1887

Chapter 22 : Ribosomes, Protein Synthesis Factors, and tRNA Synthetases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap22-2.gif

Abstract:

The biosynthesis and activity of the translational apparatus, encompassing rRNA, ribosomal proteins, tRNA, aminoacyl-tRNA synthetases, translation factors, and modifying enzymes, represent a major investment of cellular resources. This chapter summarizes available information about translational gene organization and expression in and other gram-positive organisms, incorporating new information from the genome sequence, and provides comparisons to the extensive information available about these systems in . Additional ribosomal protein genes are scattered around the genome, either alone or in small groups. All are transcribed in the same direction as DNA replication, with the exception of rpsD, rpsT, and rpmB. Translation elongation requires elongation factor (EF)-Tu to bring aminoacylated tRNA into the A site of the elongating ribosome, EF-Ts to recycle EF-Tu from its inactive GDP-bound state to the GTP-bound state required for tRNA binding, and EFG, which is required for translocation of the ribosome along the mRNA. There are 86 tRNA genes in the genome, most of which are organized in large rrn-associated clusters while others are scattered around the genome. The formylation of methionine on initiator tRNA-Met is carried out by the product of the gene, which is located downstream of the , the product of which removes the formyl group from the amino terminus of newly synthesized proteins.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22

Key Concept Ranking

Gene Expression and Regulation
0.5409646
Elongation Factor Tu
0.44613332
Amino Acid Addition
0.4401515
Transcription Elongation Factors
0.40713897
0.5409646
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Gene organization in the major cluster of ribosomal protein genes. The major cluster in located at around 12°, includes genes corresponding to the and clusters, which are located at 90 min and 74 min, respectively. Bent arrows indicate putative promoters, and stem loops indicate putative transcriptional terminators, identified by experimental analysis or inspection of the sequence (see text); in the cluster, // indicates a 17-kb region between t and

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ribosomal protein and rRNA genes in . Positions are based on a 360° map and are derived from the SubtiList database. The gene arrangement in the cluster is shown in Fig. 1 .

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap22
1. Aboshikawa, M. A.,, G. C. Rowland,, and G. Coleman. 1995. Nucleotide and deduced amino acid sequence of the gene for a novel protein with a possible regulatory function encoded in the (3 operon of Staphylococcus aureus. FEMS Microbiol. Lett. 126: 305 310.
2. Aoki, H.,, K. Dekany,, S.-L. Adams,, and M. C. Ganoza. 1997. The gene encoding the elongation factor P protein is essential for viability and is required for protein synthesis. J. Biol. Chem. 272: 32254 32259.
3. Asai, T.,, C. Condon,, J. Voulgaris,, D. Zaporojets,, B. Shen,, M. Al-Omar,, C. Squires,, and C. L. Squires. 1999. Construction and initial characterization of Escherichia coli strains with few or no intact chromosomal rRNA operons. J. Bacteriol. 181: 3803 3809.
4. Baughman, G.,, and M. Nomura. 1983. Localization of the target site for translational regulation of the L11 operon and direct evidence for translational coupling in Escherichia coli. Cell 34: 979 988.
5. Boor, K. J.,, M. L. Duncan,, and C. W. Price. 1995. Genetic and transcriptional organization of the region encoding the 3 subunit of Bacillus subtilis RNA polymerase. J. Biol. Chem. 270: 20329 20336.
6. Boylan, S. A.,, J.-W. Suh,, S. M. Thomas,, and C. W. Price. 1989. Gene encoding the alpha core subunit of Bacillus subtilis RNA polymerase is cotranscribed with the genes for initiation factor 1 and ribosomal proteins B, S13, S11 and L17. J. Bacteriol. 171: 2553 2562.
7. Bremer, H.,, and P. P. Dennis,. 1996. Modulation of chemical composition and other parameters of the cell by growth rate, p. 1553 1569. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
8. Condon,, C, H. Putzer,, and M. Grunberg-Manago. 1996. Processing of the leader RNA plays a major role in the induction of thrS expression following threonine starvation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 6992 6997.
9. Craigen, W. J.,, and C. T. Caskey. 1986. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature 322: 273 275.
10. Curnow, A. W.,, K.-W. Hong,, R. Yuan,, S.-l. Kim,, O. Martins,, W. Winkler,, T. M. Henkin,, and D. Soll. 1997. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc. Natl. Acad. Sci. USA 94: 11819 11826.
11. Curnow, A. W.,, D. L. Tumbula,, J. T. Pelaschier,, B. Min,, and D. Soil. 1998. Glutamyl-tRNA(Gln) amido-transferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl. Acad. Sci. USA 95: 12838 12843.
12. DeLaVega, F. M.,, J. M. Galindo,, I. G. Old,, and G. Guarneros. 1996. Microbial genes homologous to the peptidyl-tRNA hydrolase-encoding gene of Escherichia coli. Gene 169: 97 100.
13. Deneer, H. G., and G. B. Spiegelman. 1987. Bacillus subtilis rRNA promoters are growth rate regulated in Escherichia coli. J. Bacterid. 169: 995 1002.
14. Ellwood, M.,, and M. Nomura. 1980. Deletion of a ribosomal nucleic acid operon in Escherichia coli. J. Bacteriol. 143: 1077 1080.
15. Gagnon, Y.,, R. Breton,, H. Putzer,, M. Pelchat,, M. Grunberg-Manago,, and J. Lapointe. 1994. Clustering and co-transcription of the Bacillus subtilis genes encoding the aminoacyl-tRNA synthetases specific for glutamate and for cysteine and the first enzyme for cysteine biosynthesis. J. Biol. Chem. 269: 7473 7482.
16. Gourse, R. L.,, T. Gaal,, S. E. Aiyar,, M. M. Barker,, S. T. Estrem,, C. A. Hirvonen,, and W. Ross. 1998. Strength and regulation without transcription factors: lessons from bacterial rRNA promoters. Cold Spring Harbor Symp. Quant. Biol. 63: 131 139.
17. Green, C. J.,, and B. S. Void. 1993. Staphylococcus aureus has clustered tRNA genes. J. Bacteriol. 175: 5091 5096.
18. Green, C. J.,, and B. S. Void,. 1993. Transfer RNA, tRNA processing, and tRNA synthetases, p. 683 698. In J. A. Hoch,, R. Losick,, and A. L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
19. Green, R.,, and H. F. Noller. 1999. Reconstitution of functional 50S ribosomes from in vitro transcripts of Bacillus stearothermophilus 23S rRNA. Biochemistry 38: 1772 1779.
20. Grentzmann, G.,, D. Brechemier-Baey,, V. Heurgue,, and R. H. Buckingham. 1995. Function of polypeptide chain factor RF-3 in Escherichia coli: RF-3 action in termination is predominantly at UGA-containing stop signals. J. Biol. Chem. 270: 10595 10600.
21. Grunberg-Manago, M., 1996. Regulation of the expression of aminoacyl-tRNA synthetases and translation factors, p. 1432 1457. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
22. Grundy, F. J.,, and T. M. Henkin. 1991. The rpsD gene, encoding ribosomal protein S4, is autogenously regulated in Bacillus subtilis. J. Bacteriol. 173: 4595 4602.
23. Grundy, F. J.,, and T. M. Henkin. 1992. Characterization of the Bacillus subtilis rpsD regulatory target site. J. Bacteriol. 174: 6763 6770.
24. Grundy, F. J.,, and T. M. Henkin. 1993. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell 74: 475 482.
25. Gurtler, V. 1999. The role of recombination and mutation in 16S-23S rDNA spacer rearrangements. Gene 238: 241 252.
26. Henkin, T. M., 1993. Ribosomal structure and genetics, p. 669 682. In J. A. Hoch,, R. Losick,, and A. L. Sonenshein (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
27. Henkin, T. M. 1994. tRNA-directed transcription antitermination. Mol. Microbiol. 13: 381 387.
28. Henkin, T. M.,, and G. H. Chambliss. 1984. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol. Gen. Genet. 193: 364 369.
29. Henkin, T. M.,, B. L. Glass,, and F. J. Grundy. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J. Bacteriol. 174: 1299 .
30. Henkin, T. M.,, S. H. Moon,, L. C. Mattheakis,, and M. Nomura. 1989. Cloning and analysis of the spc ribosomal protein operon of Bacillus subtilis: comparison with the spc operon of Escherichia coli. Nucl. Acids Res. 17: 7469 7486.
31. Hilbert, H.,, R. Himmelreich,, H. Plagens,, and R. Herrmann. 1996. Sequence analysis of 56 kb from the genome of the bacterium Mycoplasma pneumoniae comprising the dnaA region, the atp operon and a cluster of ribosomal protein genes. Nucleic Acids Res. 24: 628 639.
32. Inagaki, Y.,, Y. Bessho,, and S. Osawa. 1993. Lack of pep-tide-release activity responding to codon UGA in Mycoplasma capricolum. Nucleic Acids Res. 21: 1335 1338.
33. Isono, K.,, and S. Isono. 1976. Lack of ribosomal protein SI in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 73: 767 770.
34. Janosi, L., 1. Shimizu, and A. Kaji. 1994. Ribosome recycling factor (ribosome releasing factor) is essential for bacterial growth. Proc. Natl. Acad. Sci. USA 91: 4249 4253.
35. Jeong, S. M.,, H. Yoshikawa,, and H. Takahashi. 1993. Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol . Microbiol. 10: 133 142.
36. Kanaya, S.,, Y. Yamada,, Y. Kudo,, and T. Ikemura. 1999. Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene 238: 142 155.
37. Kannan, T. R.,, and J. B. Baseman. 2000. Expression of UGA-containing Mycoplasma genes in Bacillus subtilis. J. Bacteriol. 182: 2664 2667.
38. Karzai, A. W.,, M. M. Susskind,, and R. T. Sauer. 1999. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 18: 3793 3799.
39. Keener, J.,, and M. Nomura,. 1996. Regulation of ribosome synthesis, p. 1417 1431. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and E. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 1. American Society for Microbiology, Washington, D.C.
40. Keiler, K. C, P. R. Waller, and R. T. Sauer. 1996. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271: 990 993.
41. Koivula, T.,, and H. Hemila. 1991. Nucleotide sequence of a Lactococcus lactis gene cluster encoding adenylate kinase, initiation factor 1 and ribosomal proteins. J. Gen. Microbiol. 137: 2595 2600.
42. Kossen, K.,, and O. C. Uhlenbeck. 1999. Cloning and biochemical characterization of Bacillus subtilis YxiN, a DEAD protein specifically activated by 23S rRNA: delineation of a novel sub-family of bacterial DEAD proteins. Nucleic Acids Res. 27: 3811 3820.
43. Krasny, L.,, J. R. Mesters,, L. N. Tieleman,, B. Kraal,, V. Fucik,, R. Hilgenfeld,, and J. Jonak. 1998. Structure and expression of elongation factor Tu from Bacillus stearother ' mophilus. J. Mol. Biol. 283: 371 381.
44. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
45. Lapointe, J.,, L. Duplain,, and M. Proulx. 1986. A single glutamyl-tRNA synthetase aminoacylates tRNAGlu and tRNA in Bacillus subtilis and efficiently misacylates Escherichia coli tRNAGln in vitro. J. Bacteriol. 165: 88 93.
46. Li, X.,, L. Lindahl,, Y. Sha,, and J. M. Zengel. 1997. Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10- spc-σ cluster. J. Bacteriol. 179: 7046 7054.
47. Lindahl, L.,, F. Sor,, R. H. Archer,, M. Nomura,, and J. M. Zengel. 1990. Transcriptional organization of the S10, spc and a operons of Escherichia coli. Biochim. Biophys. Acta 1050: 337 342.
48. Loughney, K.,, E. Lund,, and J. E. Dahlberg. 1983. Deletion of a rRNA gene set in Bacillus subtilis. J. Bacteriol. 154: 529 532.
49. Lovett, P. S.,, N. P. Ambulos,, Jr., W. Mulbry,, N. Noguchi,, and E. J. Rogers. 1991. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol. 173: 1810 1812.
50. Matsugi, J.,, and K. Murao. 1999. Search for a selenocys-teine tRNA in Bacillus subtilis. Nucleic Acids Symp. 42: 209 210.
51. Nishino, T.,, J. Gallant,, P. Shalit,, L. Palmer,, and T. Wehr. 1979. Regulatory nucleotides involved in the rel function of Bacillus subtilis. J. Bacteriol. 140: 671 679.
52. Niu, L.,, and J. Ofengand. 1999. Cloning and characterization of the 23S RNA pseudouridine 2633 synthase from Bacillus subtilis. Biochemistry 38: 629 635.
53. Nour, M. 1998. Studies on the large subunit rRNA genes and their flanking regions of leuconostocs. Can. J. Microbiol. 44: 807 818.
54. Pelchat, M.,, and J. Lapointe. 1999. In vivo and in vitro processing of the Bacillus subtilis transcripts coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase. RNA 5: 281 289.
55. Putzer, H.,, N. Gendron,, and M. Grunberg-Manago. 1992. Co-ordinate expression of the two threonyl-tRNA synthetase genes in Bacillus subtilis: control by transcriptional antitermination involving a conserved regulatory sequence. EMBO J. 11: 3117 3127.
56. Ramos, A.,, J. R. Macias,, and J. A. Gil. 1997. Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacteriumglutamicum ATCC 13869). Gene 198: 217 222.
57. Raynal, L. C, H. M. Krisch, and A. J. Carpousis. 1998. The Bacillus subtilis nucleotidyltransferase is a tRNA CCA-adding enzyme. J. Bacteriol. 180: 6276 6282.
58. Roberts, M. W.,, and J. C. Rabinowitz. 1989. The effect of Escherichia coli ribosomal protein S1 on the translational specificity of bacterial ribosomes. J. Biol. Chem. 264: 2228 2235.
59. Rocha, E. P. C, A. Danchin, and A. Viari. 1999. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res. 27: 3567 3576.
60. Rollins, S. M.,, F. J. Grundy,, and T. M. Henkin. 1997. Analysis of cis-acting sequence and structural elements required for antitermination of the Bacillus subtilis tyrS gene. Mol. Microbiol. 25: 411 421.
61. Rudner, R. Personal communication. 1992
62. Sissler, M.,, C. Delorme,, J. Bond,, S. D. Ehrlich,, P. Renault,, and C. Francklyn. 1999. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA 96: 8985 8990.
63. Sorokin, A.,, P. Serror,, P. Pujic,, V. Azevedo,, and S. D. Ehrlich. 1995. The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology 141: 311 319.
64. Strauch, E.,, E. Takano,, H. A. Baylis,, and M. J. Bibb. 1991. The stringent response in Streptonryces coelicolor A3(2). Mol. Microbiol. 5: 289 298.
65. Suh, J.-W.,, S. A. Boylan,, S.-H. Oh,, and C. W. Price. 1990. Genetic and transcriptional organization of the Bacillus subtilis spc-σ region. Gene 169: 17 23.
66. Tieleman, L. N.,, G. P. van Wezel,, M. Bibb,, and B. Kraal. 1997. Growth phase-dependent transcription of the Strep' tomyces mamocissimus tufl gene occurs from two promoters. J. Bacteriol. 179: 3619 3624.
67. Wendrich, T. M.,, and M. A. Marahiel. 1997. Cloning and characterization of a relA/spoT homologue from Bacillus subtilis. Mol. Microbiol. 26: 65 79.
68. Wienen, B.,, R. Ehrlich,, M. Stoffler-Meilicke,, G. Stoffler, 1. Smith, D. Weiss, R. Vince, and S. Pestka. 1979. Ribosomal protein alterations in thiostrepton- and micrococcin-resistant mutants of Bacillus subtilis. J. Biol. Chem. 254: 8031 8041.

Tables

Generic image for table
TABLE 1

Ribosomal proteins

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 2

Translation factors

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 3

Ribosomal RNA operons

tRNAs located between 16S and 23S regions.

tRNAs located 3' of 5S region.

tRNAA'e and tRNAoly located 5' of 16S region; tRNAMcl and tRNAAsp located 3' of 5S region.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 4

tRNA operons

tmSL designation was used in SubtiList for new tRNA genes at multiple loci.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 5

Processing and modification enzymes

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22
Generic image for table
TABLE 6

Aminoacyl-tRNA synthetases (AARS)

T box genes in ; all classes of AARS genes except LysRS and GltX can be found as T-box genes in various gram-positive species.

GltX aminoacylates both tRNAGlu and tRNAGln with glutamate; Glu-tRNAGln is converted to Gln-tRNAGln by the Gat-CAB amidotransferase.

Citation: Henkin T. 2002. Ribosomes, Protein Synthesis Factors, and tRNA Synthetases, p 313-322. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error