1887

Chapter 26 : General Stress Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

General Stress Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap26-2.gif

Abstract:

Induction of the general stress response by one stress affords significant cross-protection against other stresses. Activation of σ initiates the primary and secondary events that collectively bring about the general stress response. The diverse stresses which elicit σ activity fall into two classes: (i) energy stresses, such as those caused by carbon, phosphorus, or oxygen starvation, or by the addition of oxidative micouplers to the growth medium; and (ii) environmental stresses, such as acid, ethanol, heat, or salt stress. Site-directed mutagenesis has shown that the Per-Arnt-Sim (PAS) domain of RsbP, and at least one defining residue within the domain, are indeed important for the energy stress response. In contrast, the kinase activity of RsbT is essential for the environmental stress response, suggesting that modulation of this activity is one route by which signals enter the branch. In contrast, the RsbU, RsbP, and SpoIIE phosphatases each contain one or two additional domains that regulate phosphatase activity in response to diverse inputs, and this appears to be an emerging theme in stress-signaling PP2C phosphatases in both prokaryotic and eukaryotic organisms. Interestingly, components of the partner-switching mechanism appear to be widely distributed among the eubacteria. In some cases, such as in sp. strain PCC 6803, all components of the switch are present and manifest the predicted activities in vitro. In other cases, such as the RsbV ortholog YrbB, no obvious partner exists in the genome.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26

Key Concept Ranking

General Stress Response
0.5624246
0.5624246
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Model of the σ signal transduction network. Two signaling pathways converge on RsbV-P, the antagonist form found in unstressed cells. The energy-stress signaling pathway terminates with the RsbP phosphatase (PP2C), which contains a PAS domain important for energy stress sensing ( ). In contrast, the environmental-stress signaling pathway terminates with the RsbU phosphatase (PP2C), which is activated by upstream signaling elements ( ). When activated by stress, either the RsbP or the RsbU phosphatase removes the serine phosphate from RsbV-P. Dephosphorylated RsbV then binds the RsbW anti-σ factor, forcing it to release σ, which can then activate transcription of its target genes ( ). (B) The upstream regulators that activate RsbU include the RsbS antagonist and the RsbT kinase, which are homologs of RsbV and RsbW, respectively ( ). Unphosphorylated RsbS is thought to be the antagonist form found in unstressed cells, and this form binds the RsbT kinase. Following environmental stress, RsbS is phosphorylated by RsbT, which is then released to bind and activate the RsbU phosphatase by direct protein-protein interaction ( ). RsbR acts as a positive tegulator of σ activity by potentiating the activity of the RsbT kinase ( ). The RsbX phosphatase (PP2C) fulfills a negative feedback role by indirectly communicating σ protein levels ( ). The five regulators in the shaded box also act via the environmental signaling pathway but by an unknown mechanism. These include the RsbR homologs YkoB, YojH, YqhA, and YtvA ( ) and the Obg GTPase ( ). (C) Model of the σ signal transduction network. In vegetative cells SpolIAB phosphorylates and inactivates its SpoIIAA antagonist, allowing SpolIAB to bind and sequester σ in an inactive complex ( ). During the sporulation process, the SpoIIE serine phosphatase associates with the developing asymmetric septum ( ). Upon completion of the septum, SpoIIE releases dephosphorylated SpoIIAA, which then attacks the SpolIAB anti-σ factor to form a ternary complex with SpoIIAB and ADP, releasing active σ in the prespore compartment ( ).

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Transcriptional organization of genes coding for the σ and σ signaling networks. (Upper) Genes of the σ network ( ). The known genes for the energy signaling branch lie in the operon (crosshatched) and those for the environmental signaling branch compose the upstream half of the operon (light shading). As shown in Fig. 1 , these two branches communicate with the common regulators encoded by , , and in the downstream half of the operon (open rectangles). Expression of and (dark shading) may be translationally coupled to provide an indirect signal of σ levels. (Lower) Genes of the σ network ( ). The phosphatase encoded by communicates completion of the asymmetric sporulation septum to the regulators encoded by , , and (), which compose the operon.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Comparison of σ and σ-like operons found in gram-positive bacteria. Both ( ) and ( ; http://www.tigr.org/tdb/mdb/mdbinprogress.html) possess eight-gene operons like the one in (top line); it is not known whether they also bear the energy signaling operon. (Sa), (Ba), (Mt), and (Sc) have less extensive σ or σ-like operons ( ); the predicted and products of and (black shading) have no resemblance to known partner-switching regulators or to each other. The unfinished genome (available at the Sanger Center website: http://www.sanger.ac.uk/Projects/S_coelicolor/) contains at least four additional clusters encoding potential partner-switching regulators. One cluster encodes homologs of the RsbQ and RsbP energy stress regulators, complete with a PAS domain in the amino-terminal region of the phosphatase ( ), and also encodes an RsbV-like protein (SCH35.32c). A second cluster contains seven genes, of which only the central four are shown here. These encode homologs of RsbR, RsbS, and RsbT, together with an apparent fusion of an RsbT-like protein with a PP2C phosphatase domain (SC5F8.31c). These four genes are flanked by upstream reading frames for PP2C and RsbV homologs (SC4G10.05 and SC4G10.04) and a downstream frame for another PP2C homolog (SC5F8.30c). The third cluster encodes homologs of RsbV and RsbW, called BldG and Orf3 ( ). The fourth cluster also encodes homologs of RsbV and RsbW, transcribed divergently from , the gene for a predicted stress-sporulation σ factor. Not shown are four additional unlinked genes encoding RsbV-like proteins: SC2H2.17, SC5F1.27c, and SC6F11.08, which retain the conserved serine residue on which the antagonists are phosphorylated ( ), and 2SC6G5.30, which lacks the serine but retains an adjacent conserved threonine. Sc open reading frames are named according to the convention adopted by the genome project.

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap26
1. Adler, E.,, A. Donella-Deana,, F. Arigoni,, L. A. Pinna,, and P. Stragier. 1997. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases. Mol. Microbiol. 23:5762.
2. Akbar, S.,, T. A. Gaidenko,, C. M. Kang,, M. O'Reilly,, K. M. Devine,, and C. W. Price. 2001. New family of regulators in the environmental signaling pathway which activates the general stress factor ��B of Bacillus subtilis. J. Bacteriol. 183:13291338.
3. Akbar, S.,, C. M. Kang,, T. A. Gaidenko,, and C. W. Price. 1997. Modulator protein RsbR regulates environmental signalling in the general stress pathway of Bacillus subtilis. Mol. Microbiol. 24:567578.
4. Akbar, S.,, S. Y. Lee,, S. A. Boylan,, and C. W. Price. 1999. Two genes from Bacillus subtilis under the sole control of the general stress transcription factor ��B. Microbiology 145:10691078.
5. Akbar, S.,, and C. W. Price. 1996. Isolation and characterization of csbB, a gene controlled by Bacillus subtilis general stress transcription factor ��B. Gene 177:123128.
6. Alper, S.,, A. Dufour,, D. A. Garsin,, L. Duncan,, and R. Losick. 1996. Role of adenosine nucleotides in the regulation of a stress-response transcription factor in Bacillus subtilis. J. Mol. Biol. 260:165177.
7. Alper, S.,, L. Duncan,, and R. Losick. 1994· An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77: 195205.
8. Antelmann, H.,, J. Bernhardt,, R. Schmid,, and M. Hecker. 1995. A gene at 333 degrees on the Bacillus subtilis chromosome encodes the newly identified ��B-dependent general stress protein GspA. J. Bacteriol. 177:35403545.
9. Antelmann, H.,, J. Bernhardt,, R. Schmid,, H. Mach,, U. Volker,, and M. Hecker. 1997. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 18:14511463.
10. Antelmann, H.,, S. Engelmann,, R. Schmid,, and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 65716578.
11. Antelmann, H.,, S. Engelmann,, R. Schmid,, A. Sorokin,, A. Lapidus,, and M. Hecker. 1997. Expression of a stress-and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor ��B in Bacillus subtilis. J. Bacteriol. 179:72517256.
12. Antelmann, H.,, R. Schmid,, and M. Hecker. 1997. The NAD synthetase NadE (OutB) of Bacillus subtilis is a ��B-dependent general stress protein. FEMS Microbiol. Lett. 153:405409.
13. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor ��F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:32383242.
14. Arigoni, F.,, A. M. Guerout-Fleury,, I. Barak,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31:14071415.
15. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270:637640.
16. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by ��F, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180:20572062.
17. Barak, I.,, J. Behari,, G. Olmedo,, P. Guzman,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19:10471060.
18. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5:447455.
19. Becker, L. A.,, M. S. Cetin,, R. W. Hutkins,, and A. K. Benson. 1998. Identification of the gene encoding the alternative sigma factor ��B from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180:45474554.
20. Becker, L. A.,, S. N. Evans,, R. W. Hutkins,, and A. K. Benson. 2000. Role of ��B in adaptation of Listeria monocytogenes to growth at low temperature. J. Bacteriol. 182: 70837087.
21. Benson, A. K.,, and W. G. Haldenwang. 1993. Bacillus subtilis ��B is regulated by a binding protein (RsbW) that blocks its association with core RNA polymerase. Proc. Natl. Acad. Sci. USA 90:23302334.
22. Benson, A. K.,, and W. G. Haldenwang. 1992. Characterization of a regulatory network that controls ��B expression in Bacillus subtilis. J. Bacteriol. 174:749757.
23. Benson, A. K.,, and W. G. Haldenwang. 1993. Regulation of ��B levels and activity in Bacillus subtilis. J. Bacteriol. 175:23472356.
24. Benson, A. K.,, and W. G. Haldenwang. 1993. The σB-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J. Bacteriol. 175:19291935.
25. Bernhardt, J.,, U. Volker,, A. Volker,, H. Antelmann,, R. Schmid,, H. Mach,, and M. Hecker. 1997. Specific and general stress proteins in Bacillus subtilis—a two-dimensional protein electrophoresis study. Microbiology 143: 9991017.
26. Bignell, D. R.,, J. L. Warawa,, J. L. Strap,, K. F. Chater,, and B. W. Leskiw. 2000. Study of the bldG locus suggests that an anti-anti-�� factor and an anti-�� factor may be involved in Streptomyces coelicolor antibiotic production and sporulation. Microbiology 146:21612173.
27. Bork, P.,, N. P. Brown,, H. Hegyi,, and J. Schultz. 1996. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci. 5:14211425.
28. Boylan, S. A., A. R. Redfield, M. S. Brody, and C. W. Price. 1993. Stress-induced activation of the ��B transcription factor of Bacillus subtilis. J. Bacteriol. 175:79317937.
29. Boylan, S. A., A. Rutherford, S. M. Thomas, and C. W. Price. 1992. Activation of Bacillus subtilis transcription factor ��B by a regulatory pathway responsive to stationary-phase signals. J. Bacteriol. 174:36953706.
30. Bremer, E.,, and R. Kramer,. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria, p. 7997. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
31. Brody, M. S.,, and C. W. Price. 1998. Bacillus licheniformis sigB operon encoding the general stress transcription factor ��B. Gene 212:111118.
32. Brody, M. S.,, K. Vijay,, and C. W. Price. Unpublished results.
33. Bsat, N.,, A. Herbig,, L. Casillas-Martinez,, P. Setlow,, and J. D. Helmann. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189198.
34. Chan, P. F.,, S. J. Foster,, E. Ingham,, and M. O. Clements. 1998. The Staphylococcus aureus alternative sigma factor ��B controls the environmental stress response but not starvation survival or pathogenicity in a mouse abscess model. J. Bacteriol. 180:60826089.
35. Chater, K. F.,, and R. Losick,. 1997. Mycelial life cycle of Streptomyces coelicolor A3(2) and its relatives, p. 149182. In J. A. Shapiro, and M. Dworkin (ed.), Bacteria as Multicellular Organisms. Oxford University Press, New York, N.Y.
36. Chen, P.,, J. Gomez,, and W. R. Bishai,. 2000. Mycobacterial transcription regulation in stationary phase, p. 149156. In G. F. Hatfull, and W. R. Jacobs (ed.), Molecular Genetics of Mycobacteria. American Society for Microbiology, Washington, D.C.
37. Chen, P.,, R. E. Ruiz,, Q. Li,, R. F. Silver,, and W. R. Bishai. 2000. Construction and characterization of a Mycobacterium tuberculosis mutant lacking the alternate �� factor gene, sigF. Infect. Immun. 68:55755580.
38. Cheung, A. L., Y. T. Chien, and A. S. Bayer. 1999. Hyperproduction of α-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. Infect. Immun. 67:13311337.
39. Chien, Y.,, and A. L. Cheung. 1998. Molecular interactions between two global regulators, sar and agr, in Staphylococcus aureus. J. Biol. Chem. 273:26452652.
40. Cole, S. T., et al. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544.
41. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284:13181322.
42. Daniel, R. A., E. J. Harry, V. L. Katis, R. G. Wake, and J. Errington. 1998. Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29: 593604.
43. DeMaio, J.,, Y. Zhang,, C. Ko,, and W. R. Bishai. 1997. Mycobacterium tuberculosis sigF is part of a gene cluster with similarities to the Bacillus subtilis sigF and sigB operons. Tuber. LungDis. 78:312.
44. DeMaio, J.,, Y. Zhang,, C. Ko,, D. B. Young,, and W. R. Bishai. 1996. A stationary-phase stress-response sigma factor from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 93:27902794.
45. Deora, R.,, T. Tseng, and T. K. Misra. 1997. Alternative transcription factor ��SB of Staphylococcus aureus: characterization and role in transcription of the global regulatory locus sar. J. Bacteriol. 179:63556359.
46. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, M. Najafi,, J. Erringston,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor ��F of Bacillus subtilis. Genes Dev. 8: 26532663.
47. Doukhan, L.,, M. Predich,, G. Nair,, O. Dussurget,, I. Mandic-Mulec,, S. T. Cole,, D. R. Smith,, and I. Smith. 1995. Genomic organization of the mycobacterial sigma gene cluster. Gene 165:6770.
48. Drzewiecki, K.,, C. Eymann,, G. Mittenhuber,, and M. Hecker. 1998. The yvyD gene of Bacillus subtilis is under dual control of ��B and ��H. J. Bacteriol. 180:66746680.
49. Dufour, A.,, and W. G. Haldenwang. 1994. Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J. Bacteriol. 176:18131820.
50. Dufour, A.,, U. Voelker,, A. Voelker,, and W. G. Haldenwang. 1996. Relative levels and fractionation properties of Bacillus subtilis ��B and its regulators during balanced growth and stress. J. Bocteriol. 178:37013709.
51. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
52. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type specific transcription factor ��F from its anti-�� factor SpoIIAB. J. Mol. Biol. 260: 147164.
53. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-�� factor that binds to and inhibits transcription by regulatory protein ��F from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 90:23252329.
54.. Engelmann, S.,, and M. Hecker. 1996. Impaired oxidative stress resistance of Bacillus subtilis sigB mutants and the role of katA and katE. FEMS Microbiol Lett. 145:6369.
55. Engelmann, S.,, C. Lindner,, and M. Hecker. 1995. Cloning, nucleotide sequence, and regulation of katE encoding a ��B-dependent catalase in Bacillus subtilis. J. Bacteriol. 177:55985605.
56. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33:10151026.
57. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10:794803.
58. Fort, P.,, and P. J. Piggot. 1984. Nucleotide sequence of sporulation locus spoIIA in Bacillus subtilis. J. Gen. Microbiol. 130:21472153.
59. Fouet, A.,, O. Namy,, and G. Lambert. 2000. Characterization of the operon encoding the alternative ��B factor from Bacillus anthracis and its role in virulence. J. Bacteriol. 182:50365045.
60. Gaidenko, T. A.,, and C. W. Price. 1998. General stress transcription factor ��B and sporulation transcription factor ��B each contribute to survival of Bacillus subtilis under extreme growth conditions. J. Bacteriol. 180:37303733.
61. Gaidenko, T. A.,, X. Yang,, Y. M. Lee,, and C. W. Price. 1999. Threonine phosphorylation of modulator protein RsbR governs its ability to regulate a serine kinase in the environmental stress signaling pathway of Bacillus subtilis. J. Mol. Biol. 288:2939.
62. Garsin, D. A.,, L. Duncan,, D. M. Paskowitz,, and R. Losick. 1998. The kinase activity of the antisigma factor SpoIIAB is required for activation as well as inhibition of transcription factor ��F during sporulation in Bacillus subtilis. J.Mol. Biol. 284:569578.
63. Gerth, U.,, E. Kriiger,, I. Derre,, T. Msadek,, and M. Hecker. 1998. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol. 28:787802.
64. Gertz, S.,, S. Engelmann,, R. Schmid,, K. Ohlsen,, J. Hacker,, and M. Hecker. 1999. Regulation of aB-dependent transcription of sigB and asp23 in two different Staphylococcus aureus strains. Mol. Gen. Genet. 261:558566.
65. Gomez, J. E.,, J. M. Chen,, and W. R. Bishai. 1997. Sigma factors of Mycobacterium tuberculosis. Tuber. LungDis. 78: 175183.
66. Gomez, M.,, and S. M. Cutting. 1997. Identification of a new ��F-controlled gene, csbX, in Bacillus subtilis. Gene 188:2933.
67. Gottesman, S.,, M. R. Maurizi,, and S. Wickner. 1997. Regulatory subunits of energy-dependent proteases. Cell 91:435438.
68. Graham, J. E.,, and J. E. Clark-Curtiss. 1999. Identification of Mycobacterium tuberculosis RN As synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). Proc. Natl. Acad. Sci. USA 96:1155411559.
69. Grinsted, J.,, and R. W. Lacey. 1973. Ecological and genetic implications of pigmentation in Staphylococcus aureus. J. Gen. Microbiol. 75:259267.
70. Gruber, T. M., and D. A. Bryant. 1997. Molecular systematic studies of eubacteria, using ��70-type �� factors of group 1 and group 2. J. Bacteriol. 179:17341747.
71. Guzman, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol 170:15981609.
72. Haldenwang, W. G. 1995. The sigma factors of Bacillus subtilis. Microbiol. Rev. 59:130.
73. Haldenwang, W. G.,, and R. Losick. 1979. A modified RNA polymerase transcribes a cloned gene under sporulation control in Bacillus subtilis. Nature 282:256260.
74. Haldenwang, W. G.,, and R. Losick. 1980. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77:70007004.
75. Hennge-Aronis, R., 2000. The general stress response in Escherichia coli, p. 161178. In G. Storz, and R. Hennge-Aronis (ed.), Bacterial Stress Reponses. American Society for Microbiology, Washington, D.C.
76. Hilden, I.,, B. N. Krath,, and B. Hove-Jensen. 1995. Tricistronic operon expression of the genes geaD (cms), which encodes N-acetylglucosamine 1-phosphate uridyltransferase, prs, which encodes phosphoribosyl diphosphate synthetase, and etc in vegetative cells of Bacillus subtilis. J. Bacteriol. 177: 72807284.
77. Hu, Y.,, and A. R. M. Coates. 1999. Transcription of two ��70 homologue genes, sigA and sigB, in stationary-phase Mycobacterium tuberculosis. J. Bacteriol. 181:469476.
78. Igo, M.,, M. Lampe,, C. Ray,, W. Schafer,, C. P. Moran, Jr.,, and R. Losick. 1987. Genetic studies of a secondary RNA polymerase sigma factor in Bacillus subtilis. J. Bacteriol. 169:34643469.
79. Igo, M.,, and R. Losick. 1986. Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis. J. Mol. Biol. 191:615624.
80. Kalman, S.,, M. L. Duncan,, S. M. Thomas,, and C. W. Price. 1990. Similar organization of the sigB and spoil A operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J. Bacteriol. 172:55755585.
81. Kang, C. M., M. S. Brody, S. Akbar, X. Yang, and C. W. Price. 1996. Homologous pairs of regulatory proteins control activity of Bacillus subtilis transcription factor ��B in response to environmental stress. J. Bacteriol. 178: 38463853.
82. Kang, C. M., K. Vijay, and C. W. Price. 1998. Serine kinase activity of a Bacillus subtilis switch protein is required to transduce environmental stress signals but not to activate its target PP2C phosphatase. Mol. Microbiol. 30: 189196.
83. Kelemen, G. H.,, P. Brian,, K. Flardh,, L. Chamberlin,, K. F. Chater,, and M. J. Buttner. 1998. Developmental regulation of transcription of whiE, a locus specifying the polyketide spore pigment in Streptomyces coelicolor A3 (2). J. Bacteriol. 180:25152521.
84. Kim, Y. I.,, R. E. Burton,, B. M. Burton,, R. T. Sauer,, and T. A. Baker. 2000. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5:639648.
85. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of ��F during sporulation in Bacillus subtilis. Genes Dev. 13:11561167.
86. Knobloch, J. K.-M.,, K. Bartscht,, A. Sabottke,, H. Rohde,, H.-H. Feucht,, and D. Mack. 2001. Biofilm formation of Staphyhcoccus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol. 183: 26242633.
87. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176:71557160.
88. Koonin, E. V.,, L. Aravind,, and M. Y. Galperin,. 2000. A comparative-genomic view of the microbial stress response, p. 417444. In G. Storz, and R. Hennge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
89. Kormanec, J.,, D. Homerova,, I. Barak,, and B. Sevcikova. 1999. A new gene, sigG, encoding a putative alternative �� factor of Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 172:153158.
90. Kormanec, J., B. Ševčíková, N. Halgašová, R. Knirschová, and B. Řežuchová. 2000. Identification and transcriptional characterization of the gene encoding the stress-response �� factor ��H in Streptomyces coelicolor A3(2). FEMS Microbiol Lett. 189:3138.
91. Krüger, E.,, T. Msadek,, and M. Hecker. 1996. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol. Microbiol. 20:713723.
92. Kriiger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of cipC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176:33603367.
93. Krüger, E.,, E. Witt,, S. Ohlmeier,, R. Hanschke,, and M. Hecker. 2000. The clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182:32593265.
94. Kullik, I.,, and P. Giachino. 1997. The alternative sigma factor ��B in Staphylococcus aureus: regulation of the sigB operon in response to growth phase and heat shock. Arch. Microbiol. 167:151159.
95. Kullik, I.,, P. Giachino,, and T. Fuchs. 1998. Deletion of the alternative sigma factor ��B in Staphylococcus aureus reveals its function as a global regulator of virulence genes. J. Bacteriol. 180:48144820.
96. Lee, C. S.,, I. Lucet,, and M. D. Yudkin. 2000. Fate of the SpoIIAB*-ADP liberated after SpoIIAB phosphorylates SpoIIAA of Bacillus subtilis. J. Bacteriol. 182:62506253.
97. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176:14511459.
98. Lou, Y.,, and A. E. Yousef. 1997. Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl. Environ. Microbiol. 63:12521255.
99. Magnin, T.,, M. Lord,, and M. D. Yudkin. 1997. Contribution of partner switching and SpoIIAA cycling to regulation of ��F activity in sporulating Bacillus subtilis. J. Bacteriol. 179:39223927.
100. Manabe, Y. C.,, J. M. Chen,, C. G. Ko,, P. Chen,, and W. R. Bishai. 1999. Conditional sigma factor expression, using the inducible acetamidase promoter, reveals that the Mycobacterium tuberculosis sigF gene modulates expression of the 16-kilodalton α-crystallin homologue. J. Bacteriol. 181:76297633.
101. Manganelli, R.,, E. Dubnau,, S. Tyagi,, F. R. Kramer,, and I. Smith. 1999. Differential expression of 10 �� factor genes in Mycobacterium tuberculosis. Mol. Microbiol. 31: 715724.
102. Manna, A. C.,, M. G. Bayer,, and A. L. Cheung. 1998. Transcriptional analysis of different promoters in the sar locus in Staphylococcus aureus. J. Bacteriol. 180:38283836.
103. Margolis, P.,, A. Driks,, and R. Losick. 1991. Establishment of cell type by compartmentalized activation of a transcription factor. Science 254:562565.
104. Martinez, A.,, and R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179:51885194.
105. Michele, T. M.,, C. Ko,, and W. R. Bishai. 1999. Exposure to antibiotics induces expression of the Mycobacterium tuberculosis sigF gene: implications for chemotherapy against mycobacterial persistors. Antimicrob. Agents Chemother. 43:218225.
106. Min, K. T.,, C. M. Hilditch,, B. Diederich,, J. Errington,, and M. D. Yudkin. 1993. ��F, the first compartment-specific transcription factor of B. subtilis, is regulated by an anti-�� factor that is also a protein kinase. Cell 74:735742.
107. Miyauchi, K.,, Y. Adachi,, Y. Nagata,, and M. Takagi. 1999. Cloning and sequencing of a novel meta-cleavage dioxygenase gene whose product is involved in degradation of ��-hexachlorocyclohexane in Sphingomonas paucimobilis. J. Bacteriol. 181:67126719.
108. Miyazaki, E.,, J. M. Chen,, C. Ko,, and W. R. Bishai. 1999. The Staphylococcus aureus rsbW (orfl59) gene encodes an anti-�� factor of SigB. J. Bacteriol. 181:28462851.
109. Mogk, A.,, A. Volker,, S. Engelmann,, M. Hecker,, W. Schumann,, and U. Volker. 1998. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180:28952900.
110. Mongkolsuk, S.,, W. Praituan,, S. Loprasert,, M. Fuangthong,, and S. Chamnongpol. 1998. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180:26362643.
111. Moran, C. P., Jr.,, W. C. Johnson,, and R. Losick. 1982. Close contacts between ��37-RNA polymerase and a Bacillus subtilis chromosomal promoter. J. Mol. Biol. 162: 709713.
112. Moran, C. P., Jr.,, N. Lang,, and R. Losick. 1981. Nucleotide sequence of a Bacillus subtilis promoter recognized by Bacillus subtilis RNA polymerase containing ��37 . Nucleic Acids Res. 9:59795990.
113. Msadek, T.,, V. Dartois,, F. Kunst,, M. L. Herbaud,, F. Denizot,, and G. Rapoport. 1998. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol. Microbiol. 27:899914.
114. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91:57885792.
115. Najafi, S. M.,, D. A. Harris,, and M. D. Yudkin. 1997. Properties of the phosphorylation reaction catalyzed by SpolIAB that help to regulate sporulation of Bacillus subtilis. J. Bacteriol. 179:56285631.
116. Najafi, S. M. A.,, A. C. Willis,, and M. Yudkin. 1995. Site of phosphorylation of SpoIIAA, the anti-anti-�� factor for sporulation-specific ��F of Bacillus subtilis. J. Bacteriol. 177:29122913.
117. Newton, G. L.,, and R. C. Fahey,. 1989. Glutathione in prokaryotes, p. 6977. In J. Vina (ed.), Glutathione: Metabolism and Physiological Functions. CRC Press, Boca Raton, Fla.
118. Nicholas, R. O.,, T. Li,, D. McDevitt,, A. Marra,, S. Sucoloski,, P. L. Demarsh,, and D. R. Gentry. 1999. Isolation and characterization of a sigB deletion mutant of Staphylococcus aureus. Infect. Immun. 67:36673669.
119. O'Driscoll, B.,, C. G. Gahan,, and C. Hill. 1996. Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl. Environ. Microbiol. 62:16931698.
120. Ogasawara, N.,, S. Nakai,, and H. Yoshikawa. 1994· Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1:114
121. Ollis, D. L., et al. 1992. The α/�� hydrolase fold. Protein Eng. 5:197211.
122. Petersohn, A.,, J. Antelmann,, U. Gerth,, and M. Hecker. 1999. Identification and transcriptional analysis of new members of the ��B regulon in Bacillus subtilis. Microbiology 145:869880.
123. Petersohn, A.,, J. Bernhardt,, U. Gerth,, D. Hoper,, T. Koburger, U. Volker, and M. Hecker. 1999. Identification of ��B-dependent genes in Bacillus subtilis using a promotet consensus-directed search and oligonucleotide hybridization. J. Bacteriol. 181:57185724.
124. Petersohn, A.,, S. Engelmann, P. Setlow, and M. Hecker. 1999. The katX gene of Bacillus subtilis is under dual control of ��B and ��F Mol. Gen. Genet. 262:173179.
125. Potuckova, L.,, G. H. Kelemen,, K. C. Findlay,, M. A. Lonetto,, M. J. Buttner,, and J. Kormanec. 1995. A new RNA polymerase sigma factor, ��F, is required for the late stages of morphological differentiation in Streptomyces spp. Mol. Microbiol. 17:3748.
126. Price, C. W., 2000. Protective function and regulation of the general stress response in Bacillus subtilis and related gram-positive bacteria, p. 179197. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
127. Price, C. W.,, P. Fawcett,, H. Ceremonie,, N. Su,, C. K. Murphy,, and P. Youngman. 2001. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol. Microbiol. 41, in press.
128. Rachid, S.,, K. Ohlsen,, U. Wallner,, J. Hacker,, M. Hecker,, and W. Ziebuhr. 2000. Alternative transcription factor ��B is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182:68246826.
129. Ray, C.,, R. E. Hay,, H. L. Carter,, and C. P. Moran, Jr. 1985. Mutations that affect utilization of a promoter in stationary-phase Bacillus subtilis. J. Bacteriol. 163:610614.
130. Rocourt, J.,, and P. Cossart,. 1997. Listeria monocytogenes, p. 337352. In M. P. Doyle,, L. R. Beuchat,, and T. J. Montville (ed.), Food Microbiology—Fundamentals and Frontiers. American Society for Microbiology, Washington, D.C.
131. Scharf, C.,, S. Riethdorf,, H. Ernst,, S. Engelmann,, U. Volker,, and M. Hecker. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180:18691877.
132. Schirmer, E. C.,, J. R. Glover,, M. A. Singer,, and S. Lindquist. 1996. HSPlOO/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21:289296.
133. Schmidt, R.,, P. Margolis,, L. Duncan,, R. Coppolecchia,, C. P. Moran, Jr., and R. Losick. 1990. Control of developmental transcription factor ��F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 87:92219225.
134. Scott, J. M.,, and W. G. Haldenwang. 1999. Obg, an essential GTP binding protein of Bacillus subtilis, is necessary for stress activation of transcription factor ��B. J. Bacteriol. 181:46534660.
135. Scott, J. M.,, J. Ju,, T. Mitchell,, and W. G. Haldenwang. 2000. The Bacillus subtilis GTP binding protein Obg and regulators of the ��B stress response transcription factor cofractionate with ribosomes. J. Bacteriol. 182:27712777.
136. Scott, J. M.,, T. Mitchell,, and W. G. Haldenwang. 2000. Stress triggers a process that limits activation of the Bacillus subtilis stress transcription factor ��B. J. Bacteriol. 182:14521456.
137. Shi, L.,, K. M. Bischoff,, and P. J. Kennelly. 1999. The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. J. Bacteriol. 181: 47614767.
138. Smirnova, N.,, J. Scott,, U. Voelker,, and W. G. Haldenwang. 1998. Isolation and characterization of Bacillus subtilis sigB operon mutations that suppress the loss of the negative regulator RsbX. J. Bacteriol. 180:36713680.
139. Sonenshein, A. L., 2000. Bacterial sporulation: a response to environmental signals, p. 199215. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
140. Spiegelhalter, F.,, and E. Bremer. 1998. Osmoregulation of the opuE proline transport gene from Bacillus subtilis: contributions of the ��A- and ��B -dependent stress-responsive promoters. Mol. Microbiol. 29:285296.
141.. Squires, C.,, and C. L. Squires. 1992. The Clp proteins: proteolysis regulators or molecular chaperones? J. Bacteriol. 174:10811085.
142. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297241.
143. Sun, J.,, G. H. Kelemen,, J. M. Fernandez-Abalos,, and M. J. Bibb. 1999. Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145:22212227.
144. Tatti, K. M.,, and C. P. Moran, Jr. 1984. Promoter recognition by sigma-37 RNA polymerase from Bacillus subtilis. J. Mol. Biol. 175:285297.
145. Tatusov, R. L.,, D. A. Natale,, I. V. Garkavtsev,, T. A. Tatusova,, U. T. Shankavaram,, B. S. Rao,, B. Kiryutin,, M. Y. Galperin,, N. D. Fedorova,, and E. V. Koonin. 2001. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29:2228.
146. Taylor, B. L.,, and I. B. Zhulin. 1999. PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63:479506.
147. Trach, K.,, and J. A. Hoch. 1989. The Bacillus subtilis spoOB stage 0 sporulation operon encodes an essential GTP-binding protein. J. Bacteriol. 171:13621371.
148. Truitt, C. L.,, E. A. Weaver,, and W. G. Haldenwang. 1988. Effects on growth and sporulation of inactivation of a Bacillus subtilis gene (etc) transcribed in vitro by minor vegetative cell RNA polymerases (E-��37, E-��32 ). Mol. Gen. Genet. 212:166171.
149. Turgay, K.,, J. Hahn,, J. Burghoorn,, and D. Dubnau. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17:67306738.
150. Valdivia, R. H.,, and S. Falkow. 1996. Bacterial genetics byflow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Mol. Microbiol. 22:367378.
151. Varon, D.,, S. A. Boylan,, K. Okamoto,, and C. W. Price. 1993. Bacillus subtilis gtaB encodes UDP-glucose pyrophosphorylase and is controlled by stationary-phase transcription factor ��B. J. Bacteriol. 175:39643971.
152. Vidwans, S. J.,, K. Ireton,, and A. D. Grossman. 1995. Possible role for the essential GTP-binding protein Obg in regulating the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177:33083311.
153. Vijay, K.,, M. S. Brody,, E. Fredlund,, and C. W. Price. 2000. A PP2C phosphatase containing a PAS domain is required to convey signals of energy stress to the ��B transcription factor of Bacillus subtilis. Mol. Microbiol. 35: 180188.
154. Vijay, K.,, M. S. Brody,, and C. W. Price. Unpublished results.
155. Voelker, U.,, A. Dufour,, and W. G. Haldenwang. 1995. The Bacillus subtilis rsbU gene product is necessary for RsbX-dependent regulation of ��B. J. Bacteriol. 177: 114122.
156. Voelker, U.,, T. Luo,, N. Smirnova,, and W. Haldenwang. 1997. Stress activation of Bacillus subtilis ��B can occur in the absence of the ��B negative regulator RsbX. J. Bacteriol. 179:19801984.
157. Voelker, U.,, A. Voelker,, and W. G. Haldenwang. 1996. Reactivation of the Bacillus subtilis anti-��-B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J. Bacteriol. 178:54565463.
158. Voelker, U.,, A. Voelker,, B. Maul,, M. Hecker,, A. Dufour,, and W. G. Haldenwang. 1995. Separate mechanisms activate ��B of Bacillus subtilis in response to environmental and metabolic stresses. J. Bacteriol. 177:37713780.
159. Völker, U.,, K. K. Andersen,, H. Antelmann,, K. M. Devine,, and M. Hecker. 1998. One of two osmC homologs in Bacillus subtilis is part of the ��F-dependent general stress regulon. J. Bacteriol. 180:42124218.
160. Volker, U.,, B. Maul,, and M. Hecker. 1999. Expression of the ��B-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J. Bacteriol. 181: 39423948.
161. von Blohn, C.,, B. Kempf,, R. M. Kappes,, and E. Bremer. 1997. Osmostress response in Bacillus subtilis: characterization of a proline uptake system (OpuE) regulated by high osmolarity and the alternative transcription factor ��B Mol. Microbiol. 25:175187.
162. Weber-Ban, E. U.,, B. G. Reid,, A. D. Miranker,, and A. L. Horwich. 1999. Global unfolding of a substrate protein by the HsplOO chaperone ClpA. Nature 401:9093.
163. Wiedmann, M.,, T. J. Arvik,, R. J. Hurley,, and K. J. Boor. 1998. General stress transcription factor ��B and its role in acid tolerance and virulence of Listeria monocytogenes. J. Bacteriol. 180:36503656.
164. Wise, A. A.,, and C. W. Price. 1995. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor ��B in response to environmental signals. J. Bacteriol. 177:123133.
165. Wu, J. J.,, M. G. Howard,, and P. J. Piggot. 1989. Regulation of transcription of the Bacillus subtilis spoIIA locus. J. Bacteriol. 171:692698.
166. Wu, S.,, H. de Lencastre,, and A. Tomasz. 1996. Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J. Bacteriol. 178:60366042.
167. Xun, L.,, J. Bohuslavek,, and M. Cai. 1999. Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonos chlorophenolica ATCC 39723. Biochem. Biophys. Res. Commun. 266:322325.
168. Yang, X.,, C. M. Kang,, M. S. Brody,, and C. W. Price. 1996. Opposing pairs of serine protein kinases and phosphatases transmit signals of environmental stress to activate a bacterial transcription factor. Genes Dev. 10:22652275.
169. York, K.,, T. J. Kenney,, S. Satola,, C. P. Moran, Jr.,, H. Poth,, and P. Youngman. 1992. SpoOA controls the ��A-dependent activation of Bacillus subtilis sporulation-specific transcription unit SpoIIE. J. Bacteriol. 174:26482658.

Tables

Generic image for table
TABLE 1

Representative σ-dependent genes

Citation: Price C. 2002. General Stress Response, p 369-384. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error