1887

Chapter 29 : Metal Ion Uptake and Oxidative Stress

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Metal Ion Uptake and Oxidative Stress, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap29-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap29-2.gif

Abstract:

In several systems, it is now clear that oxidative stress responses are intimately and reciprocally connected with systems to transport and store metal ions. Regardless, it is clear that one has much to learn about metal ion uptake into and within cells and how these processes affect, and are affected by, oxidative stress. This chapter provides an overview of metalloregulation in , identifies the links between metal ion homeostasis and oxidative stress responses, and draws comparisons with homologous or analogous systems in other organisms. Bacteria overcome iron limitation by secreting iron-chelating agents, called siderophores, into their environment and then transporting the ferri-siderophore complex to assimilate the captured iron. Per boxes are found near oxidative stress genes, including catalase in and ahp operons from and . has two Fur homologs, Fur and PerR, which regulate iron uptake and oxidative stress genes, respectively. A study on the identification of two metalloregulated fusions that responded differently to added metal ions was conducted and these regulators were identified by eventually engineering mutations of four candidate metalloregulators found by genome sequencing. This work led to the characterization of the Fur, PerR, Zur, and MntR systems. Homologs of each of these regulators have been found in several other bacteria. , like , has three Fur homologs that appear to correspond to Fur, PerR, and Zur. Since Fur, PerR, and MntR respond to an overlapping set of metal ions in vivo, these regulons are intimately interconnected.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29

Key Concept Ranking

Reactive Oxygen Species
0.4643154
0.4643154
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Multiple sequence alignment of Fur family members. The three Fur homologs from (Zur, PerR, and Fur) are compared to close homologs. Fur (BsuFur) is functionally and structurally similar to Fur (EcoFur), PerR is aligned to a homolog from (SpyPerR), and Zur (BsuZur) is aligned to a homolog from (SepFur). Regions thought to function in DNA binding and metal ion binding are annotated. Reprinted from reference 15 with permission.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Sequence alignment of MntR-like repressors with DtxR. MntR and selected homologs are aligned with each other and with DtxR (Cdi). All the repressors have an amino-terminal DNA-binding domain of about 73 amino acids (first two lines of the alignment). The DNA-binding recognition helix is indicated. The carboxyl-terminal metal binding domain contains two metal ion binding sites: the proposed primary site (site 2) for binding of regulatory ligand (indicated by ·) is an octahedral site containing DtxR Cysl02(Aspl02), Glul05 and Hisl06, MetlO, a main chain carbonyl (D120), and a water ( ). Binding site 1 (indicated by o) binds a cation-anion pair ( ), although the role of this binding in regulation has not been established. Protein sequences are from (Bsu), (Cdi), (Sep), (Eco), (Mja), and (Tpa). Only the first two domains of the Cdi DtxR protein are included. The third SH3-like domain, connected to the first two by a flexible linker (GNSDAAA), is poorly structured ( ) and is not found in MntR family members. Reprinted from Que and Helmann ( ) with permission.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Relationships between the Fur, PerR, and MntR regulons. Fur and MntR act to regulate intracellular iron and manganese levels, respectively. PerR binds either Mn(II) or Fe(II) to repress expression of the peroxide stress response. Alterations in metal ion homeostasis are proposed to affect the distribution of PerR between two nonequivalent forms, PerR-Fe and PerR-Mn. These forms appear to differ both in DNA-binding selectivity and in reactivity with HO (see text for details).

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap29
1. Adrait, A.,, L. Jacquamet,, L. Le Pape,, A. Gonzalez de Peredo,, D. Aberdam,, J. L. Hazemann,, J. M. Latour,, and I. Michaud-Soret. 1999. Spectroscopic and saturation magnetization properties of the manganese- and cobalt-substituted Fur (ferric uptake regulation) protein from Escherichia coli. Biochemistry 38: 6248 6260.
2. Agranoff, D. D.,, and S. Krishna. 1998. Metal ion homeostasis and intracellular parasitism. Mol. Microbiol. 28: 403 412.
3. Alen, C.,, and A. L. Sonenshein. 1999. Bacillus subtilis aconitase is an RNA-binding protein. Proc. Natl. Acad. Sci. USA 96: 10412 10417.
4. Almiron, M.,, A. J. Link,, D. Furlong,, and R. Kolter. 1992. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 6: 2646 2654.
5. Althaus, E. W.,, C. E. Outten,, K. E. Ohlsen,, H. Cao,, and T. V. O'Halloran. 1999. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein . Biochemistry 38: 6559 6569.
6. Altuvia, S.,, M. Almiron,, G. Huisman,, R. Kolter,, and G. Storz. 1994. The dps promoter is activated by OxyR during growth and by IHF and �� S in stationary phase. Mol. Microbiol. 13: 265 272.
7. Antelmann, H.,, S. Engelmann,, R. Schmid,, A. Sorokin,, A. Lapidus,, and M. Hecker. 1997. Expression of a stress-and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J. Bacteriol. 179: 7251 7256.
8. Baichoo, N.,, and J. D. Helmann. Unpublished data.
9. Baranova, N. N.,, A. Danchin,, and A. A. Neyfakh. 1999. Mta, a global MerR-type regulator of the Bacillus subtilis multidrug-efflux transporters. Mol. Microbiol. 31: 1549 1559.
10. Bell, S. D.,, S. S. Cairns,, R. L. Robson,, and S. P. Jackson. 1999. Transcriptional regulation of an archaeal operon in vivo and in vitro. Mol. Cell 4: 971 982.
11. Berg, J. M.,, and Y. Shi. 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271: 1081 1085.
12. Berlett, B. S.,, and E. R. Stadtman. 1997. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272: 20313 20316.
13. Bsat, N.,, L. Chen,, and J. D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178: 6579 6586.
14. Bsat, N.,, and J. D. Helmann. 1999. Interaction of Bacillus subtilis Fur (ferric uptake repressor) with the dhb operator in vitro and in vivo. J. Bacteriol. 181: 4299 4307.
15. Bsat, N.,, A. Herbig,, L. Casillas-Martinez,, P. Setlow,, and J. D. Helmann. 1998. Bacillus subtilis contains multiple Fur homologs: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 29: 189 198.
16. Bsat, N.,, J. Qiu,, and J. Helmann. Unpublished results.
17. Cadenas, E. 1989. Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79 110.
18. Cellier, M.,, G. Prive,, A. Belouchi,, T. Kwan,, V. Rodrigues,, W. Chia,, and P. Gros. 1995. Nramp defines a family of membrane proteins. Proc. Natl. Acad. Sci. USA 92: 10089 10093.
19. Charney, J.,, W. P. Fisher,, and C. P. Hegarty. 1951. Manganese as an essential element for sporulation in the genus Bacillus. J. Bacteriol. 62: 145 148.
20. Chen, L.,, and J. D. Helmann. 1995. Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative stress gene. Mol. Microbiol. 18: 295 300.
21. Chen, L.,, and J. D. Helmann. 1994. The Bacillus subtilis sigma D-dependent operon encoding the flagellar proteins FliD, FliS, and FliT. J. Bacteriol. 176: 3093 3101.
22. Chen, L.,, L. P. James,, and J. D. Helmann. 1993. Metalloregulation in Bacillus subtilis: isolation and characterization of two genes differentially regulated by metal ions. J. Bacteriol. 175: 5428 5437.
23. Chen, L.,, L. Keramati,, and J. D. Helmann. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92: 8190 8194.
24. Choi, G. H.,, and M. Tran. 1999. Three fur homologs of Staphylococcus aureus. GenBank AF095595.
25. Coy, M.,, and J. B. Neilands. 1991. Structural dynamics and functional domains of the Fur protein. Biochemistry 30: 8201 8210.
26. Crawford, M. J.,, and D. E. Goldberg. 1998. Regulation of the Salmonella typhimurium flavohemoglobin gene. A new pathway for bacterial gene expression in response to nitric oxide. J. Biol. Chem. 273: 34028 34032. ( Erratum, 274: 3918,1999.)
27. Culotta, V. C. 2000. Manganese transport in microorganisms. Met. Ions Biol. Syst. 37: 35 56.
28. Curie, C.,, J. M. Alonso,, M. Le Jean,, J. R. Ecker,, and J. F. Briat. 2000. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 347: 749 755.
29. Dalet, K.,, E. Gouin,, Y. Cenatiempo,, P. Cossart,, and Y. Hechard. 1999. Characterization of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes. FEMS Microbiol. Lett. 174: 111 116.
30. Ding, X.,, H. Zeng,, N. Schiering,, D. Ringe,, and J. R. Murphy. 1996. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. Nat. Struct. Biol. 3: 382 387.
31. Dintilhac, A.,, G. Alloing,, C. Granadel,, and J. P. Claverys. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement of Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol. Microbiol. 25: 727 739.
32. Dowds, B. C. A. 1994. The oxidative stress response in Bacillus subtilis. FEMS Microbiol. Lett. 124: 255 264.
33. Dussurget, O.,, M. Rodriguez,, and I. Smith. 1996. An ideR mutant of Mycobacterium smegmatis has derepressed siderophore production and an altered oxidative stress response. Mol. Microbiol. 22: 535 544.
34. Eide, D. J. 1998. The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu. Rev. Nutr. 18: 441 469.
35. Eisenstadt, E.,, S. Fisher,, C.-L. Der,, and S. Silver. 1973. Manganese transport in Bacillus subtilis W23 during growth and sporulation. J. Bacteriol. 113: 1363 1372.
36. Escolar, L.,, J. Perez-Martin,, and V. de Lorenzo. 1999. Opening the iron box: transcriptional metalloregulation by the Fur protein. J. Bacteriol. 181: 6223 6229.
37. Fisher, S.,, L. Buxbaum,, K. Toth,, E. Eisenstadt,, and S. Silver. 1973. Regulation of manganese accumulation and exchange in Bacillus subtilis W23. J. Bacteriol. 113: 1373 1380.
38. Fuangthong, M.,, J. D. Helmann,, and S. Mongkolsuk. Unpublished data.
39. Gaballa, A.,, and J. D. Helmann. 1998. Identification of a zinc-specific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J. Bacteriol. 180: 5815 5821.
40. GenBank. 2000. NCBI unfinished microbial genomes database.
41. GonzalezdePeredo, A.,, C. Saint-Pierre,, A. Adrait,, L. Jacquamet,, J. M., Latour,, I. Michaud-Soret,, and E. Forest. 1999. Identification of the two zinc-bound cysteines in the ferric uptake regulation protein from Escherichia coli: chemical modification and mass spectrometry analysis. Biochemistry 38: 8582 8589.
42. Goranson-Siekierke, J.,, E. Pohl,, W. G. Hoi,, and R. K. Holmes. 1999. Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor. Infect. lmmun. 67: 1806 1811.
43. Gort, A. S.,, and J. A. Imlay. 1998. Balance between endogenous superoxide stress and antioxidant defenses. J. Bocterioi. 180: 1402 1410.
44. Haas, A.,, K. Brehm,, J. Kreft,, and W. Goebel. 1991. Cloning, characterization, and expression in Escherichia coli of a gene encoding Listeria seeligeri catalase, a bacterial enzyme highly homologous to mammalian catalases . J. Bacterid. 173: 5159 5167.
45. Hantke, K.,, and V. Braun,. 2000. The art of keeping low and high iron concentrations in balance, p. 275 288. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, D.C.
46. Helmann, J. D., 1997. Metal cation regulation in gram positive bacteria, p. 45 76. In W. E. Walden, and S. Silver (ed.), Metai Ions in Gene Regulation. Chapman &. Hall, New York, N.Y.
47. Hentze, M. W.,, and L. C. Kuhn. 1996. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc. Nad. Acad. Sci. USA 93: 8175 8182.
48. Herbig, A. F.,, A. Gaballa,, and J. D. Helmann. Unpublished data.
49. Hill, P. J.,, A. Cockayne,, P. Landers,, J. A. Morrissey,, C. M. Sims,, and P. Williams. 1998. SirR, a novel iron-dependent repressor in Staphyhcoccus epidermidis. Infect, lmmun. 66: 4123 4129.
50. Imlay, J. A.,, S. M. Chin,, and S. Linn. 1988. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640 642.
51. Imlay, J. A.,, and S. Linn. 1988. DNA damage and oxygen radical toxicity. Science 240: 1302 1309.
52. Inaoka, T.,, Y. Matsumura,, and T. Tsuchido. 1999. SodA and manganese are essential for resistance to oxidative sttess in growing and sporulating cells of Bacillus subtilis. J. Bocterioi. 181: 1939 1943.
53. Jacquamet, L.,, D. Aberdam,, A. Adrait,, J.-L. Hazemann,, J.-M. Latour,, and I. Michaud-Soret. 1998. X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry 37: 2564 2571.
54. Jakubovics, N. S.,, A. W. Smith,, and H. F. Jenkinson. 2000. Expression of the virulence-related Sea (Mn 2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metallorepressor-like protein ScaR. Mol. Microbiol. 38: 140 153.
55. Keyer, K.,, and J. A. Imlay. 1996. Superoxide accelerates DNA damage by elevating free-iron levels . Proc. Natl. Acad. Sci. USA 93: 13635 13640.
56. Kolenbrander, P. E.,, R. N. Andersen,, R. A. Baker,, and H. F. Jenkinson. 1998. The adhesion-associated sea operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn 2+ uptake. J. Bacteriol. 180: 290 295.
57. Kyrpides, N. C.,, and C. A. Ouzounis. 1999. Transcription in archaea. Proc. Natl. Acad. Sci. USA 96: 8545 8550.
58. Lin, S. J.,, and V. C. Culotta. 1996. Suppression of oxidative damage by Saccharomyces cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to Golgi-like vesicles . Mol. Cell Biol. 16: 6303 6312.
59. Lindsay, J. A.,, and S. J. Foster. 2000. First fur homolog in Staphylococcus aureus. GenBank accession no. AF121672.
60. Maringanti, S.,, and J. A. Imlay. 1999. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. J. Bacteriol. 181: 3792 3802.
61. Martinez, A.,, and R. Kolter. 1997. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 179: 5188 5194.
62. Mathieu, I.,, J. Meyer,, and J.-M. Moulis. 1992. Cloning, sequencing and expression in Escherichia coli of the rubredoxin gene from Clostridium pasteurianum. Biochem. J. 285: 255 262.
63. Mongkolsuk, S. Personal communication.
64. Neilands, J. B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723 26726.
65. Oguiza, J. A.,, X. Tao,, A. T. Marcos,, J. F. Martin,, and J. R. Murphy. 1995. Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR homolog from Brevibacteriutn lactofermentum. J. Bacteriol. 177: 465 467.
66. O'Halloran, T. V. 1993. Transition metals in control of gene expression. Science 261: 715 725.
67. Outten, F. W.,, C. E. Outten,, and T. V. O'Halloran,. 2000. Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance, p. 145 157. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, D.C.
68. Patzer, S. I.,, and K. Hantke. 1998. The ZnuABC high affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28: 1199 1210.
69. Pohl, E.,, R. K. Holmes,, and W. G. Hoi. 1999. Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. J. Mol. Biol. 292: 653 667.
70. Pohl, E.,, R. K. Holmes,, and W. G. Hoi. 1998. Motion of the DNA-binding domain with respect to the core of the diphtheria toxin tepressor (DtxR) revealed in the crystal structuies of apo- and holo-DtxR. J. Biol. Chem. 273: 22420 22427.
71. Pohl, E.,, R. K. Holmes,, and W. G. J. Hoi. 1999. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding site fully occupied. J. Mol. Biol. 285: 1145 1156.
72. Pohl, E.,, X. Qiu,, L. M. Must,, R. K. Holmes,, and W. G. J. Hoi. 1997. Comparison of the high-resolution structures of the diphtheria toxin repressor in complex with cobalt and zinc at the cation-anion binding site. Protein Sci. 6: 1114 1118.
73. Posey, J. E.,, and F. C. Gherardini. 2000. Lack of a role for iron in the Lyme disease pathogen. Science 288: 1651 1653.
74. Posey, J. E.,, J. M. Hardham,, S. J. Norris,, and F. C. Gherardini. 1999. Characterization of a manganese-dependent regulatory protein, TroR, from Treponema pallidum. Proc. Natl. Acad. Sci. USA 96: 10887 10892.
75. Qiu, X.,, E. Pohl,, R. K. Holmes,, and W. G. J. Hol. 1996. High-resolution structure of the diphtheria toxin repressor complexed with cobalt and manganese reveals an SH3-like third domain and suggests a possible role of phosphate as co-corepressor. Biochemistry 35: 12292 12302.
76. Que, Q.,, and J. D. Helmann. 2000. Manganese homeostasis in Bacillus subtilis is regulated by MntR, a bifunctional regulator related to the diphtheria toxin repressor family of proteins. Mol. Microbiol. 35: 1454 1468.
77. Rae, T. D.,, P. J. Schmidt,, R. A. Pufahl,, V. C. Culotta,, and T. V. O'Halloran. 1999. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284: 805 808.
78. Rowland, B. M.,, and H. Taber. 1996. Duplicate isochorismate synthase genes of Bacillus subtilis: regulation and involvement in the biosyntheses of menaquinone and 2,3-dihydroxybenzoate. J. Bacteriol 178: 854 861.
79. Sato, T.,, and Y. Kobayashi. 1998. The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J. Bacteriol. 180: 1655 1661.
80. Scharf, C.,, and M. Hecker. Personal communication.
81. Schiering, N.,, X. Tao,, H. Zeng,, J. R. Murphy,, G. A. Petsko,, and D. Ringe. 1995. Structures of the apo- and the metal ion-activated forms of the diphtheria tox repressor from Corynebacterium diphtheriae. Proc. Natl. Acad. Sci. USA 92: 9843 9850.
82. Schmitt, M. P.,, and R. K. Holmes. 1991. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect. Immun. 59: 1899 1904
83. Schmitt, M. P.,, M. Predich,, L. Doukhan,, I. Smith,, and R. K. Holmes. 1995. Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae. Infect. Immun. 63: 4284 4289.
84. Storz, G.,, and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2: 188 194.
85. Sun, L.,, J. van der Spek,, and J. R. Murphy. 1998. Isolation and characterization of iron-independent positive dominant mutants of the diphtheria toxin repressor DtxR. Proc. Natl. Acad. Sci. USA 95: 14985 14990.
86. Tao, X.,, N. Schiering,, H.-Y. Zeng,, D. Ringe,, and J. R. Murphy. 1994. Iron, DtxR, and the regulation of diphtheria toxin expression. Mol. Microbiol. 14: 191 197.
87. Thomine, S.,, R. Wang,, J. M. Ward,, N. M. Crawford,, and J. I. Schroeder. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to nramp genes. Proc. Natl. Acad. Sci. USA 97: 4991 4996.
88. Touati, D.,, M. Jacques,, B. Tardat,, L. Bouchard,, and S. Despied. 1995. Lethal oxidative damage and mutagenesis are generated by iron in �� fur mutants of Escherichia coli: protective role of superoxide dismutase. J. Bacteriol. 177: 2305 2314.
89. van Vliet, A. H. M.,, M. L. Baillon,, C. W. Penn,, and J. M. Ketley. 1999. Campylobacter jejuni contains two fur homologs: characterization of iron-responsive regulation of peroxide stress defense genes by the PerR repressor. J. Bacteriol. 181: 6371 6376.
90. van Vliet, A. H. M.,, K. G. Wooldridge,, and J. M. Ketley. 1998. Iron-responsive gene regulation in a Campylobacter jejuni fur mutant. J. Bacteriol. 180: 5291 5298.
91. Volker, U.,, K. K. Andersen,, H. Antelmann,, K. M. Devine,, and M. Hecker. 1998. One of two osmC homologs in Bacillus subtilis is part of the sigmaB-dependent general stress regulon. J. Bacteriol. 180: 4212 4218.
92. Wang, G.,, G. P. Wylie,, P. D. Twigg,, D. L. Caspar,, J. R. Murphy,, and T. M. Logan. 1999. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Proc. Natl. Acad. Sci. USA 96: 6119 6124.
93. White, A.,, X. Ding,, J. C. van der Spek,, J. R. Murphy,, and D. Ringe. 1998. Structure of the metal-ion activated diphtheria toxin repressor/tox operator complex. Nature 394: 502 506.
94. Wolf, S. G.,, D. Frenkiel,, T. Arad,, S. E. Finkel,, R. Kolter,, and A. Minsky. 1999. DNA protection by stress-induced biocrystallization . Nature 400: 83 85.
95. Xiong, A.,, V. K. Singh,, G. Cabrera,, and R. K. Jayaswal. 2000. Molecular characterization of the ferric-uptake regulator , fur, from Staphylococcus aureus. Microbiology 146: 659 668.
96. Zheleznova, E. E.,, P. N. Markham,, A. A. Neyfakh,, and R. G. Brennan. 1999. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96: 353 362.
97. Zheng, M.,, B. Doan,, T. D. Schneider,, and G. Storz. 1999. OxyR and SoxRS regulation of fur. J. Bacteriol. 181: 4639 4643.

Tables

Generic image for table
TABLE 1

Characterized metalloregulatory systems in and functional homologs in other gram-positive organisms

In some cases, only a subset of known targets is listed, and only the first gene in each operon is listed.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table
TABLE 2

Known and putative Fur box sequences in

Position of 3' Fur box base to first base in start codon of gene.

Dashes represent bases identical to consensus.

Divergent gene orientations.

Part of the Per regulon ( ).

Numbers in parentheses indicate multiple Fur boxes.

N.D., not determined.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table
TABLE 3

Documented Per boxes in

Base pairs from start codon.

Numbers in parentheses indicate the presence of multiple Per boxes.

Dashes represent bases matching consensus.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29
Generic image for table
TABLE 4

and homologs in the genome

See text for references.

Citation: Herbig A, Helmann J. 2002. Metal Ion Uptake and Oxidative Stress, p 405-414. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch29

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error