1887

Chapter 24 : Protein Transport Pathways in : a Genome-Based Road Map

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Protein Transport Pathways in : a Genome-Based Road Map, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap24-2.gif

Abstract:

This chapter on protein transport pathways in : a genome-based road map, discusses the properties of distinct classes of amino-terminal signal peptides, which label proteins for passage through the various pathways, as well as the major components of each pathway. The cell wall of contains about 9% of the total cellular protein content, analogous to the periplasm of gram-negative eubacteria. The proteins retained in the wall include DNases, RNases, proteases, penicillin-binding proteins, and cell wall hydrolases. Presumably, to prevent their loss in the environment, the mature parts of 12 proteins with cleavable signal peptides, such as LytB-F, SleB, and WapA, contain potential cell wall retention signals, which consist of a variable number of repeated domains with affinity for certain wall components, such as teichoic acids. Eubacterial Sec-dependent protein export machineries are composed of six types of components: (i) cytoplasmic chaperones or targeting factors, (ii) a translocation motor (SecA), (iii) components of the translocation channel (SecYEG, SecDF-YajC, YidC), (iv) SPases, (v) SPPases, and (vi) folding catalysts. The best-characterized secretion-specific targeting factor of is the GTPase Ffh (fifty-four homologue), a homologue of the 54-kDa subunit of the eukaryotic signal recognition particle (SRP). The expression of components of various protein transport pathways in is regulated in a complex manner, depending on the availability of nutrients, growth phase, and cell density.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24

Key Concept Ranking

Integral Membrane Proteins
0.41253796
0.41253796
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Road map of protein transport pathways in . Ribosomally synthesized proteins can be transported to various extracytoplasmic destinations depending on the presence of an amino-terminal signal peptide (SP) and specific retention signals, such as a lipobox or cell wall binding repeats (CWB). Proteins lacking a signal peptide remain in the cytoplasm. Proteins that have one or more transmembrane segments and lack a signal peptidase recognition site (—AxA) are inserted into the membrane via the Sec pathway or, possibly, the Tat pathway. Proteins that have to be retained at the extracytoplasmic side of the membrane can either be pseudopilins exported by the Com system or lipid-modified proteins ( +lipobox) exported via the Sec pathway. Possibly, some lipid-modified proteins are exported via the Tat pathway. Proteins that are retained in the cell wall (+CWB) can be exported via the Sec or Tat pathways. Proteins can be secreted into the medium via the Sec or Tat pathways or by ABC transporters. Similarly, certain membrane, lipo-, or wall proteins can be released into the growth medium upon cleavage by proteases. Finally, different pathways may be involved in protein transport to the intermembrane space (IMS) of endospores. Notably, signal peptides with a twin-arginine motif (+RR) have the potential to direct proteins into the Tat pathway, but no experimental evidence is presently available showing that integral membrane proteins or lipoproteins are exported via this route.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model for signal peptide function. During the initiation of protein translocation, positively charged residues in the N domain of a Sec-type signal peptide interact with the translocation machinery (not shown) and negatively charged phospholipids ( ), permitting the hydrophobic H domain to insert loopwise into the membrane. Upon unlooping of the H domain, the first residues of the mature protein are pulled through the membrane ( ), thereby presenting the signal peptidase (SPase) recognition sequence (AXA) to SPase I. Upon processing by SPase I, the cleaved signal peptide is degraded by signal peptide peptidases (SPPases), and the translocated mature protein folds into its native conformation on the extracytoplasmic (out) side of the membrane.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Properties of predicted cleavable amino-terminal signal peptides of . Signal peptides consist of three distinct domains ( ): a positively charged N domain (N; “+”), a hydrophobic H-domain that can adopt an alpha-helical conformation in the membrane (H; gray box), and a C domain (C) that includes the SPase recognition site. Helix-breaking Gly or Pro residues in the middle of the H domain allow the formation of a hairpinlike structure that can insert into the membrane ( ). Helix-breaking residues at the end of the H domain facilitate cleavage by a specific SPase I ( ). To identify exported proteins of , the first 60 residues of all annotated proteins in the SubtiList database (http://bioweb.pasteur.fr/GenoList/SubtiList) were analyzed for the presence of cleavable signal peptides. A distinction between potential secretory proteins and membrane proteins was made by analyzing all protein sequences containing a potential signal peptide for the presence of potential transmembrane segments. All proteins containing additional hydrophobic domains were excluded from the primary set of signal peptides. The remaining signal peptides were searched for the presence of a twin-arginine (RR) motif, a pseudopilin-specific SPase cleavage site, or a lipobox ( ). As the signal peptides of lipoproteins are, in general, shorter than those of secretory proteins, not all lipoproteins were initially recognized. In addition, some lipoproteins, such as CtaC ( ), contain transmembrane segments that were excluded from predictions of the signal peptides of secretory proteins mentioned above. Therefore, additional putative lipoprotein signal peptides were identified through similarity searches in the SubtiList database with signal peptides of known lipoproteins ( ). Finally, the predicted cleavable Sec-type and RR signal peptides were subdivided into three classes: secretory (Sec-type) signal peptides, lipoprotein signal peptides, and twin-arginine (RR) signal peptides. Total numbers of the representatives of each class of signal peptides are indicated. Twin-arginine motifs in the N region, helix-breaking residues in the H domain, consensus SPase recognition sites, and the most frequently occurring residues at the “+1” position of mature proteins are indicated. For each type of signal peptide, the average length of complete signal peptides, N domains, and H domains is indicated, together with the average hydrophobicity of N and H domains (between brackets).

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Main components of the Sec-dependent protein export machinery. The SRP-FtsY complex and, possibly, CsaA or SecA (A) keep precursors in a translocation-competent conformation and facilitate their targeting to the preprotein ttanslocase in the membrane. Known components of the translocase are SecA, SecY (Y), SecE (E), SecG (G), and SecDF (DF). SecA acts as a force generator (motor) for protein translocation through cycles of preprotein binding, membrane insertion, preprotein release, and deinsertion from the membrane. Core components of the protein-conducting channel in the membrane are SecY, SecE, and SecG. The cycling of SecA is regulated by ATP binding and hydrolysis. During or shortly after translocation, precursors are processed by one of the type I SPases, SipS, SipT, SipU, SipV, or SipW. Cleaved signal peptides are probably degraded by SppA and, perhaps, TepA. Folding of some mature proteins into their pro-tease-resistant conformation depends on the activity of the lipoprotein PrsA, which is lipid modified and processed by Lgt and SPase II (Lsp), respectively. Other proteins require the thiol-disulfide ox-idoreductases BdbB and BdbC for the formation of disulfide bonds. Upon passage through the wall, mature proteins are secreted into the growth medium. See text for further details. R, ribosome; SP, signal peptide.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap24
1. Altamura, N.,, N. Capitanio,, N. Bonnefoy,, S. Papa,, and G. Dujardin. 1996. The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 382: 111 115.
2. Antelmann, H.,, C. Scharf,, and M. Hecker. 2000. Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis. J. Bacteriol. 182: 4478 4490.
3. Archibald, A. R.,, I. C. Hancock,, and C. R. Harwood,. 1993. Cell wall structure, synthesis and turnover, p. 381 410. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
4. Baba, T.,, and O. Schneewind. 1998. Targeting of muralytic enzymes to the cell division site of Gram-positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus. EMBO J. 17: 4639 4646.
5. Babe, L. M.,, and B. Schmidt. 1998. Purification and biochemical analysis of WprA, a 52-kDa serine protease secreted by Bacillus subtilis as an active complex with its 23-kDa propeptide. Biochim. Biophys. Acta 1386: 211 219.
6. Banerjee, S.,, and J. N. Hansen. 1988. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem. 263: 9508 9514.
7. Bauer, M.,, M. Behrens,, K. Esser,, G. Michaelis,, and E. Pratje. 1994. PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol. Gen. Genet. 245: 272 278.
8. Bengtsson, J.,, H. Tjalsma,, C. Rivolta,, and L. Hederstedt. 1999. Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein. J. Bacteriol. 181: 685 688.
9. Berks, B. C, F. Sargent, and T. Palmer. 2000. The Tat protein export pathway. Mol. Microbiol. 5: 260 274.
10. Blackman, S. A.,, T. J. Smith,, and S. J. Foster. 1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144: 73 82.
11. Bolhuis, A.,, A. Sorokin,, V. Azevedo,, S. D. Ehrlich,, P. G. Braun,, A. de Jong,, G. Venema,, S. Bron,, and J. M. van Dijl. 1996. Bacillus subtilis can modulate its capacity and specificity for protein secretion by temporally controlled expression of the sipS gene for signal peptidase J. Mol. Microbiol. 22: 605 618.
12. Bolhuis, A.,, C. P. Broekhuizen,, A. Sorokin,, M. L. van Roosmalen,, G. Venema,, S. Bron,, W. J. Quax,, and J. M. van Dijl. 1998. SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J. Biol. Chem. 273: 21217 21224.
13. Bolhuis, A.,, H. Tjalsma,, K. Stephenson,, C. R. Harwood,, G. Venema,, S. Bron,, and J. M. van Dijl. 1999. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J. Biol. Chem. 274: 15865 15868.
14. Bolhuis, A.,, H. Tjalsma,, H. E. Smith,, A. de Jong,, R. Meima,, G. Venema,, S. Bron,, and J. M. van Dijl. 1999. Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis. Appl. Environ. Microbiol. 65: 2934 2941.
15. Bolhuis, A.,, A. Matzen,, H. L. Hyyrylainen,, V. P. Kontinen,, R. Meima,, J. Chapuis,, G. Venema,, S. Bron,, R. Freudl,, and J. M. van Dijl. 1999. Signal peptide peptidase-and ClpP-like proteins of Bacillus subtilis are required for efficient translocation and processing of secretory proteins. J. Biol. Chem. 274: 24585 24592.
16. Bolhuis, A.,, G. Venema,, W. J. Quax,, S. Bron,, and J. M. van Dijl. 1999. Functional analysis of paralogous thiol-disulfide oxidoreductases in Bacillus subtilis. J. Biol. Chem. 274: 24531 24538.
17. Bolhuis, A.,, E. G. Bogsch,, and C. Robinson. 2000. Subunit interactions in the twin-arginine translocase complex of Escherichia coli. FEBS Lett. 472: 88 92.
18. Braun, P.,, G. Gerritse,, J. M. van Dijl,, and W. J. Quax. 1999. Improving protein secretion by engineering components of the bacterial translocation machinery. Curr. Opin. Biotechnol. 10: 376 381.
19. Bron, S.,, R. Meima,, J. M. van Dijl,, A. Wipat,, and C. R. Harwood,. 1999. Molecular biology and genetics of Bacillus spp., p. 392 416. In A. L. Demain, and J. E. Davies (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, D.C.
20. Buist, G.,, J. Kok,, K. J. Leenhouts,, M. Dabrowska,, G. Venema,, and A. J. Haandrikman. 1995. Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation . J. Bacteriol. 177: 1554 1563.
21. Bunai, K.,, H. Takamatsu,, T. Horinaka,, A. Oguro,, K. Nakamura,, and K. Yamane. 1996. Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem. Biophys. Res. Commun. 227: 762 767.
22. Bunai, K.,, H. Yamada,, K. Hayashi,, K. Nakamura,, and K. Yamane. 1999. Enhancing effect of Bacillus subtilis Ffh, a homologue of the SRP54 subunit of the mammalian signal recognition particle, on the binding of SecA to precursors of secretory proteins in vitro. J. Biochem. (Tokyo) 125: 151 159.
23. Chambert, R.,, F. Benyahia,, and M. F. Petit-Glatron. 1990. Secretion of Bacillus subtilis levansucrase. Fe(III) could act as a cofactor in an efficient coupling of the folding and translocation processes. Biochem. J. 265: 375 382.
24.Chambert R, and M. F. Petit-Glatron. 1999. Anionic polymers of Bacillus subtilis cell wall modulate the folding rate of secreted proteins. FEMS Microbiol. Lett. 179: 4347.
25. Chen, M.,, and V. Nagarajan. 1994. Effect of alteration of charged residues at the N termini of signal peptides on protein export in Bacillus subtilis. J. Bacteriol. 176: 5796 5801.
26. Chung, Y. S.,, F. Breidt,, and D. Dubnau. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29: 905 913.
27. Crist6bal, S.,, J. W. de Gier,, H. Nielsen,, and G. von Heijne. 1999. Competition between Sec- and Tat-dependent protein translocation in Escherichia coli. EMBO J. 18: 2982 2990.
28. Dalbey, R. E, and C. Robinson. 1999. Protein translocation into and across the bacterial plasma membrane and the plant thylaloid membrane. Trends Biochem. Sci. 24: 17 22.
29. Dalbey, R. E.,, M. O. Lively,, S. Bron,, and J. M. van Dijl. 1997. The chemistry and enzymology of the type I signal peptidases. Protein Sci. 6: 1129 1138.
30. de Gier, J. W.,, P. A. Scotti,, A. Saaf,, Q. A. Valent,, A. Kuhn,, J. Luirink,, and G. von Heijne. 1998. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc. Natl. Acad. Sci. USA 95: 14646 146451.
31. de Leeuw, E.,, K. te Kaat,, C. Moser,, G. Menestrina,, R. Demel,, B. de Kruijff,, B. Oudega,, J. Luirink,, and I. Sinning. 2000. Anionic phospholipids are involved in membrane association of Fts Y and stimulate its GTPase activity. EMBO J. 19: 531 541.
32. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 217 244.
33. Duong, F.,, J. Eichler,, A. Price,, M. R. Leonard,, and W. Wickner. 1997. Biogenesis of the Gram-negative bacterial envelope. Cell 91: 567 573.
34. Errington, J. 1993. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57: 1 33.
35. Fekkes, P.,, and A. J. M. Driessen. 1999. Protein targeting to the bacterial cytoplasmic membrane. Microbiol. Mol. Biol. Rev. 63: 161 173.
36. Ferrari, E.,, A. S. Jarnagin,, and B. F. Schmidt,. 1993. Commercial production of extracellular enzymes, p. 917 937. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
37. Foster, S. J. 1993. Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein. Mol. Microbiol. 8: 299 310.
38. Ghuysen, J. M.,, J. Lamotte-Brasseur,, B. Joris,, and G. D. Shockman. 1994. Binding site-shaped repeated sequences of bacterial wall peptidoglycan hydrolases. FEBS Lett. 342: 23 28.
39. Hamman, B. D.,, J. C. Chen,, E. E. Johnson,, and A. E. Johnson. 1997. The aqueous pore through the translocon has a diameter of 40-60 A during cotranslational protein translocation at the ER membrane. Cell 89: 535 544.
40. Hanein, D.,, K. E. Matlack,, B. Jungnickel,, K. Plath,, K. U. Kalies,, K. R. Miller,, T. A. Rapoport,, and C. W. Akey. 1996. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87: 721 732.
41. Hell, K.,, J. M. Herrmann,, E. Pratje,, W. Neupert,, and R. A. Stuart. 1998. Oxalp, an essential component of the N-tail protein export machinery in mitochondria. Proc. Natl. Acad. Sci. USA 95: 2250 2255.
42. Herbold, D. R.,, and L. Glaser. 1975. Interaction of N-acetylmuramic acid L-alanine amidase with cell wall polymers. J. Biol. Chem. 250: 7231 7238.
43. Herbort, M.,, M. Klein,, E. H. Manting,, A. J. M. Driessen,, and R. J. Freudl. 1999. Temporal expression of the Bacillus subtilis secA gene, encoding a central component of the preprotein translocase. J. Bacteriol. 181: 493 500.
44. Hirose, I.,, K. Sano,, I. Shiosa,, M. Kumano,, K. Nakamura,, and K. Yamane. 1999. Proteome analysis of Bacillus subtilis extracellular proteins: a two-dimensional protein electrophoretic study. Microbiology 146: 65 75.
45. Honda, K.,, K. Nakamura,, M. Nishiguchi,, and K. Yamane. 1993. Cloning and characterization of a Bacillus subtilis gene encoding a homolog of the 54-kilodalton subunit of mammalian signal recognition particle and Escherichia coli Ffh. J. Bacteriol. 175: 4885 4894.
46. Huang, X.,, A. Gaballa,, M. Cao,, and J. C. Helmann. 1999. Identification of target promoters for the Bacillus subtilis extracytoplasmic function sigma factor, sigma W. Mol. Microbiol. 31: 361 371.
47. Hyyrylainen, H. L.,, M. Vitikainen,, J. Thwaite,, H. Wu,, M. Sarvas,, C. R. Harwood,, V. P. Kontinen,, and K. Stephenson. 2000. D-Alanine substitution of teichoic acids as a modulator of protein folding and stability at the cytoplasmic membrane-cell wall interface of Bacillus subtilis. J. Biol. Chem. 275: 26696 266703.
48. Ishihara, T.,, H. Tomita,, Y. Hasegawa,, N. Tsukagoshi,, H. Yamagata,, and S. Udaka. 1995. Cloning and characterization of the gene for a protein thiol-disulfide oxidore-ductase in Bacillus brevis. J. Bacteriol. 177: 745 749.
49. Jacobs, M.,, J. B. Andersen,, V. P. Kontinen,, and M. Sarvas. 1993. Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol. Microbiol. 8: 957 966.
50. Jeong, S. M.,, H. Yoshikawa,, and H. Takahashi. 1993. Isolation and characterization of the secE homologue gene of Bacillus subtilis. Mol. Microbiol. 10: 133 142.
51. Joly, J. C, and J. R. Swartz. 1994. Protein folding activities of Escherichia coli protein disulfide isomerase. Biochemistry 33: 4231 4236.
52. Jongbloed, J. D. H.,, U. Martin,, H. Antelmann,, M. Hecker,, H. Tjalsma,, G. Venema,, S. Bron,, J. M. van Dijl,, and J. Muller. 2000. TatC is a specificity determinant for protein secretion via the twin-arginine translocation pathway. J. Biol. Chem. 275: 41350 41357.
53. Kiesau, P.,, U. Eikmanns,, Z. Gutowski-Eckel,, S. Weber,, M. Hammelmann,, and K. D. Entian. 1997. Evidence for a multimeric subtilin synthetase complex. J. Bacteriol. 179: 1475 1481.
54. Kontinen, V. P.,, and M. Sarvas. 1993. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol. Microbiol. 8: 727 737.
55. Kontinen, V. P.,, P. Saris,, and M. Sarvas. 1991. A gene ( prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol. Microbiol. 5: 1273 1283.
56. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
57. Kusukawa, N.,, T. Yura,, C. Ueguchi,, Y. Akiyama,, and K. Ito. 1989. Effects of mutations in heat-shock genes groES and groEL on protein export in Escherichia coli. EMBO J. 8: 3517 3512.
58. Kyte, J.,, and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105 132.
59. LaPointe, C. F.,, and R. K. Taylor. 2000. The type IV prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275: 1502 1510.
60. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949 1961.
61. Lazazzera, B. A.,, J. M. Solomon,, and A. D. Grossman. 1997. An exported peptide functions intracellularly to contribute to cell density signaling in Bacillus subtilis. Cell 13: 917 925.
62. Leloup, L.,, E. Haddaoui,, R. Chambert,, and M. F. Petit-Glatron. 1997. Characterization of the rate-limiting step of the secretion of Bacillus subtilis alpha-amylase overproduced during the exponential phase of growth. Microbiology 143: 3295 3303.
63. Leloup, L.,, A. J. M. Driessen,, R. Freudl,, R. Chambert,, and M. F. Petit-Glatron. 1999. Differential dependence of levansucrase and alpha-amylase secretion on SecA (Div) during the exponential phase of growth of Bacillus subtilis. J. Bacteriol. 181: 1820 1826.
64. Leskela, S.,, V. P. Kontinen,, and M. Sarvas. 1996. Molecular analysis of an operon in BaciRus subtilis encoding a novel ABC transporter with a role in exoprotein production, sporulation and competence. Microbiology 142: 71 77.
65. Leskela, S.,, E. Wahlstrom,, H. L. Hyyrylainen,, M. Jacobs,, A. Palva,, M. Sarvas,, and V. P. Kontinen. 1999. Ecs, an ABC transporter of Bacillus subtilis: dual signal tranduction functions affecting expression of secreted proteins as well as their secretion. Mol. Microbiol. 31: 533 543.
66. Leskela, S.,, E. Wahlstrom,, V. P. Kontinen,, and M. Sarvas. 1999. Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the Igt gene. Mol. Microbiol. 31: 1075 1085.
67. Lory, S., 1994. Leader peptidase of type IV prepilins and related proteins, p. 17 29. In G. von Heijne (ed.), Signal Peptidases. R. G. Landes Co., Austin, Tex.
68. Magnuson, R.,, J. M. Solomon,, and A. D. Grossman. 1994. Biochemical and genetic characterization of a competence pheromone from Bacillus subtilis. Cell 77: 207 216.
69. Manting, E. H.,, C. van Der Does,, H. Remigy,, A. Engel,, and A. J. Driessen. 2000. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 19: 852 861.
70. Margot, P.,, C. Mauel,, and D. Karamata. 1994. The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12: 535 545.
71. Margot, P.,, and D. Karamata. 1996. The wprA gene of Bacillus subtilis 168, expressed during exponential growth, encodes a cell-wall-associated protease. Microbiology 142: 3437 3444.
72. Mazmanian, S. K.,, G. Liu,, H. Ton-That,, and O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760 763.
73. Meens, J.,, M. Herbort,, M. Klein,, and R. Freudl. 1997. Use of the pre-pro part of Staphylococcus hyicus lipase as a carrier for secretion of Escherichia coli outer membrane protein A (OmpA) prevents proteolytic degradation of OmpA by cell-associated protease(s) in two different gram-positive bacteria. Appl. Environ. Microbiol. 63: 2814 2820.
74.. Meijer, W. J. J.,, A. de Jong,, G. Bea,, A. Wisman,, H. Tjalsma,, G. Venema,, S. Bron,, and J. M. van Dijl. 1995. The endogenous Bacillus subtilis ( natto) plasmids pTA1015 and pTA1040 contain signal peptidase-encoding genes: identification of a new structural module on cryptic plasmids. Mol. Microbiol. 17: 621 631.
75. Merchante, R.,, H. M. Pooley,, and D. Karamata. 1995. A periplasm in Bacillus subtilis. J. Bacteriol. 177: 6176 6183.
76. Meyer, T. H.,, J. F. Menetret,, R. Breitling,, K. R. Miller,, C. W. Akey,, and T. A. Rapoport. 1999. The bacterial Sec Y/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p complex. J. Mol. Biol. 285: 1789 1800.
77. Missiakas, D.,, and S. Raina. 1997. Protein misfolding in the cell envelope of Escherichia coli: new signaling pathways. Trends Biochem. Sci. 22: 59 63.
78. Miiller, J.,, F. Walter,, J. M. van Dijl,, and D. Behnke. 1992. Suppression of the growth and export defects of an Escherichia coli secA(Ts) mutant by a gene cloned from Bacillus subtilis. Mol. Gen. Genet. 235: 89 96.
79. Miiller, J.,, S. Bron,, G. Venema,, and J. M. van Dijl. 2000. Chaperone-like activities of the CsaA protein of Bacillus subtilis. Microbiology 146: 77 88.
80. Miiller, J. P.,, J. Ozegowski,, S. Vettermann,, J. Swaving,, K. H. van Wely,, and A. J. M. Driessen. 2000. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins. Biochem. J. 348: 367 373.
81. Murray, T.,, D. L. Popham,, and P. Setlow. 1997. Identification and characterization of pbpA encoding Bacillus subtilis penicillin-binding protein 2A. J. Bacteriol. 179: 3021 3029.
82. Nagarajan, V., 1993. Protein secretion, p. 713 726. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
83. Nakamura, K.,, A. Nakamura,, H. Takamatsu,, H. Yoshikawa,, and K. Yamane. 1990. Cloning and characterization of a Bacillus subtilis gene homologous to E. coli secY. J. Biochem. 107: 603 607.
84. Nakamura, K.,, Y. Imai,, A. Nakamura,, and K. Yamane. 1992. Small cytoplasmic RNA of Bacillus subtilis: functional relationship with human signal recognition particle 7S RNA and Escherichia coli 4.5S RNA. J. Bacteriol. 174: 2185 2192.
85. Nakamura, K.,, M. Nishiguchi,, K. Honda,, and K. Yamane. 1994. The Bacillus subtilis SRP54 homologue, Ffh, has an intrinsic GTPase activity and forms a ribonucleo-protein complex with small cytoplasmic RNA in vivo. Biochem. Biophys. Res. Commun. 199: 1394 1399.
86. Nakamura, K.,, S. Yahagi,, T. Yamazaki,, and K. Yamane. 1999. Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J. Biol. Chem. 274: 13569 13576.
87. Noone, D.,, A. Howell,, and K. M. Devine. 2000. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J. Bacteriol. 182: 1592 1599.
88. Novak, P.,, and I. K. Dev. 1988. Degradation of a signal peptide by protease IV and oligopeptidase. A. J. Bacteriol. 170: 5067 5075.
89. Ogura, A.,, H. Kakeshita,, K. Honda,, H. Takamatsu,, K. Nakamura,, and K. Yamane. 1995. Srb: a Bacillus subtilis gene encoding a homologue of the alpha-subunit of the mammalian signal recognition particle receptor. DNA Res. 2: 95 100.
90. Overhoff, B.,, M. Klein,, M. Spies,, and R. Freudl. 1991. Identification of a gene fragment which codes for the 364 ammo-terminal amino acid residues of a SecA homologue from Bacillus subtilis: further evidence for the conservation of the protein export apparatus in Gram-positive and Gram-negative bacteria. Mol. Gen. Genet. 228: 417 423.
91. Paetzel, M.,, R. E. Dalbey,, and N. C. Strynadka. 1998. Crystal structure of a bacterial signal peptidase in complex with a beta-lactam inhibitor. Nature 396: 186 190.
92. Paik, S. H.,, A. Chakicherla,, and J. N. Hansen. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273: 23134 23142.
93. Parro, V.,, S. Schacht,, J. Anne,, and R. P. Mellado. 1999. Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology 145: 2255 2263.
94. Perego, M. 1997 - A peptide export-import control circuit modulating bacterial development regulates protein phosphatases of the phosphorelay. Proc. Natl. Acad. Sci. USA 94: 8612 8617.
95. Peters, T.,, and L. K. Davidson. 1982. The biosynthesis of rat serum albumin. In vivo studies on the formation of the disulfide bonds. J. Biol. Chem. 257: 8847 8853.
96. Petit-Glatron, M. F.,, L. Grajcar,, A. Munz,, and R. Chambert. 1993. The contribution of the cell wall to a transmembrane calcium gradient could play a key role in Bacillus subtilis protein secretion. Mol. Microbiol. 9: 1097 1106.
97. Petit-Glatron, M. F.,, I. Monteil,, F. Benyahia,, and R. Chambert. 1990. Bacillus subtilis levansucrase: amino acid substitutions at one site affect secretion efficiency and refolding kinetics mediated by metals. Mol. Microbiol. 4: 2063 2070.
98. Plath, K.,, W. Mothes,, B. M. Wilkinson,, C. J. Stirling,, and T. A. Rapoport. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94: 795 807.
99. Pogliano, K. J.,, and J. Beckwith. 1993. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics 133: 763 773.
100. Pohlschrdder, M.,, W. A. Prinz,, E. Hartmann,, and J. Beckwith. 1997. Protein translocation in the three domains of life: variations on a theme. Cell 91: 563 566.
101. Pooley, H. M.,, R. Merchante,, and D. Karamata. 1996. Overall protein content and induced enzyme components of the periplasm of Bacillus subtilis. Microb. Drug Resist. 2: 9 15.
102. Pragai, Z.,, H. Tjalsma,, A. Bolhuis,, J. M. van Dijl,, G. Venema,, and S. Bron. 1997. The signal peptidase II ( lsp) gene of Bacillus subtilis. Microbiology 143: 1327 1333.
103. Pugsley, A. P. 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57: 50 108.
104.. Robinson, C.,, and A. Mant. 1997. Targeting of proteins into and across the thylakoid membrane. Trends Plant Sci. 2: 431 437.
105. Rosenow, C.,, P. Ryan,, J. N. Weiser,, S. Johnson,, P. Fontan,, A. Ortqvist,, and H. R. Masure. 1997. Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol. Microbiol. 25: 819 829.
106. Sadaie, Y.,, H. Takamatsu,, K. Nakamura,, and K. Yamane. 1991. Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98: 101 105.
107. Sankaran, K.,, S. D. Gupta,, H. C. Wu. 1995. Modification of bacterial lipoproteins. Methods Enzymol. 250: 683 697.
108. Saunders, C. W.,, B. J. Schmidt,, R. L. Mallonee,, and M. S. Guyer. 1985. Secretion of human serum albumin from Bacillus subtilis. J. Bacteriol. 169: 2917 2925.
109. Schatz, G.,, and B. Dobberstein. 1996. Common principles of protein translocation across membranes. Science 271: 1519 1526.
110. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268: 103 106.
111. Scotti, P. A.,, M. L. Urbanus,, J. Brunner,, J. W. de Gier,, G. von Heijne,, C. van der Does,, A. J. M. Driessen,, B. Oudega,, J. Luirink. 2000. YidC, the Escherichia coli homologue of mitochondrial Oxalp, is a component of the Sec translocase. EMBO J. 19: 542 549.
112. Serrano, M.,, R. Zilhao,, E. Ricca,, A. J. Ozin,, C. P. Moran, Jr.,, and A. O. Henriques. 1999. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J. Bacteriol. 181: 3632 3643.
113. Simonen, M., and 1. Palva. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 109 137.
114. Spiess, C.,, A. Beil,, and M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97: 339 347.
115. Stephenson, K.,, and C. R. Harwood. 1998. Influence of a cell-wall-associated protease on production of alpha-amylase by Bacillus subtilis. Appl. Environ. Microbiol. 64: 2875 2881.
116. Stephenson, K.,, N. M. Carter,, C. R. Harwood,, M. F. Petit-Glatron,, and R. Chambert. 1998. The influence of protein folding on late stages of the secretion of œ-amylases from Bacillus subtilis. FEBS Lett. 430: 385 389.
117. Stover, A. G.,, and A. Driks. 1999. Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J. Bacteriol. 181: 1664 1672.
118. Stover, A. G.,, and A. Driks. 1999. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. J. Bacteriol. 181: 5476 5481.
119. Stover, A. G.,, and A. Driks. 1999. Control of synthesis and secretion of the Bacillus subtilis protein YqxM. J. Bacteriol. 181: 7065 7069.
120. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297 341.
121. Suh, J. W.,, S. A. Boylan,, S. M. Thomas,, K. M. Dolan,, D. B. Oliver,, and C. W. Price. 1990. Isolation of a secY homologue from Bacillus subtilis: evidence for a common protein export pathway in eubacteria. Mol. Microbiol. 4: 305 314.
122. Sutcliffe, I. C, and R. R. B. Russell. 1995. Lipoproteins of gram-positive bacteria. J. Bacteriol. 177: 1123 1128.
123. Swaving, J.,, K. H. van Wely,, and A. J. M. Driessen. 1999. Pre-protein translocation by a hybrid translocase composed of Escherichia coli and Bacillus subtilis subunits. J. Bacteriol. 181: 7021 7027.
124. Suzuki, T.,, A. Itoh,, S. Ichihara,, and S. Mizushima. 1987. Characterization of the sppA gene encoding for protease IV, a signal peptide peptidase of Escherichia coli. J. Bacteriol. 169: 2523 2528.
125. Suzuki, C. K.,, M. Rep,, J. M. van Dijl,, K. Suda,, L. A. Grivell,, and G. Schatz. 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 22: 118 123.
126. Takase, K.,, H. Mizuno,, and K. Yamane. 1988. NH 2-terminal processing of Bacillus subtilis œ-amylase. J. Biol. Chem. 263: 11548 11553.
127. Tjalsma, H.,, M. A. Noback,, S. Bron,, G. Venema,, K. Yamane,, and J. M. van Dijl. 1997. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities: constitutive and temporally controlled expression of different sip genes . J. Biol. Chem. 272: 25983 25992.
128. Tjalsma, H.,, A. Bolhius,, M. L. van Roosmalen,, T. Wiegert,, W. Schumann,, C. P. Broekhuizen,, W. J. Quax,, G. Venema,, S. Bron,, and J. M. van Dijl. 1998. Functional analysis of the secretory precursor processing machinery of Bacillus subtilis: identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev. 12: 2318 2331.
129. Tjalsma, H.,, V. P. Kontinen,, Z. Pragai,, H. Wu,, R. Meima,, G. Venema,, S. Bron,, M. Sarvas,, and J. M. van Dijl. 1999. The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis: signal peptidase II is required for the efficient secretion of œ-amylase, a non-lipoprotein. J. Biol. Chem. 274: 1698 1707.
130. Tjalsma, H.,, J. van den Dolder,, W. J. J. Meijer,, G. Venema,, S. Bron,, and J. M. van Dijl. 1999. The plasmid-encoded type I signal peptidase SipP can functionally replace the major signal peptidases SipS and SipT of Bacillus subtilis. J. Bacteriol. 181: 2448 2454.
131. Tjalsma, H.,, G. Zanen,, G. Venema,, S. Bron,, and J. M. van Dijl. 1999. The potential active site of the lipoprotein-specific (type II) signal peptidase of Bacillus subtilis. J. Biol. Chem. 274: 28191 28197.
132. Tjalsma, H.,, A. Bolhuis,, J. D. H. Jongbloed,, S. Bron,, and J. M. van Dijl. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol. Mol. Biol. Rev. 64: 515 547.
133. Tjalsma, H.,, A. G. Stover,, A. Driks,, G. Venema,, S. Bron,, and J. M. van Dijl. 2000. Conserved serine and histidine residues are critical for activity of the ER-type signal peptidase SipW of Bacillus subtilis. J. Biol. Chem. 275: 25102 25108.
134. Valent, Q. A.,, J. W. de Gier,, G. von Heijne,, D. A. Kendall,, C. M. ten Hagen-Jongman,, B. Oudega,, and J. Luirink. 1997. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol. Microbiol. 25: 53 64.
134a.. van Dijl, J. M.,, A. Bolhuis,, H. Tjalsma,, J. D. H. Jongbloed,, A. de Jong,, and S. Bron. Unpublished observations.
135. van Dijl, J. M.,, A. de Jong,, G. Venema,, and S. Bron. 1995. Identification of the potential active site of the signal peptidase SipS of Bacillus subtilis: structural and functional similarities with LexA-like proteases. J. Biol. Chem. 270: 3611 3618.
136. van Dijl, J. M.,, A. de Jong,, J. Vehmaanpera,, G. Venema,, and S. Bron. 1992. Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases. EMBO J. 11: 2819 2828.
137. van Wely, K. H. M.,, J. Swaving,, C. P. Broekhuizen,, M. Rose,, W. J. Quax,, and A. J. M. Driessen. 1999. Functional identification of the product of the Bacillus subtilis yvaL gene as a SecG Homologue. J. Bacteriol. 181: 1786 1792.
138. van Wely, K. H. M.,, J. Swaving,, M. Klein,, R. Freudl,, and A. J. M. Driessen. 2000. The carboxyl terminus of the Bacillus subtilis SecA is dispensable for protein secretion and viability. Microbiology 146: 2573 2581.
139. Veltman, O. R.,, G. Vriend,, F. Hardy,, J. Mansfeld,, B. van den Burg,, G. Venema,, and V. G. H. Eijsink. 1997. Analysis of a calcium binding surface loop critical for the stability of the thermolysin-like protease of Bacillus stearothermophilus. Eur. J. Biochem. 248: 433 440.
140. von Heijne, G. 1989. The structure of signal peptides from bacterial lipoproteins. Protein Eng. 2: 531 534.
141. von Heijne, G. 1990. The signal peptide. J. Membr. Biol. 115: 195 201.
142. von Heijne, G.,, and L. Abrahmsen. 1989. Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEBS Lett. 27: 439 446.
143. Wandersman, C. 1989. Secretion, processing and activation of bacterial extracellular proteases. Mol. Microbiol. 3: 1825 1831.
143a.. Wiegert, T.,, and W. Schumann. Personal communication.
144. Wild, J.,, P. Rossmeissl,, W. A. Walter,, and C. A. Gross. 1996. Involvement of the DnaK-DnaJ-GrpE chaperone team in protein secretion in Escherichia coli. J. Bacteriol. 178: 3608 3613.
145. Wu, L.-F.,, B. Ize,, A. Chanal,, Y. Quentin,, and G. Fichant. 2000. Bacterial twin-arginine signal peptide-dependent protein translocation pathway: evolution and mechanism. J. Mol. Microbiol. Biotechnol. 2: 170 189.
146. Yamazaki, T.,, S. Yahagi,, K. Nakamura,, and K. Yamane. 1999. Depletion of Bacillus subtilis histone-like protein, HBsu, causes defective protein translocation and induces upregulation of small cytoplasmic RNA. Biochem. Biophys. Res. Commun. 258: 211 214.
147. Yang, M. Y.,, E. Ferrari,, and D. J. Henner. 1984. Cloning of the neutral protease gene of Bacillus subtilis and the use of the cloned gene to create an in vitro-derived deletion mutation. J. Bacteriol. 160: 15 21.
148. Yanouri, A.,, R. A. Daniel,, J. Errington,, and C. E. Buchanan. 1993. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J. Bacteriol. 175: 7604 7616.
149. Zheng, G.,, L. Z. Yan,, J. C. Vederas,, and P. J. Zuber. 1999. Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin sub-tilosin. J. Bacteriol. 181: 7346 7355.
150. Zhu, X. L.,, Y. Ohta,, F. Jordan,, and M. Inouye. 1989. Pro-sequence of subtilisin can guide the refolding of denatured subtilisin in an intermolecular process. Nature 339: 483 484.

Tables

Generic image for table
TABLE 1a

Predicted secretory (Sec-type) signal peptides of

Putative Sec-type signal peptides were identified as described in the legend to Fig. 3 . The number of residues in the N and H domains of each signal peptide and the average hydrophobicity (h) of each of these domains, as determined by the algorithms of Kyte and Doolittle ( ), are indicated. Furthermore, the SPase I recognition sites in the C domain (i.e., positions −3 to −1 relative to the predicted SPase cleavage site) are shown.

Proteins containing cell wall binding repeats are marked with a superscript W.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Generic image for table
TABLE 1b

Predicted secretory (Sec-type) signal peptides of

Putative Sec-type signal peptides were identified as described in the legend to Fig. 3 . The number of residues in the N and H domains of each signal peptide and the average hydrophobicity (h) of each of these domains, as determined by the algorithms of Kyte and Doolittle ( ), are indicated. Furthermore, the SPase I recognition sites in the C domain (i.e., positions −3 to −1 relative to the predicted SPase cleavage site) are shown.

Proteins containing cell wall binding repeats are marked with a superscript W.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Generic image for table
TABLE 2

Predicted lipoprotein signal peptides

Putative lipoprotein signal peptides were identified as described in the legend to Fig. 3 . The number of residues in the N and H domains of each signal peptide and the average hydrophobicity (h) of each of these domains, as determined by the algorithms of Kyte and Doolittle ( ), are indicated. Furthermore, the SPase II recognition and cleavage site in the C domain (i.e., the lipobox) is shown. The SPase II cleavage site is indicated with a space in the amino acid sequence.

Lipoproteins containing an RR motif in the signal peptide are indicated with a superscript RR, and lipoproteins containing (putative) transmembrane domains in addition to the signal peptide are indicated with a superscript TM. One protein containing cell wall binding repeats is marked with a superscript W. Based on theoretical considerations, the putative start sites of the potential lipoproteins YhaR and YhfQ (indicated with an asterisk) have been modified in a recent update of SubtiList. If the new annotation is correct, it is unlikely that YhaR and YhfQ are lipoproteins.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Generic image for table
TABLE 3

Predicted twin-arginine (RR) signal peptides of

Amino-terminal RR signal peptides were predicted as described in the legend to Fig. 3 . The listed signal peptides contain, in addition to the twin arginines, at least one other residue of the consensus sequence (R-R-X-#-#, printed in bold; » is a hydrophobic residue). The number of residues in the N and H domains of each signal peptide and the average hydrophobicity (h) of each of these domains, as determined by the algorithms of Kyte and Doolittle ( ), are indicated. Furthermore, the RR motifs in the N domain and SPase I recognition sites in the C domain (i.e., positions −3 to −1 relative to the predicted SPase cleavage site) are shown.

Proteins tacking a (putative) SPase I cleavage site, some of which contain additional transmembrane domains, are indicated with a superscript TM. One protein containing cell wall binding repeats is indicated with a superscript W.

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24
Generic image for table
TABLE 4

Conservation of components of the Sec, Tat, and Com pathways for protein export in the eubacteria and , the archaeon , and the yeast

Sec, Tat, and Com components were identified by amino acid sequence similarity searches via the TIGR microbial database using the sequences of known proteins (see text for details). “+” indicates the presence of orthologous sequences; “—” indicates the absence of orthologous sequences. Note that proteins required for protein transport in mitochondria of were excluded from the comparisons.

Names of orthologues in .

Names of orthologues in ; proteins in the SRP complex are Srp72p, Srp68p, Srp54p, Sec65p, Srp21p, Srpl4p and Srp7p.

It is not known whether orthologues of Hbsu are part of SRP complexes in other organisms.

Names of orthologues in .

Name of orthologue in .

Citation: Van Dijl J, Bolhuis A, Tjalsma H, Jongbloed J, De Jong A, Bron S. 2002. Protein Transport Pathways in : a Genome-Based Road Map, p 337-355. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error