Chapter 29 : Metal Ion Uptake and Oxidative Stress

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Metal Ion Uptake and Oxidative Stress, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap29-2.gif


In several systems, it is now clear that oxidative stress responses are intimately and reciprocally connected with systems to transport and store metal ions. Regardless, it is clear that one has much to learn about metal ion uptake into and within cells and how these processes affect, and are affected by, oxidative stress. This chapter provides an overview of metalloregulation in , identifies the links between metal ion homeostasis and oxidative stress responses, and draws comparisons with homologous or analogous systems in other organisms. Bacteria overcome iron limitation by secreting iron-chelating agents, called siderophores, into their environment and then transporting the ferri-siderophore complex to assimilate the captured iron. Per boxes are found near oxidative stress genes, including catalase in and ahp operons from and . has two Fur homologs, Fur and PerR, which regulate iron uptake and oxidative stress genes, respectively. A study on the identification of two metalloregulated fusions that responded differently to added metal ions was conducted and these regulators were identified by eventually engineering mutations of four candidate metalloregulators found by genome sequencing. This work led to the characterization of the Fur, PerR, Zur, and MntR systems. Homologs of each of these regulators have been found in several other bacteria. , like , has three Fur homologs that appear to correspond to Fur, PerR, and Zur. Since Fur, PerR, and MntR respond to an overlapping set of metal ions in vivo, these regulons are intimately interconnected.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29

Key Concept Ranking

Reactive Oxygen Species
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Multiple sequence alignment of Fur family members. The three Fur homologs from (Zur, PerR, and Fur) are compared to close homologs. Fur (BsuFur) is functionally and structurally similar to Fur (EcoFur), PerR is aligned to a homolog from (SpyPerR), and Zur (BsuZur) is aligned to a homolog from (SepFur). Regions thought to function in DNA binding and metal ion binding are annotated. Reprinted from reference 15 with permission.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Sequence alignment of MntR-like repressors with DtxR. MntR and selected homologs are aligned with each other and with DtxR (Cdi). All the repressors have an amino-terminal DNA-binding domain of about 73 amino acids (first two lines of the alignment). The DNA-binding recognition helix is indicated. The carboxyl-terminal metal binding domain contains two metal ion binding sites: the proposed primary site (site 2) for binding of regulatory ligand (indicated by ·) is an octahedral site containing DtxR Cysl02(Aspl02), Glul05 and Hisl06, MetlO, a main chain carbonyl (D120), and a water ( ). Binding site 1 (indicated by o) binds a cation-anion pair ( ), although the role of this binding in regulation has not been established. Protein sequences are from (Bsu), (Cdi), (Sep), (Eco), (Mja), and (Tpa). Only the first two domains of the Cdi DtxR protein are included. The third SH3-like domain, connected to the first two by a flexible linker (GNSDAAA), is poorly structured ( ) and is not found in MntR family members. Reprinted from Que and Helmann ( ) with permission.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Relationships between the Fur, PerR, and MntR regulons. Fur and MntR act to regulate intracellular iron and manganese levels, respectively. PerR binds either Mn(II) or Fe(II) to repress expression of the peroxide stress response. Alterations in metal ion homeostasis are proposed to affect the distribution of PerR between two nonequivalent forms, PerR-Fe and PerR-Mn. These forms appear to differ both in DNA-binding selectivity and in reactivity with HO (see text for details).

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adrait, A.,, L. Jacquamet,, L. Le Pape,, A. Gonzalez de Peredo,, D. Aberdam,, J. L. Hazemann,, J. M. Latour,, and I. Michaud-Soret.1999.Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein fromEscherichia coli.Biochemistry38:62486260.
2. Agranoff, D. D.,, and S. Krishna.1998.Metal ion homeostasis and intracellular parasitism.Mol. Microbiol.28:403412.
3. Alen, C.,, and A. L. Sonenshein.1999.Bacillus subtilis aconitase is an RNA-binding protein.Proc. Natl. Acad. Sci. USA96:1041210417.
4. Almiron, M.,, A. J. Link,, D. Furlong,, and R. Kolter.1992.A novel DNA-binding protein with regulatory and protective roles in starvedEscherichia coli.Genes Dev.6:26462654.
5. Althaus, E. W.,, C. E. Outten,, K. E. Ohlsen,, H. Cao,, and T. V. O'Halloran.1999.The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochemistry38:65596569.
6. Altuvia, S.,, M. Almiron,, G. Huisman,, R. Kolter,, and G. Storz.1994.The dps promoter is activated by OxyR during growth and by IHF and ��S in stationary phase.Mol. Microbiol.13:265272.
7. Antelmann, H.,, S. Engelmann,, R. Schmid,, A. Sorokin,, A. Lapidus,, and M. Hecker.1997.Expression of a stress-and starvation-induceddps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB inBacillus subtilis.J. Bacteriol.179:72517256.
8. Baichoo, N.,, and J. D. Helmann. Unpublished data.
9. Baranova, N. N.,, A. Danchin,, and A. A. Neyfakh.1999.Mta, a global MerR-type regulator of theBacillus subtilis multidrug-efflux transporters.Mol. Microbiol.31:15491559.
10. Bell, S. D.,, S. S. Cairns,, R. L. Robson,, and S. P. Jackson.1999.Transcriptional regulation of an archaeal operon in vivo and in vitro.Mol. Cell4:971982.
11. Berg, J. M.,, and Y. Shi.1996.The galvanization of biology: a growing appreciation for the roles ofzinc.Science271:10811085.
12. Berlett, B. S.,, and E. R. Stadtman.1997.Protein oxidation in aging, disease, and oxidative stress.J. Biol. Chem.272:2031320316.
13. Bsat, N.,, L. Chen,, and J. D. Helmann.1996.Mutation of theBacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes.J. Bacteriol.178:65796586.
14. Bsat, N.,, and J. D. Helmann.1999.Interaction ofBacillus subtilis Fur (ferric uptake repressor) with thedhb operator in vitro and in vivo.J. Bacteriol.181:42994307.
15. Bsat, N.,, A. Herbig,, L. Casillas-Martinez,, P. Setlow,, and J. D. Helmann.1998.Bacillus subtilis contains multiple Fur homologs: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors.Mol. Microbiol.29:189198.
16. Bsat, N.,, J. Qiu,, and J. Helmann. Unpublished results.
17. Cadenas, E.1989.Biochemistry of oxygen toxicity.Annu. Rev. Biochem.58:79110.
18. Cellier, M.,, G. Prive,, A. Belouchi,, T. Kwan,, V. Rodrigues,, W. Chia,, and P. Gros.1995.Nramp defines a family of membrane proteins.Proc. Natl. Acad. Sci. USA92:1008910093.
19. Charney, J.,, W. P. Fisher,, and C. P. Hegarty.1951.Manganese as an essential element for sporulation in the genusBacillus.J. Bacteriol.62:145148.
20. Chen, L.,, and J. D. Helmann.1995.Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative stress gene.Mol. Microbiol.18:295300.
21. Chen, L.,, and J. D. Helmann.1994.TheBacillus subtilis sigma D-dependent operon encoding the flagellar proteins FliD, FliS, and FliT.J. Bacteriol.176:30933101.
22. Chen, L.,, L. P. James,, and J. D. Helmann.1993.Metalloregulation inBacillus subtilis: isolation and characterization of two genes differentially regulated by metal ions.J. Bacteriol.175:54285437.
23. Chen, L.,, L. Keramati,, and J. D. Helmann.1995.Coordinate regulation ofBacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions.Proc. Natl. Acad. Sci. USA92:81908194.
24. Choi, G. H.,, and M. Tran.1999.Three fur homologs ofStaphylococcus aureus. GenBank AF095595.
25. Coy, M.,, and J. B. Neilands.1991.Structural dynamics and functional domains of the Fur protein.Biochemistry30:82018210.
26. Crawford, M. J.,, and D. E. Goldberg.1998.Regulation of the Salmonellatyphimurium flavohemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide.J. Biol. Chem.273:3402834032. (Erratum, 274: 3918,1999.)
27. Culotta, V. C.2000.Manganese transport in microorganisms.Met. Ions Biol.Syst.37:3556.
28. Curie, C.,, J. M. Alonso,, M. Le Jean,, J. R. Ecker,, and J. F. Briat.2000.Involvement of NRAMP1 fromArabidopsis thaliana in iron transport.Biochem. J.347:749755.
29. Dalet, K.,, E. Gouin,, Y. Cenatiempo,, P. Cossart,, and Y. Hechard.1999.Characterization of a new operon encoding a Zur-like protein and an associated ABC zinc permease inListeria monocytogenes.FEMS Microbiol. Lett.174:111116.
30. Ding, X.,, H. Zeng,, N. Schiering,, D. Ringe,, and J. R. Murphy.1996.Identification of the primary metal ion-activation sites of the diphtheriatox repressor by X-ray crystallography and site-directed mutational analysis.Nat. Struct. Biol.3:382387.
31. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J. P. Claverys.1997.Competence and virulence ofStreptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement of Zn and Mn resulting from inactivation of putative ABC metal permeases.Mol. Microbiol.25:727739.
32. Dowds, B. C. A.1994.The oxidative stress response inBacillus subtilis.FEMS Microbiol. Lett.124:255264.
33. Dussurget, O.,, M. Rodriguez,, and I. Smith.1996.AnideR mutant ofMycobacterium smegmatis has derepressed siderophore production and an altered oxidative stress response.Mol. Microbiol.22:535544.
34. Eide, D. J.1998. The molecular biology of metal ion transport inSaccharomyces cerevisiae. Annu. Rev. Nutr. 18:441469.
35. Eisenstadt, E.,, S. Fisher,, C.-L. Der,, and S. Silver.1973. Manganese transport inBacillus subtilis W23 during growth and sporulation. J. Bacteriol. 113:13631372.
36. Escolar, L.,, J. Perez-Martin,, and V. de Lorenzo.1999.Opening the iron box: transcriptional metalloregulation by the Fur protein.J. Bacteriol.181:62236229.
37. Fisher, S.,, L. Buxbaum,, K. Toth,, E. Eisenstadt,, and S. Silver.1973.Regulation of manganese accumulation and exchange inBacillus subtilis W23.J. Bacteriol.113:13731380.
38. Fuangthong, M.,, J. D. Helmann,, and S. Mongkolsuk. Unpublished data.
39. Gaballa, A.,, and J. D. Helmann. 1998.Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons inBacillus subtilis.J. Bacteriol.180:58155821.
40. GenBank. 2000. NCBI unfinished microbial genomes database.
41. GonzalezdePeredo, A.,, C. Saint-Pierre,, A. Adrait,, L. Jacquamet,, J. M., Latour,, I. Michaud-Soret,, and E. Forest.1999.Identification of the two zinc-bound cysteines in the ferric uptake regulation protein fromEscherichia coli: chemical modification and mass spectrometry analysis.Biochemistry38:85828589.
42. Goranson-Siekierke, J.,, E. Pohl,, W. G. Hoi,, and R. K. Holmes. 1999. Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor. Infect. lmmun. 67:18061811.
43. Gort, A. S.,, and J. A. Imlay.1998.Balance between endogenous superoxide stress and antioxidant defenses.J. Bocterioi.180:14021410.
44. Haas, A.,, K. Brehm,, J. Kreft,, and W. Goebel.1991.Cloning, characterization, and expression inEscherichia coli of a gene encodingListeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases. J. Bacterid.173:51595167.
45. Hantke, K.,, and V. Braun,.2000. The art of keeping low and high iron concentrations in balance, p. 275288. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, D.C.
46. Helmann, J. D.,1997. Metal cation regulation in gram positive bacteria, p. 4576. In W. E. Walden, and S. Silver (ed.), Metai Ions in Gene Regulation. Chapman &. Hall, New York, N.Y.
47. Hentze, M. W.,, and L. C. Kuhn.1996.Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress.Proc. Nad. Acad. Sci. USA93:81758182.
48. Herbig, A. F.,, A. Gaballa,, and J. D. Helmann. Unpublished data.
49. Hill, P. J.,, A. Cockayne,, P. Landers,, J. A. Morrissey,, C. M. Sims,, and P. Williams.1998.SirR, a novel iron-dependent repressor inStaphyhcoccus epidermidis.Infect, lmmun.66:41234129.
50. Imlay, J. A.,, S. M. Chin,, and S. Linn.1988.Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.Science240:640642.
51. Imlay, J. A.,, and S. Linn.1988.DNA damage and oxygen radical toxicity.Science240:13021309.
52. Inaoka, T.,, Y. Matsumura,, and T. Tsuchido. 1999. SodA and manganese are essential for resistance to oxidative sttess in growing and sporulating cells ofBacillus subtilis. J. Bocterioi. 181:19391943.
53. Jacquamet, L.,, D. Aberdam,, A. Adrait,, J.-L. Hazemann,, J.-M. Latour,, and I. Michaud-Soret.1998.X-ray absorption spectroscopy of a new zinc site in the Fur protein fromEscherichia coli.Biochemistry37:25642571.
54. Jakubovics, N. S.,, A. W. Smith,, and H. F. Jenkinson.2000.Expression of the virulence-related Sea (Mn2+) permease inStreptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR.Mol. Microbiol.38:140153.
55. Keyer, K.,, and J. A. Imlay.1996.Superoxide accelerates DNA damage by elevating free-iron levels. Proc. Natl. Acad. Sci. USA93:1363513640.
56. Kolenbrander, P. E.,, R. N. Andersen,, R. A. Baker,, and H. F. Jenkinson.1998.The adhesion-associatedsea operon inStreptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake.J. Bacteriol.180:290295.
57. Kyrpides, N. C.,, and C. A. Ouzounis.1999.Transcription in archaea.Proc. Natl. Acad. Sci. USA96:85458550.
58. Lin, S. J.,, and V. C. Culotta.1996.Suppression of oxidative damage bySaccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles. Mol. Cell Biol.16:63036312.
59. Lindsay, J. A.,, and S. J. Foster.2000. First fur homolog inStaphylococcus aureus. GenBank accession no. AF121672.
60. Maringanti, S.,, and J. A. Imlay.1999.An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficientEscherichia coli.J. Bacteriol.181:37923802.
61. Martinez, A.,, and R. Kolter.1997.Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps.J. Bacteriol.179:51885194.
62. Mathieu, I.,, J. Meyer,, and J.-M. Moulis.1992.Cloning, sequencing and expression inEscherichia coli of the rubredoxin gene fromClostridium pasteurianum.Biochem. J.285:255262.
63. Mongkolsuk, S. Personal communication.
64. Neilands, J. B.1995.Siderophores: structure and function of microbial iron transport compounds.J. Biol. Chem.270:2672326726.
65. Oguiza, J. A.,, X. Tao,, A. T. Marcos,, J. F. Martin,, and J. R. Murphy.1995.Molecular cloning, DNA sequence analysis, and characterization of theCorynebacterium diphtheriae dtxR homolog fromBrevibacteriutn lactofermentum.J. Bacteriol.177:465467.
66. O'Halloran, T. V. 1993.Transition metals in control of gene expression.Science261:715725.
67. Outten, F. W.,, C. E. Outten,, and T. V. O'Halloran,. 2000. Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance, p. 145157. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, D.C.
68. Patzer, S. I.,, and K. Hantke.1998.The ZnuABC high affinity zinc uptake system and its regulator Zur inEscherichia coli.Mol. Microbiol.28:11991210.
69. Pohl, E.,, R. K. Holmes,, and W. G. Hoi.1999.Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain.J. Mol. Biol.292:653667.
70. Pohl, E.,, R. K. Holmes,, and W. G. Hoi.1998.Motion of the DNA-binding domain with respect to the core of the diphtheria toxin tepressor (DtxR) revealed in the crystal structuies of apo- and holo-DtxR.J. Biol. Chem.273:2242022427.
71. Pohl, E.,, R. K. Holmes,, and W. G. J. Hoi.1999.Crystal structure of the iron-dependent regulator (IdeR) fromMycobacterium tuberculosis shows both metal binding site fully occupied.J. Mol. Biol.285:11451156.
72. Pohl, E.,, X. Qiu,, L. M. Must,, R. K. Holmes,, and W. G. J. Hoi.1997.Comparison of the high-resolution structures of the diphtheria toxin repressor in complex with cobalt and zinc at the cation-anion binding site.Protein Sci.6:11141118.
73. Posey, J. E.,, and F. C. Gherardini.2000.Lack of a role for iron in the Lyme disease pathogen.Science288:16511653.
74. Posey, J. E.,, J. M. Hardham,, S. J. Norris,, and F. C. Gherardini.1999.Characterization of a manganese-dependent regulatory protein, TroR, fromTreponema pallidum.Proc. Natl. Acad. Sci. USA96:1088710892.
75. Qiu, X.,, E. Pohl,, R. K. Holmes,, and W. G. J. Hol.1996.High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor.Biochemistry35:1229212302.
76. Que, Q.,, and J. D. Helmann.2000.Manganese homeostasis inBacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins.Mol. Microbiol.35:14541468.
77. Rae, T. D.,, P. J. Schmidt,, R. A. Pufahl,, V. C. Culotta,, and T. V. O'Halloran.1999.Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase.Science284:805808.
78. Rowland, B. M.,, and H. Taber.1996.Duplicate isochorismate synthase genes ofBacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate.J. Bacteriol178:854861.
79. Sato, T.,, and Y. Kobayashi.1998.Thears operon in theskin element ofBacillus subtilis confers resistance to arsenate and arsenite.J. Bacteriol.180:16551661.
80. Scharf, C.,, and M. Hecker. Personal communication.
81. Schiering, N.,, X. Tao,, H. Zeng,, J. R. Murphy,, G. A. Petsko,, and D. Ringe.1995.Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor fromCorynebacterium diphtheriae.Proc. Natl. Acad. Sci. USA92:98439850.
82. Schmitt, M. P.,, and R. K. Holmes. 1991. Iron-dependent regulation of diphtheria toxin and siderophore expression by the clonedCorynebacterium diphtheriae repressor gene dtxR in C.diphtheriae C7 strains. Infect. Immun. 59:18991904
83. Schmitt, M. P.,, M. Predich,, L. Doukhan,, I. Smith,, and R. K. Holmes.1995.Characterization of an iron-dependent regulatory protein (IdeR) ofMycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) fromCorynebacterium diphtheriae.Infect. Immun.63:42844289.
84. Storz, G.,, and J. A. Imlay.1999.Oxidative stress.Curr. Opin. Microbiol.2:188194.
85. Sun, L.,, J. van der Spek,, and J. R. Murphy.1998.Isolation and characterization of iron-independent positive dominant mutants of the diphtheria toxin repressor DtxR.Proc. Natl. Acad. Sci. USA95:1498514990.
86. Tao, X.,, N. Schiering,, H.-Y. Zeng,, D. Ringe,, and J. R. Murphy.1994.Iron, DtxR, and the regulation of diphtheria toxin expression.Mol. Microbiol.14:191197.
87. Thomine, S.,, R. Wang,, J. M. Ward,, N. M. Crawford,, and J. I. Schroeder.2000.Cadmium and iron transport by members of a plant metal transporter family inArabidopsis with homology to nramp genes.Proc. Natl. Acad. Sci. USA97:49914996.
88. Touati, D.,, M. Jacques,, B. Tardat,, L. Bouchard,, and S. Despied.1995.Lethal oxidative damage and mutagenesis are generated by iron in ��fur mutants ofEscherichia coli: protective role of superoxide dismutase.J. Bacteriol.177:23052314.
89. van Vliet, A. H. M.,, M. L. Baillon,, C. W. Penn,, and J. M. Ketley.1999.Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor.J. Bacteriol.181:63716376.
90. van Vliet, A. H. M.,, K. G. Wooldridge,, and J. M. Ketley.1998.Iron-responsive gene regulation in aCampylobacter jejuni fur mutant.J. Bacteriol.180:52915298.
91. Volker, U.,, K. K. Andersen,, H. Antelmann,, K. M. Devine,, and M. Hecker.1998.One of twoosmC homologs inBacillus subtilis is part of the sigmaB-dependent general stress regulon.J. Bacteriol.180:42124218.
92. Wang, G.,, G. P. Wylie,, P. D. Twigg,, D. L. Caspar,, J. R. Murphy,, and T. M. Logan. 1999.Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein.Proc. Natl. Acad. Sci. USA96:61196124.
93. White, A.,, X. Ding,, J. C. van der Spek,, J. R. Murphy,, and D. Ringe.1998.Structure of the metal-ion activated diphtheria toxin repressor/tox operator complex.Nature394:502506.
94. Wolf, S. G.,, D. Frenkiel,, T. Arad,, S. E. Finkel,, R. Kolter,, and A. Minsky.1999.DNA protection by stress-induced biocrystallization. Nature400:8385.
95. Xiong, A.,, V. K. Singh,, G. Cabrera,, and R. K. Jayaswal.2000.Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcusaureus.Microbiology146:659668.
96. Zheleznova, E. E.,, P. N. Markham,, A. A. Neyfakh,, and R. G. Brennan.1999.Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter.Cell96:353362.
97. Zheng, M.,, B. Doan,, T. D. Schneider,, and G. Storz.1999.OxyR and SoxRS regulation of fur.J. Bacteriol.181:46394643.


Generic image for table

Characterized metalloregulatory systems in and functional homologs in other gram-positive organisms

In some cases, only a subset of known targets is listed, and only the first gene in each operon is listed.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table

Known and putative Fur box sequences in

Position of 3' Fur box base to first base in start codon of gene.

Dashes represent bases identical to consensus.

Divergent gene orientations.

Part of the Per regulon ( ).

Numbers in parentheses indicate multiple Fur boxes.

N.D., not determined.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table

Documented Per boxes in

Base pairs from start codon.

Numbers in parentheses indicate the presence of multiple Per boxes.

Dashes represent bases matching consensus.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table

and homologs in the genome

See text for references.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error