Chapter 27 : Adaptation to Changing Osmolanty

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Adaptation to Changing Osmolanty, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap27-2.gif


Microorganisms lack systems for active water transport; therefore, their cellular water content and turgor is governed by osmosis and is strongly affected by the osmolarity of the environment. In some microorganisms, dedicated water channels, the aquaporins, mediate accelerated water fluxes in both directions when the external osmolarity changes. The survival and growth of in osmotically changing habitats depends on highly integrated cellular adaptation reactions that are either part of the SigB-controlled general stress regulon or specific to osmotic stress. The specific stress reactions of many spp. comprise the synthesis and uptake of certain organic osmolytes, in particular proline, glycine betaine, and ectoine, under hyperosmotic conditions and their expulsion under hypoosmotic circumstances. The genetic mechanism by which distinguishes between exogenously provided and endogenously synthesized proline is currently unknown. Accumulation of compatible solutes under high osmolarity conditions is not only common in the microbial world ( and ) but is also characteristic of fungal, plant, animal, and even human cells. Glycine betaine (N,N,N-trimethyl glycine) is one of the most potent compatible solutes found in nature. The high degree of sequence identity of the OpuB and OpuC systems and the close proximity of their structural genes in the genome argue that these two loci evolved through a gene duplication event. Both the specific osmostress reactions and the induction of the SigB-dependent general stress response are likely to play important physiological roles for the effective adaptation of to changing osmolarity in its natural habitats.

Citation: Bremer E. 2002. Adaptation to Changing Osmolanty, p 385-391. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch27

Key Concept Ranking

Sigma Factor SigB
General Stress Response
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Systems for the uptake and expulsion of K and compatible solutes in

Citation: Bremer E. 2002. Adaptation to Changing Osmolanty, p 385-391. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Chemical structures of osmoprotectants used by

Citation: Bremer E. 2002. Adaptation to Changing Osmolanty, p 385-391. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Biosynthesis pathways for proline and ectoine and glycine betaine in sp. (A) Proline biosynthesis for anabolic and osmostress protective purposes in (B) Osmoregulatory synthesis for the compatible solute ectoine in

Citation: Bremer E. 2002. Adaptation to Changing Osmolanty, p 385-391. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ang, D.,, K. Liberek,, D. Skowyra,, M. Zylicz,, and C. Georgopoulos. 1991. Biological role and regulation of the universally conserved heat shock proteins. J. Biol. Chem. 266: 24233 24236.
2. Antelmann, H.,, S. Engelmann,, R. Schmid,, and M. Hecker. 1996. General and oxidative stress responses in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178: 6571 6578.
3. Bardwell, J. C. A.,, and E. A. Craig. 1987. Eukaryotic M r 83,000 heat shock protein has a homologue in Escherichia coli. Proc. Natl. Acad. Sci. USA 84: 5177 5181.
4. Bardwell, J. C. A.,, and E. A. Craig. 1988. Ancient heat shock gene is dispensable. J. Bacteriol. 170: 2977 2983.
5. Behrens, S.,, F. Narberhaus,, and H. Bahl. 1993. Cloning, nucleotide sequence and structural analysis of the Clostridium acetobutylicum dna] gene. FEMS Microbiol. Lett. 114: 53 60.
6. Bernhardt, J.,, U. Volker,, A. Volker,, H. Antelmann,, R. Schmid,, H. Mach,, and M. Hecker. 1997. Specific and general stress proteins in Bacillus subtilis—a two-dimensional protein electrophoresis study. Microbiology 143: 999 1017.
7. Bukau, B.,, and G. C. Walker. 1989. Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism. J. Bacteriol. 171: 2337 2346.
8. Chastanet, A. Unpublished data. 1992
9. Chastanet, A.,, and T. Msadek. Unpublished data. 1992
10. Derré, I. Unpublished data. 1992
11. Derré I.,, G. Rapoport,, K. Devine,, M. Rose,, and T. Msadek. 1999. ClpE, a novel type of HSP100 ATPase, is part of the CtsR heat shock regulon of Bacillus subtilis. Mol. Microbiol. 32: 581 593.
12. Derré, I.,, G. Rapoport,, and T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol. Microbiol. 31: 117 131.
13. Derré, I.,, G. Rapoport,, and T. Msadek. Unpublished data.1992
14. Deuerling, E.,, A. Mogk,, C. Richter,, M. Purucker,, and W. Schumann. 1997. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion. Mol. Microbiol. 23: 921 933.
15. Deuerling, E.,, B. Paeslack,, and W. Schumann. 1995. The ftsH gene of Bacillus subtilis is transiently induced after osmotic and temperature upshock. J. Bacteriol. 177: 4105 4112.
16. Duchene, A.-M.,, C. J. Thompson,, and P. Mazodier. 1994. Transcriptional analysis of groEL genes in Streptomyces coelicohr A3(2). Mol. Gen. Genet. 245: 61 68.
17. Fabret, C.,, and J. A. Hoch. 1998. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J. Bacteriol. 180: 6375 6383.
18. Fischer, H. M.,, M. Babst,, T. Kaspar,, G. Acuna,, F. Arigoni,, and H. Hennecke. 1993. One member of a groESL-like chaperonin multigene family in Bradyrhizobium japonicum is co-regulated with symbiotic nitrogen fixation genes. EMBO J. 12: 2901 2912.
19. Frees, D.,, and H. Ingmer. 1999. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol. Microbiol. 1: 79 87.
20. Gaillot, G.,, E. Pellegrini,, S. Bregenholt,, S. Nair,, and P. Berche. 2000. The ClpP serine-protease is essential for the intracellular parasitism of the human pathogen Listeria monocytogenes. Mol. Microbiol. 35: 1286 1294.
21. Gerth, U.,, E. Krüger,, I. Derré,, T. Msadek,, and M. Hecker. 1998. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol. 28: 787 802.
22. Gerth, U.,, A. Wipat,, C. R. Harwood,, N. Carter,, P. T. Emmerson,, and M. Hecker. 1996. Sequence and transcriptional analysis of clpX, a class-Ill heat-shock gene of Bacillus subtilis. Gene 181: 77 83.
23. Gething, M.-J.,, and J. Sambrook. 1992. Protein folding in the cell. Nature 355: 33 45.
24. Gottesman, S.,, S. Wickner,, and M. R. Maurizi. 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11: 815 823.
25. Grandvalet, C,, V. de Crécy-Lagard,, and P. Mazodier. 1999. The ClpB ATPase of Streptomyces albus G belongs to the HspR heat shock regulon. Mol. Microbiol. 31: 521 532.
26. Hamoen, L. W.,, A. F. Van Werkhoven,, J. J. Bijlsma,, D. Dubnau,, and G. Venema. 1998. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12: 1539 1550.
27. Hecker, M.,, W. Schumann,, and U. Volker. 1996. Heat-shock and general stress response in Bacillus subtilis. Mol. Microbiol. 19: 417 428.
28. Herbort, M.,, U. Schon,, K. Angermann,, J. Lang,, and W. Schumann. 1996. Cloning and sequencing of the dnaK operon of Bacillus stearothermophilus. Gene 170: 81 84.
29. Homuth, G.,, S. Masuda,, A. Mogk,, Y. Kobayashi,, and W. Schumann. 1997. The dnaK operon of Bacillus subtilis is heptacistronic. J. Bacteriol. 179: 1153 1164.
30. Homuth, G.,, A. Mogk,, and W. Schumann. 1999. Post-transcriptional regulation of the Bacillus subtilis dnaK operon. Mol. Microbiol. 32: 1183 1197.
31. Ingmer, H.,, F. K. Vogensen,, K. Hammer,, and M. Kilstrup. 1999. Disruption and analysis of the clpB, clpC, and clpE genes in Lactococcus lactis: ClpE, a new Clp family in gram-positive bacteria. J. Bacteriol. 181:2075-2083.
32. Kobayashi, K.,, H. Wada,, K. Asai,, S. Moriya,, and N. Ogasawara. 1999. Characterization of ywlE and yfkl genes encoding low molecular weight protein-tyrosine phosphatases in Bacillus subtilis. Presented at 10th International Conference on Bacilli, Baveno, Italy.
33. Krüger, E. 1998. Unpublished data. 1992
34. Krüger, E.,, and M. Hecker. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180: 6681 6688.
35. Krüger, E.,, T. Msadek,, and M. Hecker. 1996. Alternate promoters direct stress-induced transcription of the Bacillus subtilis clpC operon. Mol. Microbiol. 20: 713 724.
36. Krüger, E.,, T. Msadek,, S. Ohlmeier,, and M. Hecker. 1997. The Bacillus subtilis clpC operon encodes DNA repair and competence proteins. Microbiology 143: 1309 1316.
37. Krüger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176: 3360 3367.
38. Krüger, E.,, E. Witt,, S. Ohlmeier,, R. Hanschke,, and M. Hecker. 2000. The Clp proteases of Bacillus subtilis are directly involved in degradation of misfolded proteins. J. Bacteriol. 182: 3259 3265.
39. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
40. Kunst, F.,, and G. Rapoport. 1995. Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. J. Bacteriol. 177: 2403 2407.
41. Kuroda, M.,, D. Kobayashi,, K. Honda,, H. Hayashi,, and T. Ohta. 1999. The lisp operons are repressed by the hrc37 of the hsp70 operon in Staphylococcus aureus. Microbiol. Immunol. 43: 19 27.
42. Li, M.,, and S.-L. Wong. 1992. Cloning and characterization of the groESL operon from Bacillus subtilis. J. Bacteriol. 174: 3981 3992.
43. Liu, J.,, W. M. Cosby,, and P. Zuber. 1999. Role of Lon and ClpX in the post-translational regulation of a sigma subunit of RNA polymerase required for cellular differentiation of Bacillus subtilis . Mol. Microbiol. 33: 415 428.
44. Liu, J. J.,, and P. Zuber. 1998. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control σ D-dependent gene expression in Bacillus subtilis. J. Bacteriol. 180: 4243 4251.
45. Mazodier, P.,, G. Guglielmi,, J. Davies,, and C. J. Thompson. 1991. Characterization of the groEL-like genes in Streptomycesalbus. J. Bacteriol. 173: 7382 7386.
46. Mogk, A.,, G. Homuth,, C. Scholz,, L. Kim,, F. X. Schmid,, and W. Schumann. 1997. The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis. EMBO J. 16: 4579 4590.
47. Mogk, A.,, A. Völker,, S. Engelmann,, M. Hecker,, W. Schumann,, and U. Völker. 1998. Nonnative proteins induce expression of the Bacillus subtilis CIRCE regulon. J. Bacteriol. 180: 2895 2900.
48. Morimoto, R. I.,, A. Tissieres,, and C. Georgopoulos. 1990. Stress Proteins in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1992
49. Morimoto, R. I.,, A. Tissières,, and C. Georgopoulos. 1994- The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. 1992
50. Msadek, T. 1999. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol. 7: 201 207.
51. Msadek, T.,, V. Dartois,, F. Kunst,, M.-L. Herbaud,, F. Denizot,, and G. Rapoport. 1998. ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol. Microbiol. 27: 899 914.
52. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis, a member of the ClpC ATPase family, is a pleiotropic regulator controlling competence gene expression and growth at high temperature. Proc. Natl. Acad. Sci. USA 91: 5788 5792.
53. Nair, S.,, I. Derre,, T. Msadek,, O. Gaillot,, and P. Berche. 2000. CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol. Microbiol. 35: 800 811.
54. Nair, S.,, C. Frehel,, L. Nguyen,, V. Escuyer,, and P. Berche. 1999. ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. Mol. Microbiol. 1: 185 196.
55. Nanamiya, H.,, Y. Ohashi,, K. Asai,, S. Moriya,, N. Ogasawara,, and Y. Fujita. 1998. ClpC regulates the fate of a sporulation initiation sigma factor, σ H protein, in Bacillus subtilis at elevated temperatures. Mol. Microbiol. 29: 505 513.
56. Narberhaus, F.,, K. Giebeler,, and H. Bahl. 1992. Molecular characterization of the dnaK gene region of Clostridium acetobutylicum, including grpE, dnaj, and a new heat shock gene. J. Bacteriol. 174: 3290 3299.
57. Noone, D.,, A. Howell,, and K. M. Devine. 2000. Expression of ykdA, encoding a Bacillus subtilis homologue of HtrA, is heat shock inducible and negatively autoregulated. J. Bacteriol. 182: 1592 1599.
58. Ogasawara, N.,, S. Nakai,, and H. Yoshikawa. 1994. Systematic sequencing of the 180 kilobase region of the Bacillus subtilis chromosome containing the replication origin. DNA Res. 1: 1 14.
59. Ogura, M.,, L. Liu,, M. Lacelle,, M. Nakano,, and P. Zuber. 1999. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol. Microbiol. 32: 799 812.
60. Ohta, T.,, K. Saito,, M. Kuroda,, K. Honda,, H. Hirata,, and H. Hayashi. 1994. Molecular cloning of two new heat shock genes related to the hsp70 genes in Staphylococcus aureus. J. Bacteriol. 176: 4779 4783.
61. Persuh, M.,, K. Turgay,, I. Mandic-Mulec,, and D. Dubnau. 1999. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol. Microbiol. 33: 886 894.
62. Polissi, A.,, A. Pontiggia,, G. Feger,, M. Altieri,, H. Mottl,, L. Ferrari,, and D. Simon. 1998. Large-scale identification of virulence genes from Streptococcus pneumoniae. Infect. Immun. 66: 5620 5629.
63. Prag, G.,, S. Greenberg,, and A. B. Oppenheim. 1997. Structural principles of prokaryotic gene regulatory proteins and the evolution of repressors and gene activators. Mol. Microbiol. 26: 619 620.
64. Rashid, M. H.,, A. Tamakoshi,, and J. Sekiguchi. 1996. Effects of mecA and mecB (clpC) mutations on expression of sigD, which encodes an alternative sigma factor, and autolysin operons and on flagellin synthesis in Bacillus subtilis. J. Bacteriol. 178: 4861 4869.
65. Riethdorf, S.,, U. Vdlker,, U. Gerth,, A. Winkler,, S. Engelmann,, and M. Hecker. 1994. Cloning, nucleotide sequence, and expression of the Bacillus subtilis lon gene. J. Bacteriol. 176: 6518 6527.
66. Rouquette, C.,, C. de Chastellier,, S. Nair,, and P. Berche. 1998. The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. Mol. Microbiol. 27: 1235 1245.
67. Rouquette, C.,, M. T. Ripio,, E. Pelligrini,, J. M. Bolla,, R. Tascon,, and J. A. Vazquez-Boland. 1998. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol. Microbiol. 21: 977 987.
68. Schmidt, A.,, M. Schiesswohl,, U. Volker,, M. Hecker,, and W. Schumann. 1992. Cloning, sequencing, mapping, and transcriptional analysis of the groESL operon from Bacillus subtilis. J. Bacteriol. 174: 3993 3999.
69. Schmidt, R.,, A. L. Decatur,, P. N. Rather,, C. P. Moran, Jr., and R. Losick. 1994. Bacillus subtilis Ion protease prevents inappropriate transcription of genes under the control of the sporulation transcription factor σ G. J. Bacteriol. 176: 6528 6537.
70. Schulz, A.,, and W. Schumann. 1996. hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class 1 heat-shock genes. J. Bacteriol. 178: 1088 1093.
71. Schulz, A.,, S. Schwab,, S. Versteeg,, and W. Schumann. 1997. The htpG gene of Bacillus subtilis belongs to class III heat shock genes and is under negative control. J. Bacteriol. 10: 3103 3109.
72. Schulz, A.,, B. Tzschaschel,, and W. Schumann. 1995. Isolation and analysis of mutants of the dnaK operon of Bacillus subtilis. M ol. Microbiol. 15: 421 429.
73. Schumann, W. 1999. FtsH—a single-chain charonin? FEMS Microbiol. Rev. 23: 1 11.
74. Schweder, T.,, K. H. Lee,, O. Lomovskaya,, and A. Matin. 1996. Regulation of Escliericliia coli starvation sigma factor (s s) by ClpXP protease. J. Bacteriol. 178: 470 476.
75. Servant, P.,, C. Grandvalet,, and P. Mazodier. 2000. The RheA repressor is the thermosensor of the HSP18 heat shock response in Streptomyces albus. Proc. Natl. Acad. Sci. USA 97: 3538 3543.
76. Servant, P.,, G. Rapoport,, and P. Mazodier. 1999. RheA, the repressor of hspl8 in Streptomyces albus G. Microbiology 145: 2385 2391.
77. Tozawa, Y.,, H. Yoshikawa,, F. Kawamura,, M. Itaya,, and H. Takahashi. 1992. Isolation and characterization of the groES and groEL gene of Bacillus subtilis Marburg. Biosci. Biotechnol. Biochem. 56:1995-2002.
78. Turgay, K.,, J. Hahn,, J. Burghoorn,, and D. Dubnau. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17: 6730 6738.
79. Turgay, K.,, L. W. Hamoen,, G. Venema,, and D. Dubnau. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev. 11: 119 128.
80. Van Asseldonk, M.,, A. Simons,, H. Visser,, W. M. De Vos,, and G. Simons. 1993. Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. J. Bacteriol. 175: 1637 1644.
81. Vanet, A.,, J. A. Plumbridge,, and J.-H. Alix. 1993. Cotranscription of two genes necessary for ribosomal protein L11 methylation ( prmA) and pantothenate transport ( panF) in Escherichia coli K-12. J. Bacteriol. 175: 7178 7188.
82. Van Sinderen, D.,, A. Luttinger,, L. Kong,, D. Dubnau,, G. Venema,, and L. W. Hamoen. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15: 455 462.
83. Varmanen, P.,, H. Ingmer,, and F. K. Vogensen. 2000. CtsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology 146: 1447 1455.
84. Versteeg, S.,, and W. Schumann. Unpublished data.1992
85. Versteeg, S.,, A. Mogk,, and W. Schumann. 1999. The Bacillus subtilis htpG gene is not involved in thermal stress management. Mol. Gen. Genet. 261: 582 588.
86. Wehrl, W.,, M. Niederweis,, and W. Schumann. 2000. The FtsH protein accumulates at the septum of Bacillus subtilis during cell division and sporulation. J. Bacteriol. 182: 3870 3873.
87. Wetzstein, M.,, U. Volker,, J. Dedio,, S. Löbau,, U. Zuber,, M. Schiesswohl,, C. Herget,, M. Hecker,, and W. Schumann. 1992. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J. Bacteriol. 174: 3300 3310.
88. Wiegert, T.,, and S. Zellmeier. Personal communication. 1992
89. Wiegert, T.,, and W. Schumann. Unpublished work. 1992
90. Yuan, G.,, and S.-L. Wong. 1995. Isolation and characterization of Bacillus subtilis regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK. J. Bacteriol. 177: 6462 6468.
91. Yuan, G.,, and S.-L. Wong. 1995. Regulation of groE expression in Bacillus subtilis: the involvement of the σ A-like promoter and the roles of the inverted repeat sequence (CIRCE). J. Bacteriol. 177: 5427 5433.
92. Yura, T.,, M. Kanemori,, and M. Morita,. 2000. The heat shock response: regulation and function, p. 3 18. In G. Storz and R. Hengge-Aronis (ed.), Bacterial Stress Response. American Society for Microbiology, Washington, D.C.
93. Zuber, U.,, K. Drzewiecki,, and M. Hecker. Unpublished data.
94. Zuber, U.,, and W. Schumann. 1994. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. J. Bacteriol. 176: 1359 1363.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error