1887

Chapter 26 : General Stress Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

General Stress Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap26-2.gif

Abstract:

Induction of the general stress response by one stress affords significant cross-protection against other stresses. Activation of σ initiates the primary and secondary events that collectively bring about the general stress response. The diverse stresses which elicit σ activity fall into two classes: (i) energy stresses, such as those caused by carbon, phosphorus, or oxygen starvation, or by the addition of oxidative micouplers to the growth medium; and (ii) environmental stresses, such as acid, ethanol, heat, or salt stress. Site-directed mutagenesis has shown that the Per-Arnt-Sim (PAS) domain of RsbP, and at least one defining residue within the domain, are indeed important for the energy stress response. In contrast, the kinase activity of RsbT is essential for the environmental stress response, suggesting that modulation of this activity is one route by which signals enter the branch. In contrast, the RsbU, RsbP, and SpoIIE phosphatases each contain one or two additional domains that regulate phosphatase activity in response to diverse inputs, and this appears to be an emerging theme in stress-signaling PP2C phosphatases in both prokaryotic and eukaryotic organisms. Interestingly, components of the partner-switching mechanism appear to be widely distributed among the eubacteria. In some cases, such as in sp. strain PCC 6803, all components of the switch are present and manifest the predicted activities in vitro. In other cases, such as the RsbV ortholog YrbB, no obvious partner exists in the genome.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26

Key Concept Ranking

General Stress Response
0.5624246
0.5624246
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Model of the σ signal transduction network. Two signaling pathways converge on RsbV-P, the antagonist form found in unstressed cells. The energy-stress signaling pathway terminates with the RsbP phosphatase (PP2C), which contains a PAS domain important for energy stress sensing ( ). In contrast, the environmental-stress signaling pathway terminates with the RsbU phosphatase (PP2C), which is activated by upstream signaling elements ( ). When activated by stress, either the RsbP or the RsbU phosphatase removes the serine phosphate from RsbV-P. Dephosphorylated RsbV then binds the RsbW anti-σ factor, forcing it to release σ, which can then activate transcription of its target genes ( ). (B) The upstream regulators that activate RsbU include the RsbS antagonist and the RsbT kinase, which are homologs of RsbV and RsbW, respectively ( ). Unphosphorylated RsbS is thought to be the antagonist form found in unstressed cells, and this form binds the RsbT kinase. Following environmental stress, RsbS is phosphorylated by RsbT, which is then released to bind and activate the RsbU phosphatase by direct protein-protein interaction ( ). RsbR acts as a positive tegulator of σ activity by potentiating the activity of the RsbT kinase ( ). The RsbX phosphatase (PP2C) fulfills a negative feedback role by indirectly communicating σ protein levels ( ). The five regulators in the shaded box also act via the environmental signaling pathway but by an unknown mechanism. These include the RsbR homologs YkoB, YojH, YqhA, and YtvA ( ) and the Obg GTPase ( ). (C) Model of the σ signal transduction network. In vegetative cells SpolIAB phosphorylates and inactivates its SpoIIAA antagonist, allowing SpolIAB to bind and sequester σ in an inactive complex ( ). During the sporulation process, the SpoIIE serine phosphatase associates with the developing asymmetric septum ( ). Upon completion of the septum, SpoIIE releases dephosphorylated SpoIIAA, which then attacks the SpolIAB anti-σ factor to form a ternary complex with SpoIIAB and ADP, releasing active σ in the prespore compartment ( ).

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transcriptional organization of genes coding for the σ and σ signaling networks. (Upper) Genes of the σ network ( ). The known genes for the energy signaling branch lie in the operon (crosshatched) and those for the environmental signaling branch compose the upstream half of the operon (light shading). As shown in Fig. 1 , these two branches communicate with the common regulators encoded by , , and in the downstream half of the operon (open rectangles). Expression of and (dark shading) may be translationally coupled to provide an indirect signal of σ levels. (Lower) Genes of the σ network ( ). The phosphatase encoded by communicates completion of the asymmetric sporulation septum to the regulators encoded by , , and (), which compose the operon.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Comparison of σ and σ-like operons found in gram-positive bacteria. Both ( ) and ( ; http://www.tigr.org/tdb/mdb/mdbinprogress.html) possess eight-gene operons like the one in (top line); it is not known whether they also bear the energy signaling operon. (Sa), (Ba), (Mt), and (Sc) have less extensive σ or σ-like operons ( ); the predicted and products of and (black shading) have no resemblance to known partner-switching regulators or to each other. The unfinished genome (available at the Sanger Center website: http://www.sanger.ac.uk/Projects/S_coelicolor/) contains at least four additional clusters encoding potential partner-switching regulators. One cluster encodes homologs of the RsbQ and RsbP energy stress regulators, complete with a PAS domain in the amino-terminal region of the phosphatase ( ), and also encodes an RsbV-like protein (SCH35.32c). A second cluster contains seven genes, of which only the central four are shown here. These encode homologs of RsbR, RsbS, and RsbT, together with an apparent fusion of an RsbT-like protein with a PP2C phosphatase domain (SC5F8.31c). These four genes are flanked by upstream reading frames for PP2C and RsbV homologs (SC4G10.05 and SC4G10.04) and a downstream frame for another PP2C homolog (SC5F8.30c). The third cluster encodes homologs of RsbV and RsbW, called BldG and Orf3 ( ). The fourth cluster also encodes homologs of RsbV and RsbW, transcribed divergently from , the gene for a predicted stress-sporulation σ factor. Not shown are four additional unlinked genes encoding RsbV-like proteins: SC2H2.17, SC5F1.27c, and SC6F11.08, which retain the conserved serine residue on which the antagonists are phosphorylated ( ), and 2SC6G5.30, which lacks the serine but retains an adjacent conserved threonine. Sc open reading frames are named according to the convention adopted by the genome project.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap26
1. Adler, E.,, A. Donella-Deana,, F. Arigoni,, L. A. Pinna,, and P. Stragier. 1997. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases. Mol. Microbiol. 23: 57 62.
2. Akbar, S.,, T. A. Gaidenko,, C. M. Kang,, M. O'Reilly,, K. M. Devine,, and C. W. Price. 2001. New family of regulators in the environmental signaling pathway which activates the general stress factor �� B of Bacillus subtilis. J. Bacteriol. 183: 1329 1338.
3. Akbar, S.,, C. M. Kang,, T. A. Gaidenko,, and C. W. Price. 1997. Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol. Microbiol. 24: 567 578.
4. Akbar, S.,, S. Y. Lee,, S. A. Boylan,, and C. W. Price. 1999. Two genes from Bacillus subtilis under the sole control of the general stress transcription factor �� B. Microbiology 145: 1069 1078.
5. Akbar, S.,, and C. W. Price. 1996. Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor �� B. Gene 177: 123 128.
6. Alper, S.,, A. Dufour,, D. A. Garsin,, L. Duncan,, and R. Losick. 1996. Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J. Mol. Biol. 260: 165 177.
7. Alper, S.,, L. Duncan,, and R. Losick. 1994 · An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195 205.
8. Antelmann, H.,, J. Bernhardt,, R. Schmid,, and M. Hecker. 1995. A gene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified �� B-dependent general stress protein GspA. J. Bacteriol. 177: 3540 3545.
9. Antelmann, H.,, J. Bernhardt,, R. Schmid,, H. Mach,, U. Volker,, and M. Hecker. 1997. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18: 1451 1463.
10. Antelmann, H.,, S. Engelmann,, R. Schmid,, and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 6571 6578.
11. Antelmann, H.,, S. Engelmann,, R. Schmid,, A. Sorokin,, A. Lapidus,, and M. Hecker. 1997. Expression of a stress-and starvation-induced dps/ pexB-homologous gene is controlled by the alternative sigma factor �� B in Bacillus subtilis. J. Bacteriol. 179: 7251 7256.
12. Antelmann, H.,, R. Schmid,, and M. Hecker. 1997. The NAD synthetase NadE (OutB) of Bacillus subtilis is a �� B-dependent general stress protein. FEMS Microbiol. Lett. 153: 405 409.
13. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor �� F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 3238 3242.
14. Arigoni, F.,, A. M. Guerout-Fleury,, I. Barak,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31: 1407 1415.
15. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270: 637 640.
16. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by �� F, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180: 2057 2062.
17. Barak, I.,, J. Behari,, G. Olmedo,, P. Guzman,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19: 1047 1060.
18. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5: 447 455.
19. Becker, L. A.,, M. S. Cetin,, R. W. Hutkins,, and A. K. Benson. 1998. Identification of the gene encoding the alternative sigma factor �� B from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180: 4547 4554.
20. Becker, L. A.,, S. N. Evans,, R. W. Hutkins,, and A. K. Benson. 2000. Role of �� B in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacteriol. 182: 7083 7087.
21. Benson, A. K.,, and W. G. Haldenwang. 1993. Bacillus subtilis �� B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc. Natl. Acad. Sci. USA 90: 2330 2334.
22. Benson, A. K.,, and W. G. Haldenwang. 1992. Characterization of a regulatory network that controls �� B expression in Bacillus subtilis. J. Bacteriol. 174: 749 757.
23. Benson, A. K.,, and W. G. Haldenwang. 1993. Regulation of �� B levels and activity in Bacillus subtilis. J. Bacteriol. 175: 2347 2356.
24. Benson, A. K.,, and W. G. Haldenwang. 1993. The σ B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J. Bacteriol. 175: 1929 1935.
25. Bernhardt, J.,, U. Volker,, A. Volker,, H. Antelmann,, R. Schmid,, H. Mach,, and M. Hecker. 1997. Specific and general stress proteins in Bacillus subtilis—a two-dimensional protein electrophoresis study. Microbiology 143: 999 1017.
26. Bignell, D. R.,, J. L. Warawa,, J. L. Strap,, K. F. Chater,, and B. W. Leskiw. 2000. Study of the bldG locus suggests that an anti-anti-�� factor and an anti-�� factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology 146: 2161 2173.
27. Bork, P.,, N. P. Brown,, H. Hegyi,, and J. Schultz. 1996. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci. 5: 1421 1425.
28. Boylan, S. A., A. R. Redfield, M. S. Brody, and C. W. Price. 1993. Stress-induced activation of the �� B transcription factor of Bacillus subtilis. J. Bacteriol. 175: 7931 7937.
29. Boylan, S. A., A. Rutherford, S. M. Thomas, and C. W. Price. 1992. Activation of Bacillus subtilis transcription factor �� B by a regulatory pathway responsive to stationary-phase signals. J. Bacteriol. 174: 3695 3706.
30. Bremer, E.,, and R. Kramer,. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria, p. 79 97. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
31. Brody, M. S.,, and C. W. Price. 1998. Bacillus licheniformis sigB operon encoding the general stress transcription factor �� B. Gene 212: 111 118.
32. Brody, M. S.,, K. Vijay,, and C. W. Price. Unpublished results.
33. Bsat, N.,, A. Herbig,, L. Casillas-Martinez,, P. Setlow,, and J. D. Helmann. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189 198.
34. Chan, P. F.,, S. J. Foster,, E. Ingham,, and M. O. Clements. 1998. The Staphylococcus aureus alternative sigma factor �� B controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 180: 6082 6089.
35. Chater, K. F.,, and R. Losick,. 1997. Mycelial life cycle of Streptomyces coelicolor A3(2) and its relatives, p. 149 182. In J. A. Shapiro, and M. Dworkin (ed.), Bacteria as Multicellular Organisms. Oxford University Press, New York, N.Y.
36. Chen, P.,, J. Gomez,, and W. R. Bishai,. 2000. Mycobacterial transcription regulation in stationary phase, p. 149 156. In G. F. Hatfull, and W. R. Jacobs (ed.), Molecular Genetics of Mycobacteria. American Society for Microbiology, Washington, D.C.
37. Chen, P.,, R. E. Ruiz,, Q. Li,, R. F. Silver,, and W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate �� factor gene, sigF. Infect. Immun. 68: 5575 5580.
38. Cheung, A. L., Y. T. Chien, and A. S. Bayer. 1999. Hyperproduction of α-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect. Immun. 67: 1331 1337.
39. Chien, Y.,, and A. L. Cheung. 1998. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. J. Biol. Chem. 273: 2645 2652.
40. Cole, S. T., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
41. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
42. Daniel, R. A., E. J. Harry, V. L. Katis, R. G. Wake, and J. Errington. 1998. Characterization of the essential cell division gene ftsL ( yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29: 593 604.
43. DeMaio, J.,, Y. Zhang,, C. Ko,, and W. R. Bishai. 1997. Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tuber. LungDis. 78: 3 12.
44. DeMaio, J.,, Y. Zhang,, C. Ko,, D. B. Young,, and W. R. Bishai. 1996. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93: 2790 2794.
45. Deora, R.,, T. Tseng, and T. K. Misra. 1997. Alternative transcription factor �� SB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar. J. Bacteriol. 179: 6355 6359.
46. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, M. Najafi,, J. Erringston,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor �� F of Bacillus subtilis. Genes Dev. 8: 2653 2663.
47. Doukhan, L.,, M. Predich,, G. Nair,, O. Dussurget,, I. Mandic-Mulec,, S. T. Cole,, D. R. Smith,, and I. Smith. 1995. Genomic organization of the mycobacterial sigma gene cluster. Gene 165: 67 70.
48. Drzewiecki, K.,, C. Eymann,, G. Mittenhuber,, and M. Hecker. 1998. The yvyD gene of Bacillus subtilis is under dual control of �� B and �� H. J. Bacteriol. 180: 6674 6680.
49. Dufour, A.,, and W. G. Haldenwang. 1994. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J. Bacteriol. 176: 1813 1820.
50. Dufour, A.,, U. Voelker,, A. Voelker,, and W. G. Haldenwang. 1996. Relative levels and fractionation properties of Bacillus subtilis �� B and its regulators during balanced growth and stress. J. Bocteriol. 178: 3701 3709.
51. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270: 641 644.
52. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type specific transcription factor �� F from its anti-�� factor SpoIIAB. J. Mol. Biol. 260: 147 164.
53. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-�� factor that binds to and inhibits transcription by regulatory protein �� F from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90: 2325 2329.
54.. Engelmann, S.,, and M. Hecker. 1996. Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. FEMS Microbiol Lett. 145: 63 69.
55. Engelmann, S.,, C. Lindner,, and M. Hecker. 1995. Cloning, nucleotide sequence, and regulation of katE encoding a �� B-dependent catalase in Bacillus subtilis. J. Bacteriol. 177: 5598 5605.
56. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33: 1015 1026.
57. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10: 794 803.
58. Fort, P.,, and P. J. Piggot. 1984. Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. J. Gen. Microbiol. 130: 2147 2153.
59. Fouet, A.,, O. Namy,, and G. Lambert. 2000. Characterization of the operon encoding the alternative �� B factor from Bacillus anthracis and its role in virulence. J. Bacteriol. 182: 5036 5045.
60. Gaidenko, T. A.,, and C. W. Price. 1998. General stress transcription factor �� B and sporulation transcription factor �� B each contribute to survival of Bacillus subtilis under extreme growth conditions. J. Bacteriol. 180: 3730 3733.
61. Gaidenko, T. A.,, X. Yang,, Y. M. Lee,, and C. W. Price. 1999. Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis. J. Mol. Biol. 288: 29 39.
62. Garsin, D. A.,, L. Duncan,, D. M. Paskowitz,, and R. Losick. 1998. The kinase activity of the antisigma factor SpoIIAB is required for activation as well as inhibition of transcription factor �� F during sporulation in Bacillus subtilis. J.Mol. Biol. 284: 569 578.
63. Gerth, U.,, E. Kriiger,, I. Derre,, T. Msadek,, and M. Hecker. 1998. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol. 28: 787 802.
64. Gertz, S.,, S. Engelmann,, R. Schmid,, K. Ohlsen,, J. Hacker,, and M. Hecker. 1999. Regulation of a B-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains. Mol. Gen. Genet. 261: 558 566.
65. Gomez, J. E.,, J. M. Chen,, and W. R. Bishai. 1997. Sigma factors of Mycobacterium tuberculosis. Tuber. LungDis. 78: 175 183.
66. Gomez, M.,, and S. M. Cutting. 1997. Identification of a new �� F-controlled gene, csbX, in Bacillus subtilis. Gene 188: 29 33.
67. Gottesman, S.,, M. R. Maurizi,, and S. Wickner. 1997. Regulatory subunits of energy-dependent proteases. Cell 91: 435 438.
68. Graham, J. E.,, and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RN As synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96: 11554 11559.
69. Grinsted, J.,, and R. W. Lacey. 1973. Ecological and genetic implications of pigmentation in Staphylococcus aureus. J. Gen. Microbiol. 75: 259 267.
70. Gruber, T. M., and D. A. Bryant. 1997. Molecular systematic studies of eubacteria, using �� 70-type �� factors of group 1 and group 2. J. Bacteriol. 179: 1734 1747.
71. Guzman, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol 170: 1598 1609.
72. Haldenwang, W. G. 1995. The sigma factors of Bacillus subtilis. Microbiol. Rev. 59: 1 30.
73. Haldenwang, W. G.,, and R. Losick. 1979. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature 282: 256 260.
74. Haldenwang, W. G.,, and R. Losick. 1980. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77: 7000 7004.
75. Hennge-Aronis, R., 2000. The general stress response in Escherichia coli, p. 161 178. In G. Storz, and R. Hennge-Aronis (ed.), Bacterial Stress Reponses. American Society for Microbiology, Washington, D.C.
76. Hilden, I.,, B. N. Krath,, and B. Hove-Jensen. 1995. Tricistronic operon expression of the genes geaD ( cms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and etc in vegetative cells of Bacillus subtilis. J. Bacteriol. 177: 7280 7284.
77. Hu, Y.,, and A. R. M. Coates. 1999. Transcription of two �� 70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181: 469 476.
78. Igo, M.,, M. Lampe,, C. Ray,, W. Schafer,, C. P. Moran, Jr.,, and R. Losick. 1987. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J. Bacteriol. 169: 3464 3469.
79. Igo, M.,, and R. Losick. 1986. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J. Mol. Biol. 191: 615 624.
80. Kalman, S.,, M. L. Duncan,, S. M. Thomas,, and C. W. Price. 1990. Similar organization of the sigB and spoil A operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J. Bacteriol. 172: 5575 5585.
81. Kang, C. M., M. S. Brody, S. Akbar, X. Yang, and C. W. Price. 1996. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor �� B in response to environmental stress. J. Bacteriol. 178: 3846 3853.
82. Kang, C. M., K. Vijay, and C. W. Price. 1998. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol. Microbiol. 30: 189 196.
83. Kelemen, G. H.,, P. Brian,, K. Flardh,, L. Chamberlin,, K. F. Chater,, and M. J. Buttner. 1998. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J. Bacteriol. 180: 2515 2521.
84. Kim, Y. I.,, R. E. Burton,, B. M. Burton,, R. T. Sauer,, and T. A. Baker. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5: 639 648.
85. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of �� F during sporulation in Bacillus subtilis. Genes Dev. 13: 1156 1167.
86. Knobloch, J. K.-M.,, K. Bartscht,, A. Sabottke,, H. Rohde,, H.-H. Feucht,, and D. Mack. 2001. Biofilm formation of Staphyhcoccus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183: 2624 2633.
87. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176: 7155 7160.
88. Koonin, E. V.,, L. Aravind,, and M. Y. Galperin,. 2000. A comparative-genomic view of the microbial stress response, p. 417 444. In G. Storz, and R. Hennge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
89. Kormanec, J.,, D. Homerova,, I. Barak,, and B. Sevcikova. 1999. A new gene, sigG, encoding a putative alternative �� factor of Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 172: 153 158.
90. Kormanec, J., B. Ševčíková, N. Halgašová, R. Knirschová, and B. Řežuchová. 2000. Identification and transcriptional characterization of the gene encoding the stress-response �� factor �� H in Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 189: 31 38.
91. Krüger, E.,, T. Msadek,, and M. Hecker. 1996. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol. Microbiol. 20: 713 723.
92. Kriiger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of cipC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176: 3360 3367.
93. Krüger, E.,, E. Witt,, S. Ohlmeier,, R. Hanschke,, and M. Hecker. 2000. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182: 3259 3265.
94. Kullik, I.,, and P. Giachino. 1997. The alternative sigma factor �� B in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167: 151 159.
95. Kullik, I.,, P. Giachino,, and T. Fuchs. 1998. Deletion of the alternative sigma factor �� B in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180: 4814 4820.
96. Lee, C. S.,, I. Lucet,, and M. D. Yudkin. 2000. Fate of the SpoIIAB*-ADP liberated after SpoIIAB phosphorylates SpoIIAA of Bacillus subtilis. J. Bacteriol. 182: 6250 6253.
97. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176: 1451 1459.
98. Lou, Y.,, and A. E. Yousef. 1997. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 63: 1252 1255.
99. Magnin, T.,, M. Lord,, and M. D. Yudkin. 1997. Contribution of partner switching and SpoIIAA cycling to regulation of �� F activity in sporulating Bacillus subtilis. J. Bacteriol. 179: 3922 3927.
100. Manabe, Y. C.,, J. M. Chen,, C. G. Ko,, P. Chen,, and W. R. Bishai. 1999. Conditional sigma factor expression, using the inducible acetamidase promoter, reveals that the Mycobacterium tuberculosis sigF gene modulates expression of the 16-kilodalton α-crystallin homologue. J. Bacteriol. 181: 7629 7633.
101. Manganelli, R.,, E. Dubnau,, S. Tyagi,, F. R. Kramer,, and I. Smith. 1999. Differential expression of 10 �� factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31: 715 724.
102. Manna, A. C.,, M. G. Bayer,, and A. L. Cheung. 1998. Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus. J. Bacteriol. 180: 3828 3836.
103. Margolis, P.,, A. Driks,, and R. Losick. 1991. Establishment of cell type by compartmentalized activation of a transcription factor. Science 254: 562 565.
104. Martinez, A.,, and R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179: 5188 5194.
105. Michele, T. M.,, C. Ko,, and W. R. Bishai. 1999. Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob. Agents Chemother. 43: 218 225.
106. Min, K. T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. �� F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-�� factor that is also a protein kinase. Cell 74: 735 742.
107. Miyauchi, K.,, Y. Adachi,, Y. Nagata,, and M. Takagi. 1999. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of ��-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol. 181: 6712 6719.
108. Miyazaki, E.,, J. M. Chen,, C. Ko,, and W. R. Bishai. 1999. The Staphylococcus aureus rsbW ( orfl59) gene encodes an anti-�� factor of SigB. J. Bacteriol. 181: 2846 2851.
109. Mogk, A.,, A. Volker,, S. Engelmann,, M. Hecker,, W. Schumann,, and U. Volker. 1998. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180: 2895 2900.
110. Mongkolsuk, S.,, W. Praituan,, S. Loprasert,, M. Fuangthong,, and S. Chamnongpol. 1998. Identification and characterization of a new organic hydroperoxide resistance ( ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180: 2636 2643.
111. Moran, C. P., Jr.,, W. C. Johnson,, and R. Losick. 1982. Close contacts between �� 37-RNA polymerase and a Bacillus subtilis chromosomal promoter. J. Mol. Biol. 162: 709 713.
112. Moran, C. P., Jr.,, N. Lang,, and R. Losick. 1981. Nucleotide sequence of a Bacillus subtilis promoter recognized by Bacillus subtilis RNA polymerase containing �� 37 . Nucleic Acids Res. 9: 5979 5990.
113. Msadek, T.,, V. Dartois,, F. Kunst,, M. L. Herbaud,, F. Denizot,, and G. Rapoport. 1998. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol. Microbiol. 27: 899 914.
114. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91: 5788 5792.
115. Najafi, S. M.,, D. A. Harris,, and M. D. Yudkin. 1997. Properties of the phosphorylation reaction catalyzed by SpolIAB that help to regulate sporulation of Bacillus subtilis. J. Bacteriol. 179: 5628 5631.
116. Najafi, S. M. A.,, A. C. Willis,, and M. Yudkin. 1995. Site of phosphorylation of SpoIIAA, the anti-anti-�� factor for sporulation-specific �� F of Bacillus subtilis. J. Bacteriol. 177: 2912 2913.
117. Newton, G. L.,, and R. C. Fahey,. 1989. Glutathione in prokaryotes, p. 69 77. In J. Vina (ed.), Glutathione: Metabolism and Physiological Functions. CRC Press, Boca Raton, Fla.
118. Nicholas, R. O.,, T. Li,, D. McDevitt,, A. Marra,, S. Sucoloski,, P. L. Demarsh,, and D. R. Gentry. 1999. Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect. Immun. 67: 3667 3669.
119. O'Driscoll, B.,, C. G. Gahan,, and C. Hill. 1996. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62: 1693 1698.
120. Ogasawara, N.,, S. Nakai,, and H. Yoshikawa. 1994· Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1: 1 14
121. Ollis, D. L., et al. 1992. The α/�� hydrolase fold. Protein Eng. 5: 197 211.
122. Petersohn, A.,, J. Antelmann,, U. Gerth,, and M. Hecker. 1999. Identification and transcriptional analysis of new members of the �� B regulon in Bacillus subtilis. Microbiology 145: 869 880.
123. Petersohn, A.,, J. Bernhardt,, U. Gerth,, D. Hoper,, T. Koburger, U. Volker, and M. Hecker. 1999. Identification of �� B-dependent genes in Bacillus subtilis using a promotet consensus-directed search and oligonucleotide hybridization. J. Bacteriol. 181: 5718 5724.
124. Petersohn, A.,, S. Engelmann, P. Setlow, and M. Hecker. 1999. The katX gene of Bacillus subtilis is under dual control of �� B and �� F Mol. Gen. Genet. 262: 173 179.
125. Potuckova, L.,, G. H. Kelemen,, K. C. Findlay,, M. A. Lonetto,, M. J. Buttner,, and J. Kormanec. 1995. A new RNA polymerase sigma factor, �� F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 17: 37 48.
126. Price, C. W., 2000. Protective function and regulation of the general stress response in Bacillus subtilis and related gram-positive bacteria, p. 179 197. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
127. Price, C. W.,, P. Fawcett,, H. Ceremonie,, N. Su,, C. K. Murphy,, and P. Youngman. 2001. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 41, in press.
128. Rachid, S.,, K. Ohlsen,, U. Wallner,, J. Hacker,, M. Hecker,, and W. Ziebuhr. 2000. Alternative transcription factor �� B is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824 6826.
129. Ray, C.,, R. E. Hay,, H. L. Carter,, and C. P. Moran, Jr. 1985. Mutations that affect utilization of a promoter in stationary-phase Bacillus subtilis. J. Bacteriol. 163: 610 614.
130. Rocourt, J.,, and P. Cossart,. 1997. Listeria monocytogenes, p. 337 352. In M. P. Doyle,, L. R. Beuchat,, and T. J. Montville (ed.), Food Microbiology—Fundamentals and Frontiers. American Society for Microbiology, Washington, D.C.
131. Scharf, C.,, S. Riethdorf,, H. Ernst,, S. Engelmann,, U. Volker,, and M. Hecker. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180: 1869 1877.
132. Schirmer, E. C.,, J. R. Glover,, M. A. Singer,, and S. Lindquist. 1996. HSPlOO/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21: 289 296.
133. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. P. Moran, Jr., and R. Losick. 1990. Control of developmental transcription factor �� F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 9221 9225.
134. Scott, J. M.,, and W. G. Haldenwang. 1999. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor �� B. J. Bacteriol. 181: 4653 4660.
135. Scott, J. M.,, J. Ju,, T. Mitchell,, and W. G. Haldenwang. 2000. The Bacillus subtilis GTP binding protein Obg and regulators of the �� B stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182: 2771 2777.
136. Scott, J. M.,, T. Mitchell,, and W. G. Haldenwang. 2000. Stress triggers a process that limits activation of the Bacillus subtilis stress transcription factor �� B. J. Bacteriol. 182: 1452 1456.
137. Shi, L.,, K. M. Bischoff,, and P. J. Kennelly. 1999. The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. J. Bacteriol. 181: 4761 4767.
138. Smirnova, N.,, J. Scott,, U. Voelker,, and W. G. Haldenwang. 1998. Isolation and characterization of Bacillus subtilis sigB operon mutations that suppress the loss of the negative regulator RsbX. J. Bacteriol. 180: 3671 3680.
139. Sonenshein, A. L., 2000. Bacterial sporulation: a response to environmental signals, p. 199 215. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
140. Spiegelhalter, F.,, and E. Bremer. 1998. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the �� A- and �� B -dependent stress-responsive promoters. Mol. Microbiol. 29: 285 296.
141.. Squires, C.,, and C. L. Squires. 1992. The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol. 174: 1081 1085.
142. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297 241.
143. Sun, J.,, G. H. Kelemen,, J. M. Fernandez-Abalos,, and M. J. Bibb. 1999. Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145: 2221 2227.
144. Tatti, K. M.,, and C. P. Moran, Jr. 1984. Promoter recognition by sigma-37 RNA polymerase from Bacillus subtilis. J. Mol. Biol. 175: 285 297.
145. Tatusov, R. L.,, D. A. Natale,, I. V. Garkavtsev,, T. A. Tatusova,, U. T. Shankavaram,, B. S. Rao,, B. Kiryutin,, M. Y. Galperin,, N. D. Fedorova,, and E. V. Koonin. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29: 22 28.
146. Taylor, B. L.,, and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63: 479 506.
147. Trach, K.,, and J. A. Hoch. 1989. The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J. Bacteriol. 171: 1362 1371.
148. Truitt, C. L.,, E. A. Weaver,, and W. G. Haldenwang. 1988. Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (etc) transcribed in vitro by minor vegetative cell RNA polymerases (E-�� 37, E-�� 32 ). Mol. Gen. Genet. 212: 166 171.
149. Turgay, K.,, J. Hahn,, J. Burghoorn,, and D. Dubnau. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17: 6730 6738.
150. Valdivia, R. H.,, and S. Falkow. 1996. Bacterial genetics byflow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22: 367 378.
151. Varon, D.,, S. A. Boylan,, K. Okamoto,, and C. W. Price. 1993. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor �� B. J. Bacteriol. 175: 3964 3971.
152. Vidwans, S. J.,, K. Ireton,, and A. D. Grossman. 1995. Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177: 3308 3311.
153. Vijay, K.,, M. S. Brody,, E. Fredlund,, and C. W. Price. 2000. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the �� B transcription factor of Bacillus subtilis. Mol. Microbiol. 35: 180 188.
154. Vijay, K.,, M. S. Brody,, and C. W. Price. Unpublished results.
155. Voelker, U.,, A. Dufour,, and W. G. Haldenwang. 1995. The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of �� B. J. Bacteriol. 177: 114 122.
156. Voelker, U.,, T. Luo,, N. Smirnova,, and W. Haldenwang. 1997. Stress activation of Bacillus subtilis �� B can occur in the absence of the �� B negative regulator RsbX. J. Bacteriol. 179: 1980 1984.
157. Voelker, U.,, A. Voelker,, and W. G. Haldenwang. 1996. Reactivation of the Bacillus subtilis anti-��- B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J. Bacteriol. 178: 5456 5463.
158. Voelker, U.,, A. Voelker,, B. Maul,, M. Hecker,, A. Dufour,, and W. G. Haldenwang. 1995. Separate mechanisms activate �� B of Bacillus subtilis in response to environmental and metabolic stresses . J. Bacteriol. 177: 3771 3780.
159. Völker, U.,, K. K. Andersen,, H. Antelmann,, K. M. Devine,, and M. Hecker. 1998. One of two osmC homologs in Bacillus subtilis is part of the �� F-dependent general stress regulon. J. Bacteriol. 180: 4212 4218.
160. Volker, U.,, B. Maul,, and M. Hecker. 1999. Expression of the �� B-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J. Bacteriol. 181: 3942 3948.
161. von Blohn, C.,, B. Kempf,, R. M. Kappes,, and E. Bremer. 1997. Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor �� B Mol. Microbiol. 25: 175 187.
162. Weber-Ban, E. U.,, B. G. Reid,, A. D. Miranker,, and A. L. Horwich. 1999. Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature 401: 90 93.
163. Wiedmann, M.,, T. J. Arvik,, R. J. Hurley,, and K. J. Boor. 1998. General stress transcription factor �� B and its role in acid tolerance and virulence of Listeria monocytogenes. J. Bacteriol. 180: 3650 3656.
164. Wise, A. A.,, and C. W. Price. 1995. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor �� B in response to environmental signals. J. Bacteriol. 177: 123 133.
165. Wu, J. J.,, M. G. Howard,, and P. J. Piggot. 1989. Regulation of transcription of the Bacillus subtilis spoIIA locus. J. Bacteriol. 171: 692 698.
166. Wu, S.,, H. de Lencastre,, and A. Tomasz. 1996. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J. Bacteriol. 178: 6036 6042.
167. Xun, L.,, J. Bohuslavek,, and M. Cai. 1999. Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonos chlorophenolica ATCC 39723. Biochem. Biophys. Res. Commun. 266: 322 325.
168. Yang, X.,, C. M. Kang,, M. S. Brody,, and C. W. Price. 1996. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 10: 2265 2275.
169. York, K.,, T. J. Kenney,, S. Satola,, C. P. Moran, Jr.,, H. Poth,, and P. Youngman. 1992. SpoOA controls the �� A-dependent activation of Bacillus subtilis sporulation-specific transcription unit SpoIIE. J. Bacteriol. 174: 2648 2658.

Tables

Generic image for table
TABLE 1

Representative σ-dependent genes

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error