,, and T. Wehr. 1979. Regulatory nucleotides involved in the rel function of Bacillus subtilis. J. Bacteriol. 140:671679.
52. Niu, L.,, and J. Ofengand. 1999. Cloning and characterization of the 23S RNA pseudouridine 2633 synthase from Bacillus subtilis. Biochemistry 38:629635.
53. Nour, M. 1998. Studies on the large subunit rRNA genes and their flanking regions of leuconostocs. Can. J. Microbiol. 44:807818.
54. Pelchat, M.,, and J. Lapointe. 1999. In vivo and in vitro processing of the Bacillus subtilis transcripts coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase. RNA 5:281289.
55. Putzer, H.,, N. Gendron,, and M. Grunberg-Manago. 1992. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J. 11:31173127.
56. Ramos, A.,, J. R. Macias,, and J. A. Gil. 1997. Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacteriumglutamicum ATCC 13869). Gene 198:217222.
57. Raynal, L. C, H. M. Krisch, and A. J. Carpousis. 1998. The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J. Bacteriol. 180:62766282.
58. Roberts, M. W.,, and J. C. Rabinowitz. 1989. The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. J. Biol. Chem. 264:22282235.
59. Rocha, E. P. C, A. Danchin, and A. Viari. 1999. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res. 27:35673576.
60. Rollins, S. M.,, F. J. Grundy,, and T. M. Henkin. 1997. Analysis of cis-acting sequence and structural elements required for antitermination of the Bacillus subtilis tyrS gene. Mol. Microbiol. 25:411421.
61. Rudner, R. Personal communication.1992
62. Sissler, M.,, C. Delorme,, J. Bond,, S. D. Ehrlich,, P. Renault,, and C. Francklyn. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA 96:89858990.
63. Sorokin, A.,, P. Serror,, P. Pujic,, V. Azevedo,, and S. D. Ehrlich. 1995. The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 141:311319.
64. Strauch, E.,, E. Takano,, H. A. Baylis,, and M. J. Bibb. 1991. The stringent response in Streptonryces coelicolor A3(2). Mol. Microbiol. 5:289298.
65. Suh, J.-W.,, S. A. Boylan,, S.-H. Oh,, and C. W. Price. 1990. Genetic and transcriptional organization of the Bacillus subtilis spc-σ region. Gene 169:1723.
66. Tieleman, L. N.,, G. P. van Wezel,, M. Bibb,, and B. Kraal. 1997. Growth phase-dependent transcription of the Strep' tomyces mamocissimus tufl gene occurs from two promoters. J. Bacteriol. 179:36193624.
67. Wendrich, T. M.,, and M. A. Marahiel. 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26:6579.
68. Wienen, B.,, R. Ehrlich,, M. Stoffler-Meilicke,, G. Stoffler, 1. Smith, D. Weiss, R. Vince, and S. Pestka. 1979. Ribosomal protein alterations in thiostrepton- and micrococcin-resistant mutants of Bacillus subtilis. J. Biol. Chem. 254:80318041.

Tables

Generic image for table
TABLE 1

Ribosomal proteins

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 2

Translation factors

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 3

Ribosomal RNA operons

tRNAs located between 16S and 23S regions.

tRNAs located 3' of 5S region.

tRNAA'e and tRNAoly located 5' of 16S region; tRNAMcl and tRNAAsp located 3' of 5S region.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 4

tRNA operons

tmSL designation was used in SubtiList for new tRNA genes at multiple loci.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 5

Processing and modification enzymes

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 6

Aminoacyl-tRNA synthetases (AARS)

T box genes in ; all classes of AARS genes except LysRS and GltX can be found as T-box genes in various gram-positive species.

GltX aminoacylates both tRNAGlu and tRNAGln with glutamate; Glu-tRNAGln is converted to Gln-tRNAGln by the Gat-CAB amidotransferase.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error