1887

Chapter 30 : Assembly of Peptide Antibiotics on Modular Protein Templates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Assembly of Peptide Antibiotics on Modular Protein Templates, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap30-2.gif

Abstract:

Nonribosomal peptide synthetase (NRPS) domains and associated enzymes represent the molecular toolbox used by nature for the assembly of structurally complex peptides. In order to exploit this toolbox for the biosynthesis of novel peptide antibiotics, one needs to understand the mechanism of each catalytic domain as well as the interplay between domains and modules that facilitates the assembly of a productive biosynthetic template. One hallmark of nonribosomal peptide antibiotics is the presence of D-amino acids, often in substantial abundance. This chapter focuses on how nature utilizes catalytic building blocks for the assembly of biosynthetic templates for structurally complex peptide antibiotics. The following examples from species were selected because their entire set of genes is known. The tyrocidine system is particularly well understood with respect to variants of the product that exhibit amino acid substitutions. Although the pathway of the DAla incorporation is only partially characterized, conclusions can be drawn from the corresponding genes and enzymes in . First, DAla is activated as alanyl adenylate by the D-alanyl-D-alanine carrier protein ligase Del and then transferred to the DAla carrier protein Dcp. The first experiments to demonstrate the general feasibility of engineering hybrid NRPSs were AT minimal module swaps in various positions of the surfactin biosynthetic operon. NRPSs produce an abundance of bioactive peptides with wide structural diversity. The manifested natural modularity makes them promising targets for the construction of hybrid synthetases.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30

Key Concept Ranking

Type II Fatty Acid Synthase
0.492981
0.492981
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The multiple carrier thiotemplate mechanism illustrated on the biosynthetic template of tyrocidine A. (A) Three NRPSs encoded by the genes act in concert for the stepwise assembly of the cyclic decapeptide. (B) The synthetases are composed of one, three, and six modules, respectively, which can be further subdivided into functional domains. Substrates are recognized and adenylated by action of A domains and subsequently covalently tethered to the thiol group of cofactor 4'-Ppant, which has been posttranslationally introduced onto each Τ domain. In analogy to fatty acid and polyketide biosynthesis, these carrier domains serve as an anchor of the various peptidyl intermediates. C domains catalyze peptide bond formation and chain translocation between the nascent peptidyl-S-Ppant intermediates and the downstream monomeric aminoacyl-S-Ppant. At positions 1 and 4, Ε domains convert -Phe moieties into the -isomer, and a terminal Te domain acts as a cyclase and releases the final product, tyrocidine (C).

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Domain organization of NRPS modules. (A) The simplest NRPS template feasible is constituted of three different types of module: an initiation module (domain structure: A + T) for the activation of the first amino acid, elongation modules (CAT) for every additional monomeric building unit to be activated and incorporated into the nascent peptide chain, and a termination module (CATTe), which catalyzes the final elongation step, as well as product release. (B) Optional tailoring domains can integrate in NRPS modules, in order to modify the activated monomers and to further functionalize the synthesized peptide product. PKS modules resemble NRPS modules, and additional domains may be integrated to catalyze optional reduction steps or Ν methylation. Abbreviations: A, adenylation domain; ACP, acyl-carrier protein; AT, acyl transferase domain; C, condensation domain; Cy, cyclization domain; DH, dehydratase domain; E, epimerization domain; ER, enoylreductase domain; -formyltransferase domain; Kr, ketoreductase domain; KS, ketosynthase domain; -methyltransferase domain; Ox, oxidoreductase domain; R, reductase domain; T, thiolation domain (synonymous with PCP, peptidyl carrier protein); and Te, thioesterase domain.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Priming of NRPS modules by designated Ppant transferases. The conversion of an inactive apo Τ domain (intimated by gray balls) into functional HS-Ppant holo form is catalyzed by a cognate Ppant transferase such as Sfp, which directs the nucleophilic attack of the hydroxyl group of an invariant serine residue to the β-phosphate of CoASH.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Key reactions catalyzed by NRPS modules. (A) Paralleling the first activation step of aminoacyl tRNA synthetases, an A domain selects the cognate amino acid from the pool of available substrates and reversibly generates the corresponding aminoacyl adenylate. (B) The activated aminoacyl moiety is then covalently tethered to the sulfhydryl group of cofactor Ppant of the paired holo Τ domain. (C) Peptide bond formation and chain translocation occurs under catalytic control of a C domain, which catalyzes the nucleophilic attack of the monomeric aminoacyl-S-Ppant onto the nascent peptidyl chain situated at the immediately upstream holo Τ domain. Organization of these essential domains within NRPS modules is shown in Fig. 2 .

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Reactions catalyzed by optional domains. Additional domains have been observed in various biosynthetic systems, which catalyze an in situ substrate modification or alternate modes of initiation and elongation. (A) Alternate modes of initiation are Ν acylation and Ν formylation. While in the first case the corresponding NRPS starts with a CAT elongation module and presumably requires an acyl-S-Ppant ACP donor as an initiator, in the latter an AT initiation module is preceded by an F domain, which depends on cosubstrate formyl tetrahydrofolate. (B) A Cy domain that substitutes the usual C domain in an elongation module effects an alternate mode of elongation, the coupled condensation and heterocyclization. The nucleophilic acceptor can be cysteinyl, seryl, or threonyl-S-Ppant, and the reaction leads to the formation of a thiazoline or oxazoline, respectively. This heterocyclic ring can be further oxidized by an FAD-dependent Ox domain to yield the corresponding thiazole or oxazole. (C) Typical modification reactions of nascent aminoacyl- and pep-tidyl-S-Ppant substrates are epimerization and Ν methylation. While the first reaction affects the nascent aminoacyl or peptidyl-S-Ppant substrate and is catalyzed by an Ε domain, Ν methylation always occurs on stage of the monomeric aminoacyl-S-Ppant and is affected by an Μ domain that depends on S-adenosylmethionine (SAM) as a cosubstrate. The location of optional domains within NRPS modules is shown in Fig. 2 .

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Product release. (A) In a bacterial NRPS, a Te domain located at the very end of a C-terminal elongation module usually effects product release. Depending on the particular system, different modes of action of the Te domain have been observed, which are exemplified on a hypothetical tripeptide. The wavy line symbolizes any side chain that contains a nucleophilic moiety XH. (a) Hydrolysis of a peptidyl-S-Ppant intermediate yields the corresponding linear peptide (e.g., ACV [δ-(-α-aminoadipyl)--cysteinyl--valine] [ ]). (b) Head-to-tail condensation gives a cyclic peptide (e.g., tyrocidine [ ]). (c) Condensation of the carboxyl terminus with a nucleophilic side chain amine or hydroxyl leads to a branched-cyclic peptide or lactone (e.g., bacitracin [ ]). (d) Oligomerization and final cyclization gives a polymeric cyclic peptide (e.g., enterobactin [ ]). (B) An alternate, reductive mode of termination is effected by an NAD(P)H cofactor-dependent R domain that formally translocates the generated peptide to a hydride ion, yielding a C-terminal semi-aldehyde ( ).

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Biosynthetic gene clusters as revealed by the genome project of MR 168. The organization of the biosynthetic genes for surfactin (A), an as yet unknown mixed NRPS/PKS product (B), fengycin (C), bacillibactin (D), and lipoteichoic acid (E) are shown. Structural genes, promoters, and transcriptional termination loops are indicated as predicted from the genome project (http://genolist.pasteur.fr/SubtiList/) ( ). In panel D, the corrected gene organization is shown as revealed by resequencing ( ). (F) Physical map of MR 168, illustrating the relative localization of the NRPS and PKS clusters.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Prospects for the generation of hybrid NRPSs. Different strategies have been used to exploit the natural modularity of NRPS and to recombine domains and modules on the genetic level. Gene segments that encode functional domains and modules are shown to illustrate the practical modifications of an existing NRPS template.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap30
1. Akashi, K.,, K. Kubota,, and K. Kurahashi. 1977. Biosynthesis of enzyme-bound formylvaline and formylvalylglycine. A possible initiation complex for gramicidin A biosynthesis. J. Biochem. 81:269272.
2. Akashi, K.,, and K. Kurahashi. 1978. Enzyme-bound formylvaline and formylvalylglycine; an initiation complex for gramicidin A biosynthesis, J. Biochem. 83:12191229.
3. Akashi, K.,, and K. Kurahashi. 1977. Formylation of enzyme-bound valine and stepwise elongation of intermediate peptides of gramicidin A by a cell-free enzyme system. Biochem. Biophys. Res. Commun. 77:259267.
4. Albertini, A. M.,, T. Caramori,, F. Scoffone,, C. Scotti,, and A. Galizzi. 1995. Sequence around the 159° region of the Bacillus subtilis genome: the pksX locus spans 33.6 kb. Microbiology 141:299309.
5. Amy, C. M.,, A. Witkowski,, J. Naggert,, B. Williams,, Z. Randhawa,, and S. Smith. 1989. Molecular cloning and sequencing of cDNAs encoding the entire rat fatty acid synthase. Proc. Natl. Acad. Sci. USA 86:31143118.
6. Aparicio, J. F.,, I. Molnar,, T. Schwecke,, A. Konig,, S. F. Haydock,, L. E. Khaw,, J. Staunton,, and P. F. Leadlay. 1996. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. Gene 169:916.
7. Arnez, J. G.,, and D. Moras. 1997. Structural and functional considerations of the aminoacylation reaction. Trends Biochem. Sci. 22:211216.
8. Battersby, A. R.,, and L. C. Craig. 1952. The chemistry of tyrocidine. I. Isolation and characterization of a single peptide. J. Am. Chem. Soc. 74:40194023.
9. Belshaw, P. J.,, C. T. Walsh,, and T. Stachelhaus. 1999. Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. Science 284: 486489.
10. Billich, A.,, and R. Zocher. 1987. N-Methyltransferase function of the multifunctional enzyme enniatin synthetase. Biochemistry 26:84178423.
11. Blattner, F. R.,, V. Burland,, G. I. Plunkett,, H. J. Sofia,, and D. L. Daniels. 1993. Analysis of the Escherichia coli genome. IV. DNA ssequence of the region from 89.2 to 92.8 minutes. Nucleic Acids Res. 21:54085417.
12. Bohm, I.,, I. E. Holzbaur,, U. Hanefeld,, J. Cortes,, J. Staunton,, and P. F. Leadlay. 1998. Engineering of a minimal modular polyketide synthase, and targeted alteration of the stereospecificity of polyketide chain extension. Chem. Biol. 5:407412.
13. Borchert, S.,, T. Stachelhaus,, and M. A. Marahiel. 1994. Induction of surfactin production in Bacillus subtilis by gsp, a gene located upstream of the gramicidin S operon in Bacillus brevis. J. Bacteriol. 176:24582462.
14. Brooks, J. E.,, P. D. Nathan,, D. Landry,, L. A. Sznyter,, P. Waite-Rees,, C. L. Ives,, L. S. Moran,, B. E. Slatko, and J. S. Benner. 1991. Characterization of the cloned BamHI restriction modification system: its nucleotide sequence, properties of the methylase and expression in heterologous hosts. Nucleic Acids Res. 19:841850.
15. Burmester, J.,, A. Haese,, and R. Zocher. 1995. Highly conserved N-methyltransferases as an integral part of peptide synthetases. Biochem. Mol. Biol. Int. 37:201207.
16. Caffrey, P.,, D. J. Bevitt,, J. Staunton,, and P. F. Leadlay. 1992. Identification of DEBS 1, DEBS 2 and DEBS 3, the multienzyme polypeptides of the erythromycin-producing polyketide synthase from Saccharopolyspora erythraea. . FEBS Lett. 304:225228.
17. Caffrey, P.,, B. Green,, L. C. Packman,, B. J. Rawlings,, J. Staunton,, and P. F. Leadlay. 1991. An acyl-carrier-protein-thioesterase domain from the 6-deoxyerythronolide B synthase of Saccharopolyspora erythraea. High-level production, purification and characterization in Escherichia coli. Eur. J. Biochem. 195:823830.
18. Cane, D. E.,, and C. T. Walsh. 1999. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6:319325.
19. Cane, D. E.,, C. T. Walsh,, and C. Khosla. 1998. Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282:6368.
20. Carter, C. W. 1993. Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu. Rev. Biochem. 62:715748.
21. Casqueiro, J.,, S. Gutierrez,, O. Banuelos,, F. Fierro,, J. Velasco,, and J. F. Martin. 1998. Characterization of the lys2 gene of Penicillium chrysogenum encoding alpha-aminoadipic acid reductase. Mol. Gen. Genet. 259:549556.
22. Chen, C. L.,, L. K. Chang,, Y. S. Chang,, S. T. Liu,, and J. S. Tschen. 1995. Transposon mutagenesis and cloning of the genes encoding the enzymes of fengycin biosynthesis in Bacillus subtilis. Mol. Gen. Genet. 248:121125.
23. Conti, E.,, N. P. Franks,, and P. Brick. 1996. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4:287298.
24. Conti, E.,, T. Stachelhaus,, M. A. Marahiel,, and P. Brick. 1997. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16:41744183.
25. Cosmina, P.,, F. Rodriguez,, F. de Ferra,, G. Grandi,, M. Perego,, G. Venema,, and D. van Sinderen. 1993. Sequence and analysis of the genetic locus responsible for surfactin synthesis in Bacillus subtilis. Mol. Microbiol. 8: 821831.
26. Debabov, D. V.,, M. P. Heaton,, Q. Zhang,, K. D. Stewart,, R. H. Lambalot,, and F. C. Neuhaus. 1996. The D-alanyl carrier protein in Lactobacillus casei: cloning, sequencing, and expression of dltC. J. Bacteriol. 178:38693876.
27. Debabov, D. V.,, M. Y. Kiriukhin,, and F. C. Neuhaus. 2000. Biosynthesis of lipoteichoic acid in Lactobacillus rhamnosus: role of DltD in D-Alanylation. J. Bacteriol. 182:28552864.
28. de Crecy-Lagard, V., 1999. Catalysis of amide and ester bond formation by peptide synthetase multienzymatic complexes, p. 221238. In J. W. Kelly (ed.), Aminoacids, Peptides, Porphyrins and Alkaloids, vol. 4. Elsevier, Amsterdam, The Netherlands.
29. de Cricy-Lagard, V.,, V. Blanc,, P. Gil,, L. Naudin,, S. Lorenzon,, A. Famechon,, N. Bamas-Jacques,, J. Crouzet,, and D. Thibaut. 1997. Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes. J. Bacteriol. 179:705713.
30. de Crecy-Lagard, V.,, P. Marliere,, and W. Saurin. 1995. Multienzymatic non ribosomal peptide biosynthesis: identification of the functional domains catalyzing peptide elongation and epimerization. Life Sci. 318:927936.
31. de Ferra, F.,, F. Rodriguez,, O. Tortora,, C. Tosi,, and G. Grandi. 1997. Engineering of peptide synthetases. Key role of the thioesterase-like domain for efficient production of recombinant peptides.J. Bioi. Chem. 272:2530425309.
32. Dieckmann, R.,, Y. O. Lee,, H. van Liempt,, H. von Dohren,, and H. Kleinkauf. 1995. Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases. FEBS Lett. 357:212216.
33. Dieckmann, R.,, M. Pavela-Vrancic,, H. von Dohren,, and H. Kleinkauf. 1999. Probing the domain structure and lig-and-induced conformational changes by limited proteolysis of tyrocidine synthetase l.J. Mol. Biol. 288:129140.
34. Dokel , S.,, and M. A. Marahiel. 2000. Dipeptide formation on engineered hybrid peptide synthetases. Chem. Biol. 7:373384.
35. D'Souza, C.,, M. M. Nakano,, and P. Zuber. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:93979401.
36. Duitman, E. H.,, L. W. Hamoen,, M. Rembold,, G. Venema,, H. Seitz,, W. Saenger,, F. Bernhard,, R. Reinhardt,, M. Schmidt,, C. Ullrich,, T. Stein,, F. Leenders,, and J. Vater. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC 6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96:1329413299.
37. Ehmann, D. E.,, A. M. Gehring,, and C. T. Walsh. 1999. Lysine biosynthesis in Saccharomyces cerevisiae: mechanism of σ-aminoadipate reductase (Lys2) involves posttranslational phosphopantetheinylation by Lys5. Biochemistry 38:61716177.
38. Eriani, G.,, M. Delarue,, O. Poch,, J. Gangloff,, and D. Moras. 1990. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347:203206.
39. Figenschou, K. J.,, L. O. Froholm,, and S. G. Laland. 1967. Studies on the biosynthesis of gramicidin S in a cell-free system from Bacillus brevis. Further attempts to elucidate its mechanism of synthesis. Biochem. J. 105:451453.
40. Froyshov, O. 1975. Enzyme-bound intermediates in the biosynthesis of bacitracin. Eur. J. Biochem. 59:201206.
41. Froyshov, O.,, and S. G. Laland. 1974. On the biosynthesis of bacitracin by a soluble enzyme complex from Bacillus licheniformis. Eur. J. Biochem. 46:235242.
42. Fujikawa, K.,, Y. Sakamoto,, and K. Kurahashi. 1971. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. III. Further purification of components I and II and their functions in tyrocidine synthesis. J. Biochem. 69:869879.
43. Fujikawa, K.,, Y. Sakamoto,, T. Suzuki,, and K. Kurahashi. 1968. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC 8185. II. Amino acid substitution in tyrocidine. Biochim. Biophys. Acta 169: 520533.
44. Galli, G.,, F. Rodriguez,, P. Cosmina,, C. Pratesi,, R. Nog-arotto,, F. de Ferra,, and G. Grandi. 1994. Characterization of the surfactin synthetase multi-enzyme complex. Biochim. Biophys. Acta 1205:1928.
45. Gehring, A. M.,, K. A. Bradley,, and C. T. Walsh. 1997. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a afunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate. Biochemistry 36:84958503.
46. Gehring, A. M.,, E. DeMoll,, J. D. Fetherston,, I. Mori,, G. F. Mayhew,, F. R. Blattner,, C. T. Walsh,, and R. D. Perry. 1998. Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis. Chem. Biol. 5:573586.
47. Gehring, A. M.,, I. Mori,, R. D. Perry,, and C. T. Walsh. 1998. The nonribosomal peptide synthetase HMWP2 forms a thiazoline ring during biogenesis of yersiniabactin, an iron-chelating virulence factor of Yersinia pestis. Biochemistry 37:1163711650.
48. Gehring, A. M.,, I. Mori,, and C. T. Walsh. 1998. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF. Biochemistry 37:26482659.
49. Gevers, W.,, H. Kleinkauf,, and F. Lipmann. 1969. Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. USA 63:13351342.
50. Gocht, M.,, and M. A. Marahiel. 1994- Analysis of core sequences in the D-Phe activating domain of the multifunctional peptide synthetase TycA by site-directed mutagenesis. J. Bacteriol. 176:26542662.
51. Gokhale, R. S.,, D. Hunziker,, D. E. Cane. , and C. Khosla. 1999. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem. Biol. 6:117125.
52. Grossman, T. H.,, M. Tuckman,, S. Ellestad,, and M. S. Osburne. 1993. Isolation and characterization of Bacillus subtilis genes involved in siderophore biosynthesis: relationship between B. subtilis sfpo and Escherichia coli entD genes J. Bacteriol. 175:62036211.
53. Guenzi, E.,, G. Galli,, I. Grgurina,, D. C. Gross,, and G. Grandi. 1998. Characterization of the syringomycin synthetase gene cluster. A link between prokaryotic and eukaryotic peptide synthetases. J. Biol. Chem. 273: 3285732863.
54. Guenzi, E.,, G. Galli,, I. Grgurina,, E. Pace,, P. Ferranti,, and G. Grandi. 1998. Coordinate transcription and physical linkage of domains in surfactin synthetase are not essential for proper assembly and activity of the multienzyme complex. J. Biol. Chem. 273:1440314410.
55. Hacker, C.,, M. Glinski,, T. Hornbogen,, A. Doller,, and R. Zocher. 2000. Mutational analysis of the N-methyl-transferase domain of the multifunctional enzyme enniatin synthetase. J. Biol. Chem. 275:3082630832.
56. Haese, A.,, R. Pieper,, T. von Ostrowski,, and R. Zocher. 1994. Bacterial expression of catalytically active fragments of the multifunctional enzyme enniatin synthetase. J. Mol. Biol. 243:116122.
57. Haese, A.,, M. Schubert,, M. Herrmann,, and R. Zocher. 1993. Molecular characterization of the enniatin synthetase gene encoding a multifunctional enzyme catalysing N-methyldepsipeptide formation in Fusarium scirpi. Mol. Microbiol. 7:905914.
58. Hamoen, L. W.,, H. Eshuis,, J. Jongbloed,, G. Venema,, and D. van Sinderen. 1995. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15:5563.
59. Heaton, M. P.,, and F. C. Neuhaus. 1992. Biosynthesis of D-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the D-alanine-activating enzyme. J. Bacteriol. 174:47074717.
60. Hoffmann, K.,, E. Schneider-Scherzer,, H. Kleinkauf,, and R. Zocher. 1994. Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. J. Biol. Chem. 269:1271012714.
61. Hopwood, D. A.,, and C. Khosla. 1992. Genes for polyketide secondary metabolic pathways in microorganisms and plants. Ciba Found. Symp. 171:88106.
62. Hori, K.,, M. Kanda,, S. Miura,, Y. Yamada,, and Y. Saito. 1983. Transfer of D-phenylalanine from gramicidin S synthetase 1 to gramicidin S synthetase 2 in gramicidin S synthesis. J. Biochem. 93:177188.
63. Hori, K.,, Y. Yamamoto,, T. Minetoki,, T. Kurotsu,, M. Kanda,, S. Miura,, K. Okamura,, J. Furuyama,, and Y. Saito. 1989. Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J. Biochem. 106: 639645.
64. Hutchinson, C. R. 1998. Combinatorial biosynthesis for new drug discovery. Curr. Opin. Microbiol. 1:319329.
65. Itoh, H.,, M. Yamada,, S. Tomino,, and K. Kurahashi. 1968. The role of two complementary fractions of gramicidin S synthesizing enzyme system. J. Biochem. 64:259261.
66. Julien, B.,, S. Shah,, R. Ziermann,, R. Goldman,, L. Katz,, and C. Khosla. 2000. Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153160.
67. Kallow, W.,, J. Kennedy, B. Arezi, G. Turner, and H. von Dohren. 2000. Thioesterase domain of δ-(L-σ-aminoadipyl)-L-cysteinyl-D-valine synthetase: alteration of stereospecificity by site-directed mutagenesis. J. Mol. Biol. 297: 395408.
68. Kawakami, B.,, A. Sasaki,, M. Oka,, and Y. Maekawa. 1990. Nucleotide sequence of the gene coding for the BANIII DNA methyltranferase in Bacillus aneurinolyticus. Agric. Biol Chem. 54:32273233.
69. Kealey, J. T.,, L. Liu,, D. V. Santi,, M. C. Betlach,, and P. J. Barr. 1998. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc. Natl. Acad. Sci. USA 95:505509.
70. Keating, T. A.,, D. A. Miller,, and C. T. Walsh. 2000. Expression, purification, and characterization of HMWP2, a 229 kDa, six domain protein subunit of yersiniabactin synthetase. Biochemistry 39:47294739.
71. Keating, T. A.,, and C. T. Walsh. 1999. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 3:598606.
72. Kim, H. S.,, E. C. Choi,, and B. K. Kim. 1993. A macrolide-lincosamide-streptogramin B resistance determinant from Bacillus anthracis 590: cloning and sequencing of ermj. J. Gen. Microbiol. 139:601607.
73. Kleinkauf, H.,, R. Roskoski,, and F. Lipmann. 1971. Pantetheine-linked peptide intermediates in gramicidin S and tyrocidine biosynthesis. Proc. Natl. Acad. Sci. USA 68:20692072.
74. Konz, D.,, S. Dokel,, and M. A. Marahiel. 1999. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J. Bacteriol. 181:133140.
75. Konz, D.,, A. Klens,, K. Schorgendorfer,, and M. A. Marahiel. 1997. The bacitracin biosynthesis operon of Bacillus licheniformis ATCC 10716: molecular characterization of three multi-modular peptide synthetases. Chem. Biol. 4:927937.
76. Konz, D.,, and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: 3918.
77. Kowall, M.,, J. Vater,, B. Kluge,, T. Stein,, P. Franke,, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colhid Interface Sci. 204:18.
78. Kratzschmar, J.,, M. Krause,, and M. A. Marahiel. 1989. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J. Bacteriol. 171:54225429.
79. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
80. Kurahashi, K. 1974- Biosynthesis of small peptides. Annu. Rev. Biochem. 43:445459.
81. Laland, S. G.,, and T. L. Zimmer. 1973. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 9: 3157.
82. Lambalot, R. H.,, A. M. Gehring,, R. S. Flugel,, P. Zuber,, M. LaCelle,, M. A. Marahiel,, R. Reid,, C. Khosla,, and C. T. Walsh. 1996. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol. 3:923936.
83. Lambalot, R. H.,, and C. T. Walsh. 1995. Cloning, overproduction, and characterization of the Escherichia coli holo-acyl carrier protein synthase. J. Biol. Chem. 270: 2465824661.
84. Lawen, A.,, J. Dittmann, B. Schmidt, D. Riesner, and H. Kleinkauf. 1992. Enzymatic biosynthesis of cyclosporin A and analogues. Biochimie 74:511516.
85. Lawen, A.,, R. Traber,, and D. Geyl. 1991. In vitro biosynthesis of [Thr2, Leu5, D-Hiv8, LeulO]cyclosporin, a cyclosporin-related immunosuppressive peptolide. Biomed. Biochim. Acta 50:260263.
86. Lawson, D. M.,, U. Derewenda,, L. Serre,, S. Ferri,, R. Szittner,, Y. Wei, E. A. Meighen, and Z. S. Derewenda. 1994. Structure of a myristoyl-ACP-specific thioesterase from Vibrio harveyi. Biochemistry 33:93829388.
87. Lee, S. G.,, and F. Lipmann. 1974. Isolation of a peptidylpantetheine-protein from tyrocidine-synthesizing polyenzymes. Proc. Natl. Acad. Sci. USA 71:607611.
88. Lee, S. G.,, and F. Lipmann. 1977. Isolation of amino acid activating subunit-pantetheine protein complexes: their role in chain elongation in tyrocidine synthesis. Proc. Natl. Acad. Sci. USA 74:23432347.
89. Lee, S. G.,, and F. Lipmann. 1975. Tyrocidine synthetase system. MeAods Enzymol. 43:585602.
90. Lee, S. G.,, R. Roskoski,, K. Bauer,, and F. Lipmann. 1973. Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry 12:398405.
91. Leslie, A. G. W. 1990. Refined crystal structure of type III chloramphenicol acetyltransferase at a 1.75 A resolution. J. Mol. Biol. 213:167186.
92. Lin, G. H.,, C. L. Chen,, J. S. Tschen,, S. S. Tsay,, Y. S. Chang,, and S. T. Liu. 1998. Molecular cloning and characterization of fengycin synthetase gene fenB from Bacillus subtilis.J. Bacteriol. 180:13381341.
93. Lin, T. P.,, C. L. Chen,, L. K. Chang,, J. S. Tschen,, and S. T. Liu. 1999. Functional and transcriptional analyses of a fengycin synthetase gene, fenC, from Bacillus subtilis. J. Bacteriol. 181:50605067.
94. Linne, U.,, and M. A. Marahiel. 2000. Control of directionality in nonribosomal peptide synthesis: role of the condensation domain in preventing mis-initiation and timing of epimerization. Biochemistry 39:1043910447.
95. Lipmann, F. 1985. Activated intermediates: the unexpected may sometimes carry a message. Bioessays 3:222225.
96. Lipmann, F. 1968. The relation between the direction and mechanism of polymerization. Essays Biochem. 4:123.
97. Lipmann, F.,, W. Gevers,, H. Kleinkauf,, and R. Roskoski. 1971. Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol. Relat. Areas Mol. Biol. 35:134.
98. Mach, B.,, E. Reich,, and E. L. Tatum. 1963. Separation of the biosynthesis of the antibiotic polypeptide tyrocidine from protein synthesis. Proc. Natl. Acad. Sci. USA 50:175181.
99. Marahiel, M. A. 1997. Protein templates for the biosynthesis of peptid antibiotics. Chem. Biol. 4:561567.
100. Marahiel, M. A.,, T. Stachelhaus,, and H. D. Mootz. 1997. Modular peptide synthetases involved in non-ribosomal peptide synthesis. Chem. Rev. 97:26512673.
101. Mattevi, A.,, G. Obmolova,, E. Schulze,, K. H. Kalk,, A. H. Westphal,, A. de Kok,, and W. G. J. Hoi. 1992. Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255:15441550.
102. May, J. J.,, T. M. Wendrich,, and M. A. Marahiel. 2001. The dhb operon of Bacillus subtilis encodes the biosynthetic template for the catecholic siderophore 2,3-dihy-droxybenzoate-glycine-threonine trimeric ester bacillibactin. J. Biol. Chem. 276:72097217.
103. Menkhaus, M.,, C. Ullrich,, B. Kluge,, J. Vater,, D. Vollenbroich,, and R. M. Kamp. 1993. Structural and functional organization of the surfactin synthetase multienzyme system. J. Bioi. Chem. 268:76787684.
104. Mittenhuber, G.,, R. Weckermann,, and M. A. Marahiel. 1989. Gene cluster containing the genes for tyrocidine synthetases 1 and 2 from Bacillus brevis: evidence for an operon. J. Bacteriol. 171:48814887.
105. Mofid, M. R.,, M. A. Marahiel,, R. Ficner,, and K. Reuter. 1999. Crystallization and preliminary crystallographic studies of Sfp: a phosphopantetheinyl transferase of modular peptide synthetases. Acta Crystallogr. Biol. Crystallogr. 55:10981100.
106. Molnar, I.,, J. F. Aparicio,, S. F. Haydock,, L. E. Khaw,, T. Schwecke,, A. Konig,, J. Staunton,, and P. F. Leadlay. 1996. Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169:17.
107. Molnar, I.,, T. Schupp,, M. Ono,, R. Zirkle,, M. Milnamow,, B. Nowak-Thompson,, N. Engel,, C. Toupet,, A. Stratmann,, D. Cyr,, J. Gorlach,, J. Mayo,, A. Hu,, S. Goff,, J. Schmid,, and J. Ligon. 2000. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. Chem. Biol. 7:97109.
108. Mootz, H. D.,, and M. A. Marahiel. 1997. Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr. Opin. Chem. Biol. 1:543551.
109. Mootz, H. D.,, and M. A. Marahiel. 1999. Design and application of multimodular peptide synthetases. Curr. Opin. Biotechnol. 10:341348.
110. Mootz, H. D.,, and M. A. Marahiel. 1997. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J. Bacteriol. 179:68436850.
110a.. Mootz, H. D.,, and M. A. Marahiel. GenBank accession no. AF260727.
111. Mootz, H. D.,, D. Schwarzer,, and M. A. Marahiel. 2000. Construction of hybrid peptide synthetases by module and domain fusions. Proc. Natl. Acad. Sci. USA 97:58485853.
112. Motamedi, H.,, and A. Shafiee. 1998. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256:528534.
113. Nakano, M. M.,, N. Corbell,, J. Besson,, and P. Zuber. 1992. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet. 232: 313321.
114. Nakano, M. M.,, M. A. Marahiel,, and P. Zuber. 1988. Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis.J. Bacteriol. 170:56625668.
115. Nwankwo, D. O.,, L. S. Moran,, B. E. Slatko,, P. A. Waite-Rees,, L. F. Dorner,, J. S. Benner,, and G. G. Wilson. 1994. Cloning, analysis and expression of the HindIII R-M-encoding genes. Gene 150:7580.
116. Paitan, Y.,, G. Alon,, E. Orr,, E. Z. Ron,, and E. Rosenberg. 1999. The first gene in the biosynthesis of the polyketide antibiotic TA of Myxococcus xanthus codes for a unique PKS module coupled to a peptide synthetase. J. Mol. Biol. 286:465474.
117. Paitan, Y.,, E. Orr,, E. Z. Ron,, and E. Rosenberg. 1999. Genetic and functional analysis of genes required for the post-modification of the polyketide antibiotic TA of Myxococcus xanthus. Microbiology 145:30593067.
118. Pavela-Vrancic, M.,, H. van Liempt,, E. Pfeifer,, W. Freist,, and H. von Dohren. 1994. Nucleotide binding by multienzyme peptide synthetases. Eur. J. Biochem. 220: 535542.
119. Pavela-Vrancic, M.,, E. Pfeifer,, W. Schroder,, H. von Dohren,, and H. Kleinkauf. 1994- Identification of the ATP binding site in tyrocidine synthetase 1 by selective modification with fluorescein 5'-isothiocyanate. J. Biol. Chem. 269:1496214966.
120. Pavela-Vrancic, M.,, E. Pfeifer,, H. van Liempt,, H. J. Schafer,, H. von Dohren,, and H. Kleinkauf. 1994. ATP binding in peptide synthetases: determination of contact sites of the adenine moiety by photoaffinity labeling of tyrocidine synthetase 1 with 2-azidoadenosine triphosphate. Biochemistry 33:62766283.
121. Pelludat, C.,, A. Rakin,, C. A. Jacobi,, S. Schubert,, and J. Heesemann. 1998. The yersiniabactin biosynthetic gene cluster of Yersinia enterocolitica: organization and siderophore-dependent regulation. J. Bacteriol. 180:538546.
122. Perego, M.,, P. Glaser,, A. Minutello,, M. A. Strauch,, K. Leopold,, and W. Fischer. 1995. Incorporation of D-ala-nine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis. Identification of genes and regulation. J. Biol. Chem. 270:1559815606.
123. Peschel, A.,, M. Otto,, R. W. Jack,, H. Kalbacher,, G. Jung,, and F. Gotz. 1999. Inactivation of the dit operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Bioi. Chem. 274:84058410.
124. Peypoux, F.,, J.-M. Bonmatin,, H. Labbe,, I. Grangemard,, B. C. Das,, M. Ptak,, J. Wallach,, and G. Michel. 1994. [Ala4]surfactin, a novel isoform from Bacillus subtilis studied by mass and NMR spectroscopies. Eur. J. Biochem. 224:8996.
125. Peypoux, F.,, J. M. Bonmatin,, H. Labbe,, B. C. Das,, M. Ptak,, and G. Michel. 1991. Isolation and characterization of a new variant of surfactin, the [Val7]surfactin. Eur. J. Biochem. 202:101106.
126. Peypoux, F.,, J. M. Bonmatin,, and J. Wallach. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnoi. 51:553563.
127. Pfeifer, E.,, M. Pavela-Vrancic,, H. von Dohren,, and H. Kleinkauf. 1995. Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Biochemistry 34:74507459.
128. Pieper, R.,, A. Haese,, W. Schroder,, and R. Zocher. 1995. Arrangement of catalytic sites in the multifunctional enzyme enniatin synthetase. Eur. J. Biochem. 230: 119126.
129. Pospiech, A.,, J. Bietenhader,, and T. Schupp. 1996. Two multifunctional peptide synthetases and an O-methyl-transferase are involved in the biosynthesis of the DNA-binding antibiotic and antitumour agent saframycin Mx1 from Myxococcus xanthus. Microbiology 142:741746.
130. Pospiech, A.,, B. Cluzel,, J. Bietenhader,, and T. Schupp. 1995. A new Myxococcus xanthus gene cluster for the biosynthesis of the antibiotic saframycin Mxl encoding a peptide synthetase. Microbiology 141:17931803.
131. Proctor, R. H.,, A. E. Desjardins,, R. D. Plattner,, and T. M. Hohn. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal Genet. Biol. 27:100112.
132. Quadri, L. E. 2000. Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol. Microbiol. 37:112.
133. Quadri, L. E.,, P. H. Weinreb,, M. Lei,, M. M. Nakano,, P. Zuber,, and C. T. Walsh. 1998. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:15851595.
134. Ranganathan, A.,, M. Timoney,, M. Bycroft,, J. Cortes,, I. P. Thomas,, B. Wilkinson,, L. Kellenberger,, U. Hanefeld,, I. S. Galloway,, J. Staunton,, and P. F. Leadlay. 1999. Knowledge-based design of bimodular and trimodular polyketide synthases based on domain and module swaps: a route to simple statin analogues. Chem. Biol. 6:731741.
135. Reuter, K.,, M. R. Mofid,, M. A. Marahiel,, and R. Ficner. 1999. Crystal structure of the surfactin synthetase-activating enzyme Sfp: a prototype of the 4'-phosphopantetheinyl transferase superfamily. EMBO J. 18:68236831.
136. Roskoski, R.,, W. Gevers,, H. Kleinkauf,, and F. Lipmann. 1970. Tyrocidine biosynthesis by three complementary fractions from Bacillus brevis ATCC 8185. Biochemistry 9:48394845.
137. Roskoski, R.,, H. Kleinkauf,, W. Gevers,, and F. Lipmann. 1970. Isolation of enzyme-bound peptide intermediates in tyrocidine biosynthesis. Biochemistry 9: 48464851.
138. Rouhiainen, L.,, L. Paulin,, S. Suomalainen,, H. Hyytiainen,, W. J. Buikema,, R. Haselkorn,, and K. Sivonen. 2000. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol. Microbiol. 37:156167.
139. Rowland, B. M.,, T. H. Grossman,, M. S. Osburne,, and H. W. Taber. 1996. Sequence and genetic organization of a Bacillus subtilis operon encoding 2,3-dihydroxybenzoate biosynthetic enzymes. Gene 178:119123.
140. Ruttenberg, M. A., and B. Mach. 1966. Studies on amino acid substitution in the biosynthesis of the antibiotic polypeptide tyrocidine. Biochemistry 5:28642869.
141. Saito, F.,, K. Hori,, M. Kanda,, T. Kurotsu,, and Y. Saito. 1994- Entire nucleotide sequence for Bacillus brevis Nagano Grs2 gene encoding gramicidin S synthetase 2: a multifunctional peptide synthetase. J. Biochem. 116: 357367.
142. Schlumbohm, W.,, T. Stein,, C. Ullrich,, J. Vater,, M. Krause,, M. A. Marahiel,, V. Kruft, and B. Wittmann-Liebold. 1991. An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J. Biol. Chem. 266:2313523141.
143. Schlumbohm, W.,, J. Vater,, and H. Kleinkauf. 1985. Reactive sulfhydryl groups involved in the aminoacyl adenylate activation reactions of the gramicidin S synthetase 2. Biol. Chem. HoppeSeyler 366:925930.
144. Schneider, S.,, and M. A. Marahiel. 1998. Genetic evidence for a role of thioesterase domains, integrated in or associated with peptide synthetases, in non-ribosomal peptide biosynthesis in Bacillus subtilis. Arch. Microbiol. 169:404410.
145. Schneider, A.,, T. Stachelhaus,, and M. A. Marahiel. 1998. Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 257:308318.
146. Schwecke, T.,, J. F. Aparicio,, I. Molnar,, A. Konig,, L. E. Khaw,, S. F. Haydock,, M. Oliynyk,, P. Caffrey,, J. Cortes,, and J. B. Lester. 1995. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl. Acad. Sci. USA 92:78397843.
147. Schweizer, M.,, L. M. Roberts,, H. J. Holtke,, K. Takabayashi,, E. Hollerer,, B. Hoffmann,, G. Muller,, H. Kottig,, and E. Schweizer. 1986. The pentafunctional FAS1 gene of yeast: its nucleotide sequence and order of catalytic domains. Mol. Gen. Genet. 203:479486.
148. Scotti, C.,, M. Piatti,, A. Cuzzoni,, P. Perani,, A. Tognoni,, G. Grandi,, A. Galizzi,, and A. M. Albertini. 1993. A Bacillus subtilis large ORF coding for a polypeptide highly similar to polyketide synthases. Gene 130: 6571.
149. Shaw-Reid, C. A.,, N. L. Kelleher,, H. C. Losey,, A. M. Gehring,, C. Berg,, and C. T. Walsh. 1999. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization. Chem. Biol. 6: 385400.
150. Shiau, C. Y.,, J. E. Baldwin,, M. F. Byford,, W. J. Sobey,, and C. J. Schofield. 1995. 8-L-(et-aminoadipoyl)-L-cysteinyl-D-valine synthetase: the order of peptide bond formation and timing of the epimerization reaction. FEBS Lett. 358:97100.
151. Silakowski, B.,, H. U. Schairer,, H. Ehret,, B. Kunze,, S. Weinig,, G. Nordsiek,, P. Brandt,, H. Blocker,, G. Hofle,, S. Beyer,, and R. Muller. 1999. New lessons for combinatorial biosynthesis from myxobacteria. The myxothiazol biosynthetic gene cluster of Stigmatella aurantiaca DW4/3-1.J. Biol. Chem. 274:3739137399.
152. Smith, S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8:12481259.
153. Spencer, A. K.,, A. D. Greenspan,, and J. E. Cronan. 1978. Thioesterases I and II of Escherichia coli. Hydrolysis of native acyl-acyl carrier protein thioesters. J. Bioi. Chem. 253:59225926.
154. Stachelhaus, T.,, A. Hiiser,, and M. A. Marahiel. 1996. Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. Chem. Biol. 3:913921.
155. Stachelhaus, T.,, and M. A. Marahiel. 1995. Modular structure of peptide synthetases revealed by dissection of the multifunctional enzyme GrsA. J. Biol. Chem. 270: 61636169.
156. Stachelhaus, T.,, H. D. Mootz,, V. Bergendahl,, and M. A. Marahiel. 1998. Peptide bond formation in nonribosomal peptide biosynthesis. Catalytic role of the condensation domain. J Biol. Chem. 273:2277322781.
157. Stachelhaus, T.,, H. D. Mootz,, and M. A. Marahiel. 1999. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6:493505.
158. Stachelhaus, T.,, A. Schneider,, and M. A. Marahiel. 1996. Engineered biosynthesis of peptide antibiotics. Biochem. Pharmacol. 52:177186.
159. Stachelhaus, T.,, A. Schneider,, and M. A. Marahiel. 1995. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269: 6972.
160. Stachelhaus, T.,, and C. T. Walsh. 2000. Mutational analysis of the epimeiization domain in the initiation module PheATE of gramicidin S synthetase. Biochemistry 39:57755787.
161. Stein, T.,, and J. Vater. 1996. Amino acid activation and polymerization at modulat multienzymes in nonribosomal peptide biosynthesis. Amino Acids 10:201227.
162. Stein, T.,, J. Vater,, V. Kruft,, A. Otto,, B. Wittmann-Liebold,, P. Franke,, M. Panico,, R. McDowell,, and H. R. Morris. 1996. The multiple carrier model of nonribosomal peptide biosynthesis at modular multienzymatic templates. J. Biol. Chem. 271:1542815435.
163. Stein, T.,, J. Vater,, V. Kruft,, B. Wittmann-Liebold,, P. Franke,, M. Panico,, R. McDowell,, and H. R. Morris. 1994. Detection of 4'-phosphopantetheine at the thioester binding site for L-valine of gramicidin S synthetase 2. FEBS Lett. 340:3944.
164. Steller, S.,, D. Vollenbroich,, F. Leenders,, T. Stein,, B. Conrad,, J. Hofemeister,, P. Jacques,, P. Thonart,, and J. Vater. 1999. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and Al/3. Chem. Biol. 6:31411.
165. Stindl, A.,, and U. Keller. 1994. Epimerization of the D-valine portion in the biosynthesis of actinomycin D. Biochemistry 33:93589364.
166. Tang, L.,, S. Shah,, L. Chung,, J. Carney,, L. Katz,, C. Khosla, and B. Julien. 2000. Cloning and heterologous expression of the epothilone gene cluster. Science 287: 640642.
167. Tomino, S.,, M. Yamada,, H. Itoh,, and K. Kurahashi. 1967. Cell-free synthesis of gramicidin S. Biochemistry 6: 25522560.
168. Tosato, V.,, A. M. Albertini,, M. Zotti,, S. Sonda,, and C. V. Bruschi. 1997. Sequence completion, identification and definition of the fengycin operon in Bacillus subtilis 168. Microbiology 143:34433450.
169. Trauger, J. W.,, R. M. Kohli,, H. D. Mootz,, M. A. Marahiel,, and C. T. Walsh. 2000. Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase. Nature 407:215218.
170. Tsuge, K.,, T. Ano,, M. Hirai,, Y. Nakamura,, and M. Shoda. 1999. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrob. Agents Chemother. 43: 21832192.
171. Tsuge, K.,, T. Ano,, and M. Shoda. 1996. Isolation of a gene essential for biosynthesis of the lipopeptide antibiotics plipastatin Bl and surfactin in Bacillus subtilis YB8. Arch. Microbiol. 165:243251.
172. Turgay, K.,, M. Krause,, and M. A. Marahiel. 1992. Four homologous domains in the primary structure of GrsB are related to domains in a superfamily of adenylate-forming enzymes. Mol. Microbiol. 6:529546.
173. Ullrich, C.,, B. Kluge,, Z. Palacz,, and J. Vater. 1991. Cell-free biosynthesis of surfactin, a cyclic lipopeptide produced by Bacillus subtilis. Biochemistry 30:65036508.
174. van Sinderen, D.,, G. Galli,, P. Cosmina,, F. de Ferra,, S. Withoff,, G. Venema,, and G. Grandi. 1993. Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of sr/A is involved in the establishment of genetic competence. Mol. Microbiol. 8:833841.
175. Vollenbroich, D.,, B. Kluge,, C. D. Souza,, P. Zuber,, and J. Vater. 1993. Analysis of a mutant amino acid-activating domain of surfactin synthetase bearing a serine-to-alanine substitution at the site of carboxylthioester formation. FEBS Lett. 325:220224.
176. von Dohren, H.,, R. Dieckmann,, and M. Pavela-Vrancic. 1999. The nonribosomal code. Chem. Biol. 6:273279.
177. von Dohren, H.,, U. Keller,, J. Vater,, and R. Zocher. 1997. Multifunctional peptide synthetases. Chem. Rev. 97:26752705.
178. Walsh, C. T.,, A. M. Gehring,, P. H. Weinreb,, L. E. Quadri,, and R. S. Flugel. 1997. Post-translational modification of polyketide and nonribosomal peptide synthases. Curr. Opin. Chem. Biol. 1:309315.
179. Weber, G.,, K. Schorgendorfer, E. Schneider-Scherzer, and E. Leitner. 1994. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame. Curr. Genet. 26:120125.
180. Weber, T.,, R. Baumgartner,, C. Renner,, M. A. Marahiel,, and T. A. Holak. 2000. Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. Structure 8:407418.>
181. Weckermann, R.,, R. Furbass,, and M. A. Marahiel. 1988. Complete nucleotide sequence of the tycA gene coding the tyrocidine synthetase 1 from Bacillus brevis. Nucleic Acids Res. 16:11841.
182. Weinreb, P. H.,, L. E. Quadri,, C. T. Walsh,, and P. Zuber. 1998. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase. Biochemistry 37:15751584.
183. Witkowski, A.,, V. S. Rangan,, Z. I. Randhawa,, C. M. Amy,, and S. Smith. 1991. Structural organization of the multifunctional animal fatty-acid synthase. Eur. J. Biochem. 198:571579.
184. Yakimov, M. M.,, A. Kroger,, T. N. Slepak,, L. Giuliano,, K. N. Timmis,, and P. N. Golyshin. 1998. A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization. Biochim. Biophys. Acta 1399: 141153.
185. Zhu, W.,, J. E. Arceneaux,, M. L. Beggs,, B. R. Byers,, K. D. Eisenach,, and M. D. Lundrigan. 1998. Exochelin genes in Mycobacterium smegmatis: identification of an ABC transporter and two non-ribosomal peptide synthetase genes. Mol. Microbiol. 29:629639.

Tables

Generic image for table
TABLE 1

Domain organization and structure for some antibiotics

Presentation of domain organization is in accordance with the one- and two-letter code ( ): A, adenylation domain; ACP, acyl carrier protein; AL, acyl-CoA ligase; AMT, aminotransferase domain; AT, acyl transferase domain; C, condensation domain; Cy, cyclization domain; E, epimerization domain; KS, ketosynthase domain; T, thiolation (PCP) domain; and Te, thioesterase domain. For clarity of the presentation, PKS domains are separated by a dot; modules are separated by a hyphen.

References dealing with the sequencing and/or cloning of biosynthetic genes.

References dealing with biochemical characterization of biosynthetic gene products.

ΝA, none available.

Citation: Stachelhaus T, Mootz H, Marahiel M. 2002. Assembly of Peptide Antibiotics on Modular Protein Templates, p 415-435. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch30

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error