1887

Chapter 31 : Chemotaxis and Motility

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Chemotaxis and Motility, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap31-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap31-2.gif

Abstract:

Complete sequencing of bacterial and archaeal genomes has provided an opportunity to compare the chemotaxis machinery of and with that of other organisms and should give insight into what the ancestral mechanism might have been. Two major findings indicate that emerges as a model organism for the study of microbial chemotaxis. First, homologs of several chemotaxis proteins that are not present in are found in other bacterial and archaeal species. Second, the CheZ phosphatase, the only chemotaxis protein that is not present in , is missing from most other microbial genomes and thus may be of marginal importance. For peritrichous bacteria, chemotaxis occurs by modulating the tendency to rotate the flagella counterclockwise (CCW), for smooth swimming, or rotate them clockwise, for tumbling. The features of chemotaxis include the methyltransferase (CheR) (R), which uses S-adenosylmethionine (SAM) to catalyze methylesterification of particular glutamate residues in the receptor, and the methylesterase, CheB, which removes them. Motility gene expression in is absolutely dependent on σ, and motility is absolutely required for chemotaxis.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31

Key Concept Ranking

Bacteria and Archaea
0.7777934
Gene Expression and Regulation
0.46702316
0.7777934
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Time course of addition and removal of attractant to ( ). Cells are sheared so that a fragment of a flagellum remains, and this is tethered to a glass coverslip using anti-flagellar antibody. Owing to rotation of the flagellar fragment, the cell body rotates. The coverslip is made to form the ceiling of a laminar flow chamber, and buffer, with or without attractants, is flowed through the chamber; the cell rotation is followed as a function of time using videomicroscopy. Later, the time courses of a number of cells are averaged to give the probability of counterclockwise (CCW) rotation of the flagellum, which corresponds to smooth swimming. “Excitation” refers to addition of attractant; “de-excitation” refers to removal of attractant.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Diagram of mechanism of chemotaxis in . A view of the reactions that occur during chemotaxis to asparagine mediated by McpB, the sole asparagine receptor, is shown. These features include the autophosphorylation of the kinase (CheA) (A), which is accelerated by addition of attractant, and the subsequent phosphoryl transfer to the main response regulator (CheY) (Y), the methylesterase (CheB) (B), and the coupling protein (CheV) (V). Subsequently, CheY-P binds to the switch to cause counterclockwise (CCW) rotation. The features also include the methyltransferase (CheR) (R), which uses S-adenosylmethionine (SAM) to catalyze methylesterification of particular glutamate residues in the receptor, and the methylesterase, CheB, which removes them. The diagram also includes the coupling protein CheW (W) and two regulatory proteins, CheC (C) and CheD (D). See text for details.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Diagram of receptor structure in . The receptors are transmembrane proteins that are almost exclusively alpha helix. The “sensing domain” refers to the extracellular region where attractant is thought to bind. The “transmembrane helices” refer to where the sensing extracellular N-terminal region joins the information-processing C-terminal region. The “methylation region” refers to the region where methylation of specific glutamate residues occurs, usually to facilitate adaptation to stimulus. The “signaling region” refers to where the kinase (CheA) and coupling proteins (CheW and CheV) occur in order to bring about excitation or deexcitation.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Class I, II, and III receptors. The three classes of receptors are distinguished by the number of “inserted” pairs of 14 amino acids (“INDELs”; see text), which are four turns of alpha helix; these are shaded. Class I receptors, found in many eubacteria, such as , have none. Class II receptors, found in other eubacteria, have one set, in the signaling region (see Fig. 3 ). Class III receptors, found in the low-G+C gram-positive organisms and the archaea, have two sets—one in the signaling region and the other in the methylation region. Sites of methylation based on the consensus site for an example of each class are indicated. See reference for more details.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Time course effect of addition of 504 μΜ asparagine to wild-type , a mutant having , and a mutant having . Thick line, wild type; medium line, mutant; thin line, CCW, counterclockwise. Adapted from Zimmer et al. ( ) with permission of the American Society for Biochemistry and Molecular Biology.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Diagram of hypothesized forces and conformations of McpB upon addition or removal of asparagine when sites 630 and 637 of McpB of are methylated selectively. The negative charge between sites 630 and 637 of one monomer might be on the other monomer or on an associated protein. Initial binding of asparagine causes upward movement of the second transmembrane helix of one monomer of the dimer. Adaptation occurs upon changes in which residues in that same monomer are methylated and results from charge-charge repulsion causing a vertical interdimeric force in the opposite direction from that before the methylation changes. Conversely, removal of asparagine causes a downward movement of the second transmembrane helix of the same monomer, and adaptation results from changing back to the prestimulus distribution of methyl groups. Reprinted from Zimmer et al. ( ) with permission of the American Society for Biochemistry and Molecular Biology.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Phylogenetic trees of selected chemotaxis proteins. The trees were built from multiple sequence alignments constructed by using the CLUSTAL X program ( ). Two major clusters are apparent: (i) gram-positive bacteria, archaea, and spirochaeta (in bold) and (ii) proteobacteria. Abbreviations: Aful, ; Atum, ; Bbro, ; Bbur, ; Bper, ; Bste, ; Bsub, ; Cace, ; Ccre, ; Cdif, ; Cjej, ; Ecol, ; Hpyl, ; Hsal, ; Lmon, ; Paby, ; Paer, ; Phor, ; Pput, ; Rcen, ; Rsph, ; Smel, ; Styp, ; Tden, ; Tmar, ; Tpal, ; Vcho, .

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

A phylogenetic tree of CheC and related proteins. The tree was built from a multiple sequence alignment constructed by using the CLUSTAL X program ( ). FliY and FliM indicate CheC-like domains from the corresponding proteins that have been extracted and included in the alignment. Clusters of CheC and CheX proteins are in bold. Abbreviations: Sput, ; Styphi, ; Vpar, ; Ypes, . See the legend to Fig. 7 for other species abbreviations.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Electron micrographs of flagella in various forms ( ). (A) Cell with flagella. (B) Intact flagella from . Bar represents 100 nm. (C) Hook-basal body (HBB) of . HBBs were purified as follows: bacteria were grown at 37°C to late exponential phase and suspended in sucrose solution (0.5 Μ sucrose, 0.15 Μ Trizma base; pH not adjusted) containing 1 mM protease inhibitor. Lysozyme and then Triton X-100 and, after a drop in viscosity, 10 mM EDTA were added to prevent reaggregation of cell membranes and walls. To remove membrane proteins, the pH of the solution was raised up to 10 by adding drops of 1 ? NaOH solution. After sedimentation in a 33% (wt/vol) CsCl gradient, intact flagella were recovered from a band in the middle of the centrifuge tube, washed with water, and resuspended in ?ΕΤ (10 mM Tris-HCl, pH 8; 1 mM EDTA, 0.1% Triton X-100). The filament part of the flagella was dissociated in 50 mM glycine buffer (pH 3.0) at room temperature for 1 h. A lower pH value (pH 2.5) used for enterica serovar Typhimurium resulted in partial degradation of the hook and the rod. Bar represents 100 nm. (D) Partially isolated flagella that retained the C ring at the basal body. Negatively stained with 2% phosphotungstic acid (pH 4.0).

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10
FIGURE 10

Diagram of HBB complexes of and serovar Typhimurium

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11
FIGURE 11

Chromosomal map of (4.2 Mbp), indicating motility and related genes. The genes from to are in the “major / operon.”

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap31
1. Aizawa, S.-l.,, G. E. Dean,, C. J. Jones,, R. M. Macnab,, and S. Yamaguchi. 1985. Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium. J. Bacteriol. 161:836849.
2. Aizawa, S.-I. Unpublished results.
3. Alam, M.,, M. Lebert,, D. Oesterhelt,, and G. L. Hazelbauer. 1989. Methyl-accepting taxis proteins in Halobacterium halobium. EMBO J. 8:631639.
4. Albertini, A. M.,, T. Caramori,, W. D. Crabb,, F. Scoffone,, and A. Galizzi. 1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173:35733579.
5. Allmansberger, R. 1997. Temporal regulation of sigD from Bacillus subtilis depends on a minor promoter in front of the gene J. Bacteriol. 179:65316535.
5a.. Bennett, J. C. Q.,, J. Thomas,, G. M. Fraser,, and C. Hughes. 2001. Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT. Mol. Microbiol. 39:781791.
6. Berg, H. C.,, and D. A. Brown. 1972. Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239:500504.
7. Bergara, F.,, J. Iwamasa,, J. C. Patarroyo,, S. Santa Anna-Arriola,, and L. M. Marquez-Magana. Unpublished data.
8. Bertero, M. G.,, B. Gonzales,, C. Tarricone,, F. Ceciliani,, and A. Galizzi. 1999. Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J. Biol. Chem. 274:1210312107.
9. Bibikov, S. I.,, R. Biran,, K. E. Rudd,, and J. S. Parkinson. 1997. A signal transducer for aerotaxis in Escherichia coli. J. Bacteriol. 179:40754079.
10. Bilwes, A. M.,, L. A. Alex,, B. R. Crane,, and M. I. Simon. 1999. Structure of CheA, a signal-transducing histidine kinase. Cell 96:131141.
11. Bischoff, D. S.,, and G. W. Ordal. 1991. Sequence and characterization of B. subtilis CheB, a homolog of E. coli CheY and its role in a different mechanism of chemotaxis. J. Biol. Chem. 266:1230112305.
1la.. Bischoff, D. S.,, M. D. Weinreich,, and G. W. Ordal. 1992. Nucleotide sequences of Bacillus subtilis flagellar biosynthetic genes fliP and fliQ and identification of a novel flagellar gene, fliZ. J. Bacteriol. 174:40174025.
12. Bischoff, D. S.,, R. B. Bourret,, M. L. Kirsch,, and G. W. Ordal. 1993. Purification and characterization of Bacillus subtilis CheY. Biochemistry 32:92569261.
13. Blair, D. F.,, D. Y. Kim,, and H. C. Berg. 1991. Mutant MotB proteins in Escherichia coli. J. Bacteriol. 173:40494055.
14. Borkovich, K. A.,, and M. I. Simon. 1990. The dynamics of protein phosphorylation in bacterial chemotaxis. Cell 63:13391348.
15. Bren, A.,, and M. Eisenbach. 1998. The N terminus of the flagellar switch protein, FliM, is the binding domain for the chemotactic response regulator, CheY. J. Mol. Biol. 278: 507514.
16. Burgess-Cassler, A.,, and G. W. Ordal. 1982. Functional homology of Bacillus subtilis methyltransferase II and Escherichia coli cheR protein. J. Biol. Chem. 257:1283512838.
17. Burgess-Cassler, A.,, A. H. J. Ullah,, and G. W. Ordal 1982. Purification and characterization of Bacillus subtilis methyl-accepting chemotaxis protein methyltransferase II. J. Biol. Chem. 257:84128417.
18. Caramori, T.,, D. Barilla,, N. Claudio,, L. Sacchi,, and A. Galizzi. 1996. Role of FlgM in σD dependent gene expression in Bacillus subtilis. J. Bacteriol. 178:31133118.
18a.. Carpenter, P. B.,, D. W. Hanlon,, and G. W. Ordal. 1992. flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol. Microbiol. 6:27052713.
19. Carpenter, P. B.,, and G. W. Ordal. 1993. Bacillus subtilis FlhA: a flagellar protein related to a new family of signal-transducing receptors. Mol. Microbiol. 7:735743.
20. Carpenter, P. B.,, A. R. Zuberi,, and G. W. Ordal. 1993. Bacillus subtilis flagellar proteins FliP, FliQ, FliR and FlhB are related to Shigella flexneri virulence factors. Gene 137: 243245.
21. Chervitz, S. A.,, and J. J. Falke. 1996. Molecular mechanism of transmembrane signaling by the aspartate receptor: a model. Proc. Natl. Acad. Sci. USA 93:25452550.
22. Chun, S. Y.,, and J. S. Parkinson. 1988. Bacterial motility: membrane topology of the Escherichia coli MotB protein. Science 239:276278.
23. Dean, G. E.,, R. M. Macnab,, J. Stader,, P. Matsumura,, and C. Burks. 1984. Gene sequence and predicted amino acid sequence of the MotA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J. Bacteriol. 159:991999.
24. DePamphilis, M. L.,, and J. Adler. 1971. Fine structure and isolation of the hook-basal body complex of flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105: 384395.
25. Dimmitt, K.,, and M. Simon. 1971. Purification and thermal stability of intact Bacillus subtilis flagella. J. Bacteriol. 105:369375.
26. Dreyfus, G.,, A. W. Williams,, I. Kawagishi,, and R. M. Macnab. 1993. Genetic and biochemical analysis of Salmonella typhimurium FliI, a flagellar protein related to the catalytic subunit of the F0F1 ATPase and to virulence proteins of mammalian and plant pathogens. J. Bacteriol. 175:31313138.
27. Estacio, W.,, S. Santa Anna-Arriola,, M. Adedipe,, and L. M. Marquez-Magana. 1998. Dual promoters are responsible for transcription initiation of the fla/che operon of Bacillus subtilis. J. Bacteriol. 180:35483555.
28. Fan, F.,, and R. M. Macnab. 1996. Enzymatic characterization of Flil. An ATPase involved in flagellar assembly in Salmonella typhimurium. J. Biol. Chem. 271:3198131988.
29. Francis, N. R.,, V. M. Irikura,, S. Yamaguchi,, D. J. DeRosier,, and R. M. Macnab. 1992. Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc. Natl. Acad. Sci. USA 89:63046308.
30. Francis, N. R.,, G. E. Sosinsky,, D. Thomas,, and D. J. DeRosier. 1994. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235:12611270.
31. Fraser, G. M.,, J. C. Q. Bennett,, and C. Hughes. 1999. Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Mol. Microbiol. 32:569580.
32. Fredrick, K.,, and J. D. Helmann. 1994. Dual chemotaxis signaling pathways in Bacillus subtilis: A σD-dependent gene encodes a novel protein with both CheW and CheY homologous domains. J. Bacteriol. 176:27272735.
33. Fredrick, K. L.,, and J. D. Helmann. 1996. FlgM is a primary regulator of σD activity, and its absence restores motility to a sinR mutant. J. Bacteriol. 178:70107013.
34. Fuhrer, D. K.,, and G. W. Ordal. 1991. Bacillus subtilis CheN, a homolog of CheA, the central regulator of chemotaxis in Escherichia coli. J. Bacteriol. 173:74437448.
35. Gallizzi, A. 1997. Regulation of flagellar gene expression. Invited lecture, 9th International Conference on Bacilli, Lausanne, Switzerland, July 15-19, 1997.
36. Garrity, L. F. 1996. Biochemistry and regulation of CheA in Bacillus subtilis chemotaxis. Ph.D. thesis. University of Illinois, Urbana.
37. Garrity, L. F.,, and G. W. Ordal. 1997. Activation of the CheA kinase by asparagine in Bacillus subtilis chemotaxis. Microbiology 143:29452951.
38. Garrity, L. F.,, S. L. Schiel,, R. Merrill,, J. Reizer,, M. H. Saier, Jr.,, and G. W. Ordal. 1998. Unique regulation of carbohydrate chemotaxis in Bacillus subtilis by the phosphoenolpyruvate-dependent phosphotransferase system and the methyl-accepting chemotaxis protein McpC. J. Bacteriol. 180:44754480.
39. Gillen, K. L.,, and K. T. Hughes. 1991. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J. Bacteriol. 173:23012310.
40. Hanlon, D. W.,, L. M. Marquez-Magana,, P. B. Carpenter,, M. J. Chamberlin,, and G. W. Ordal. 1992. Sequence and characterization of Bacillus subtilis CheW. J. Biol. Chem. 267:1205512060.
41. Hanlon, D. W.,, and G. W. Ordal. 1994. Cloning and characterization of methyl-accepting chemotaxis proteins from Bacillus subtilis. J. Biol. Chem. 269:1403814046.
42. Hanlon, D. W.,, M. M. L. Rosario,, G. W. Ordal,, G. Venema,, and D. Van Sinderen. 1994. Identification of TlpC, a novel 62 kDa MCP-like protein from Bacillus subtilis. Microbiology 140:18471854.
43. Helmann, J. D.,, L. M. Márquez,, and M. J. Chamberlin. 1988. Cloning, sequencing, and disruption of the Bacillus subtilis sigma-28 gene. J. Bacteriol. 170:15681574.
44. Hess, J. F.,, K. Oosawa,, P. Matsumura,, and M. I. Simon. 1987. Protein phosphorylation is involved in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 84:76097613.
45. Hirano, T.,, S. Yamaguchi,, K. Oosawa,, and S.-I. Aizawa. 1994. Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium. J. Bacteriol. 176: 54395449.
46. Homma, M.,, D. J. DeRosier,, and R. M. Macnab. 1990. Flagellar hook and hook associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213:819832.
47. Homma, M.,, K. Kutsukake,, M. Hasebe,, T. lino,, and R. M. McNab. 1990. FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211:465477.
48. Hou, S.,, R. W. Larsen,, D. Boudko,, C. W. Riley,, E. Karatan,, M. Zimmer,, G. W. Ordal, and M. Alam. 2000. Myoglobin-like aerotaxis transducers in Archaea and Bacteria. Nature 403:540544.
49. Hughes, K. T.,, K. L. Gillen,, M. J. Semon,, and J. E. Karlinsey. 1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:12771280.
50. Karatan, E.,, and G. W. Ordal. Unpublished results.
51. Khan, S.,, and R. M. Macnab. 1980. The steady-state counterclockwise/clockwise ratio of bacterial flagellar motors is regulated by proton motive force. J. Mol. Biol. 138: 563597.
52. Kim, K. K.,, H. Yokota,, and S. H. Kim. 1999. Four-helical-bundle structure of the cytoplasmic domain of a serine chemotaxis receptor. Nature 400:787792.
53. Kirby, J. R.,, T. B. Niewold,, S. Maloy,, and G. W. Ordal. 2000. CheB is required for behavioral responses to negative stimuli during chemotaxis in Bacillus subtilis. Mol. Microbiol. 35:4457.
54. Kirby, J. R.,, M. M. Saulmon,, C. J. Kristich,, and G. W. Ordal. 1999. CheY-dependent methylation of the asparagine receptor, McpB, during chemotaxis in Bacillus subtilis. J. Biol. Chem. 274:1109211100.
55. Kirby, J. R.,, I. B. Zhulin,, C. J. Kristich,, M. M. Saulmon,, L. F. Garrity,, and G. W. Ordal. Unpublished data.
55a.. Kirsch, M. L.,, P. B. Carpenter,, and G. W. Ordal. 1994. A putative ATP-binding protein from the che/fla locus of Bacillus subtilis. DNA Seq. 4:271275.
56. Kirsch, M. L.,, P. D. Peters,, D. W. Hanlon,, J. R. Kirby,, and G. W. Ordal. 1993. Chemotactic methylesterase brings about adaptation to attractants in Bacillus subtilis. J. Biol. Chem. 268:1861018616.
57. Kirsch, M. L.,, A. R. Zuberi,, D. Henner,, P. D. Peters,, M. A. Yazdi,, and G. W. Ordal. 1993. Chemotactic methyltransferase promotes adaptation to repellent in Bacillus subtilis. J. Biol. Chem. 268:2535025356.
58. Kristich, C. J.,, and G. W. Ordal. Unpublished results.
59. Kubori, T.,, M. Okumura,, N. Kobayashi,, D. Nakamura,, M. Iwakura,, and S.-I. Aizawa. 1997. Purification and characterization of the flagellar hook-basal body complex of Bacillus subtilis. Mol. Microbiol. 24:399410.
60. Kutsukake, K. 1994. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 243:605612.
61. Kutsukake, K.,, Y. Ohya,, and T. lino. 1990. Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J. Bacteriol. 172:741747.
62. Larsen, S. H.,, R. W. Reader,, E. N. Kort,, W. W. Tso,, and J. Adler. 1974. Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature 249:7477.
63. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138:19491961.
64. Le Moual, H.,, and D. E. Koshland, Jr. 1996. Molecular evolution of the C-terminal cytoplasmic domain of a superfamily of bacterial receptors involved in taxis. J. Mol. Biol. 261:56885.
65. Liu, J.,, and P. Zuber. 1998. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control σD-dependent gene expression in Bacillus subtilis J. Bacteriol. 180:42434251.
66. Liu, X.,, and P. Matsumura. 1994. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J. Bacteriol. 176:73457349.
67. Lloyd, S. A.,, F. G. Whitby,, D. F. Blair,, and C. P. Hill 1999. Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor. Nature 400:472475.
68. Lux, R.,, N. Kar,, and S. Khan. 2000. Overproduced Salmonella typhimurium flagellar motor switch complexes. J. Mol. Biol. 298:577583.
69. Macnab, R. 1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131158.
70. Macnab, R. M., 1996. Flagella and motility, p. 123145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low, Jr.,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umlarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D. C..
71. Margot, P.,, C. Mauel,, and D. Karamata. 1994. The gene of the N-acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12:535545.
72. Margot, P.,, M. Pagni,, and D. Karamata. 1999. Bacillus subtilis 168 gene lytF encodes a gamma-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD. Microbiology 145:5765.
73. Marquez, L. M.,, J. Helmann,, E. Ferrari,, H. Parker,, G. Ordal,, and M. J. Chamberlin. 1990. Studies of σ° dependent functions in Bacillus subtilis. J. Bacteriol. 172: 34353443.
74. Marquez-Magana, L. M.,, and M. J. Chamberlin. 1994. Characterization of the sigD transcription unit of Bacillus subtilis. J. Bacteriol. 176:24272434.
75. Marquez-Magana, L. M.,, D. B. Mirel,, and M. J. Chamberlin. 1994. Regulation of σ° expression and activity by spoO, abrB, and sin gene products in Bacillus subtilis. J. Bacteriol. 176:24352438.
76. Milligan, D. L.,, and D. E. Koshland, Jr. 1988. Site-directed cross-linking. Establishing the dimeric structure of aspartate receptor of bacterial chemotaxis. J. Biol. Chem. 263:62686275.
77. Minamino, T.,, B. Gonzalez-Pedrajo,, K. Yamaguchi,, S.-I. Aizawa,, and R. M. Macnab. 1999. FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 34: 295304.
78. Minamino, T.,, and R. M. Macnab. 2000. Interactions among components of the Saimonella flagellar export apparatus and its substrates. Mol. Microbiol. 35:10521064.
79. Minamino, T.,, and R. M. Macnab. 2000. Domain structure of Salmonella FlhB, a flagellar export component responsible for substrate specificity switching. J. Bacteriol. 182:49064914.
80. Minamino, T.,, T. lino,, and K. Kutsukake. 1994. Molecular characterization of the Salmonella typhimurium flhB operon and its protein products. J. Bacteriol. 176:76307637.
81. Minamino, T.,, S. Yamaguchi,, and R. M. Macnab. 2000. Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J. Bacteriol. 182:30293036.
82. Minamino, T.,, R. Chu,, S. Yamaguchi,, and R. M. Macnab. 2000. Role of FliJ in flagellar protein export in Salmonella. J. Bacteriol. 182:42074215.
83. Minamino, T.,, and R. M. Macnab. 2000. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35:10521064.
84. Mirel, D. B.,, and M. J. Chamberlin. 1989. The Bacillus subtilis flagellin (hag) gene is transcribed by the sigma-28 form of RNA polymerase. J. Bacteriol. 174:30953101.
85. Mirel, D. B.,, W. F. Estacio,, M. Mathieu,, E. Olmsted,, J. Ramirez,, and L. M. Marquez-Magana. 1999. Environmental regulation of Bacillus subtilis σD-dependent gene expression. J. Bocteriol. 182:30553062.
86. Mirel, D. B.,, V. M. Lustre,, and M. J. Chamberlin. 1992. An operon of motility genes in Bacillus subtilis is transcribed by the σD form of RNA polymerase. J. Bacteriol. 174:41974204.
87. Mirel, D. B.,, P. Lauer,, and M. J. Chamberlin. 1994. Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. J. Bacteriol. 176:44924500.
88. Muller, V.,, C. J. Jones,, I. Kawagishi,, S.-I. Aizawa,, and R. M. Macnab. 1992. Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J. Bacteriol. 174:22982304.
89. Muramoto, K.,, and R. M. Macnab. 1998. Deletion analysis of MotA and MotB, components of the force-generating unit in the flagellar motor of Salmonella. Mol. Microbiol. 29:11911202.
89a.. Nambu, T.,, and K. Kutsukake. 2000. The Salmonella FlgA protein, a putative periplasmic chaperone essential for flagellar P ring formation. Microbiology. 146:11711178.
89b.. Nambu, T.,, T. Minamino,, R. M. Macnab,, and K. Kutsukake. 1999. Peptidoglycan-hydrolyzing activity of the FlgJ protein essential for flagellar rod formation in Salmonella typhimurium. J. Bacteriol. 181:15551561.
90. Ogura, M.,, and T. Tanaka. 1996. Transcription of Bacillus subtilis degR is σD-dependent and suppressed by multicopy proB through σD. J. Bacteriol. 178:216222.
91. Ohnishi, K.,, F. Fan,, G. J. Schoenhals,, M. Kihara,, and R. M. Macnab. 1997. The FliO, FliP, FliQ, and FliR proteins of Salmonella typhimurium: putative components for flagellar assembly. J. Bacteriol. 179:60926099.
91a.. Ohnishi, K.,, Y. Ohta,, S.-I. Aizawa,, R. M. Macnab,, and T. Lino. 1994. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J. Bacteriol. 176:22722281.
92. Okino, H.,, M. Isomura,, S. Yamaguchi,, Y. Magariyama,, S. Kudo,, and S.-I. Aizawa. 1989. Release of flagellar filament-hook-rod complex by a Salmonella typhimurium mutant defective in the M ring of the basal body. J. Bacteriol. 171:20752082.
93. Ordal, G. W.,, L. M. Marquez-Magana,, and M. J. Chamberlin,. 1993. Motility and chemotaxis, p. 765784. In A. L. Sonensheim,, J. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, D.C..
94. Parkinson, J. S. 1978. Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis. J. Bacteriol. 135:4553.
95. Priest, F. G., 1993. Systematics and ecology of Bacillus, p. 316. In A. L. Sonensheim,, J. Hoch,, and R. Losich (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. ASM Press, Washington, D.C..
96. Rebbapragada, A.,, M. S. Johnson,, G. P. Harding,, A. J. Zuccarelli,, H. M. Fletcher,, I. B. Zhulin,, and B. L. Taylor. 1997. The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc. Natl. Acad. Sci. USA 94:1054110546.
97. Rosario, H. M. L.,, K. L. Fredrick,, G. W. Ordal,, and J. D. Helmann. 1994. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs. J. Bacteriol. 176:27362739.
98. Rosario, M. M. L.,, J. R. Kirby,, D. A. Bochar,, and G. W. Ordal. 1995. Chemotactic methylation and behavior in Bacillus subtilis: role of two unique proteins, CheC and CheD. Biochemistry 34:38233831.
99. Rosario, M. M. L.,, and G. W. Ordal. 1996. CheC and CheD interact to regulate methylation of Bacillus subtilis methyl-accepting chemotaxis proteins. Mol. Microbiol. 21:511518.
100. Saulmon, M. M.,, and G. W. Ordal. Unpublished results.
101. Schoenhals, G. L.,, and R. M. Macnah. 1999. FliL is a membrane-associated component of the flagellar basal body of Salmonella. Microbiology 145:17691775.
102. Scott, W. G.,, D. L. Milligan,, M. V. Milburn,, G. G. Prive,, J. Yeh,, D. E. Koshland, Jr.,, and S. H. Kim. 1993. Refined structures of the ligand-binding domain of the aspartate receptor from Salmonella typhimurium. J. Mol. Biol. 232:555573.
103. Segall, J. E.,, S. M. Block,, and H. C. Berg. 1986. Temporal comparisons in bacterial chemotaxis. Proc. Natl. Acad. Sci. USA 83:89878991.
104. Shapiro, M. J.,, and D. E. Koshland, Jr. 1994. Mutagenic studies of the interaction between the aspartate receptor and methyltransferase from Escherichia coli. J. Biol. Chem. 269:1105411059.
105. Stock, J.,, and S. Da Re. 1999. A receptor scaffold mediates stimulus-response coupling in bacterial chemotaxis. Cell Calcium 26:157164.
106. Stock, J.,, and M. Levit. 2000. Signal transduction: hair brains in bacterial chemotaxis. Curr. Biol. 10:R1114.
107. Surette, M. G.,, and J. B. Stock. 1996. Role of alpha-helical coiled-coil interactions in receptor dimerization, signaling, and adaptation during bacterial chemotaxis. J. Biol. Chem. 271:1796617973.
108. Thoelke, M. S.,, J. R. Kirby,, and G. W. Ordal. 1989. Novel methyl transfer during chemotaxis in Bacillus subtilis. Biochemistry 28:55855589.
109. Thompson, J. D.,, Gibson, T. J.,, Plewniak, F.,, Jeanmougin, F.,, and D. G. Higgins. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:48764882.
110. Ueno, T.,, K. Oosawa,, and S.-I. Aizawa. 1992. The M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J. Mol. Biol. 227:672677.
111. Welch, M.,, K. Oosawa,, S.-I. Aizawa,, and M. Eisenbach. 1994. Effects of phosphorylation, Mg2+, and conformation of the chemotaxis protein CheY on its binding to the flagellar switch protein FliM. Biochemistry 30:1047010476.
112. Werhane, H.,, M. Zimmer,, G. Ordal,, and L. M. Marquez-Magana. Unpublished data.
113. West, J. T.,, W. Estacio,, and L. M. Marquez-Magana. Relative roles of the fla/che Pa, P d-3. and PSigd promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182:48414848.
114. West, J. T.,, W. Estacio,, and L. M. Marquez-Magana. Unpublished results.
115. Ying, C.,, F. Scoffone,, A. M. Albertini,, A. Galizzi,, and G. W. Ordal. 1991. Properties of the Bacillus subtilis chemotaxis protein CheF, a homolog of the Salmonella typhimurium flagellar protein FliJ. J. Bacteriol. 173: 35843586.
116. Yokoseki, T.,, T. lino,, and K. Kutsukake. 1996. Negative regulation by FliD, FliS, and FliT of the export of the flagellum-specific anti-sigma factor, FlgM, in Salmonella typhimurium. J. Bacteriol. 178:899901.
117. Yonekawa, H.,, H. Hayashi,, and J. S. Parkinson. 1983. Requirement of the cheB function for sensory adaptation in Escherichia coli. J. Bacteriol. 156:12281235.
118. Ypil, E.,, G. W. Ordal,, and L. M. Marquez-Magana. Unpublished results.
119. Zhou, J.,, S. A. Lloyd,, and D. F. Blair. 1998. Electrostatic interactions between rotor and stator in the bacterial flagellar motor. Proc. Natl. Acad. Sci. USA 95:64366441.
120. Zhulin, I. B. Unpublished observations.
121. Zhulin, I. B. 2001. The super family of chemotaxis transducers: from physiology to genomics and back. Adv. Microb. Physiol. 45:157198.
122. Zimmer, M. A.,, M. M. Saulmon,, and G. W. Ordal. Unpublished results.
123. Zimmer, M. A.,, J. Tiu,, M. A. Collins,, and G. W. Ordal. Selective methylation changes on the Bacillus subtilis chemotaxis receptor McpB promote adaptation. J. Biol. Chem. 275:2426424272.
124. Zuberi, A. R.,, C. Ying,, D. S. Bischoff,, and G. W. Ordal. 1991. Gene-protein relationships in the flagellar hook-basal body complex of Bacillus subtilis: sequences of the flgB, flgC, flgG, fliE and fliF genes. Gene 101:2331.

Tables

Generic image for table
TABLE 1

Specificities of receptors of

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Generic image for table
TABLE 2

Properties of chemotaxis proteins of

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31
Generic image for table
TABLE 3

Comparisons of flagellar gene-protein-substructure relationships in and serovar Typhimurium

Apparent molecular mass as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Amino acid sequence homology using SIM Alignment Tool for protein with these parameters: number of alignments to be computed, 10; gap open penalty, 8; gap extension penalty, 0; comparison matrix, BLOSOM30.

Speculation on unknown gene product deduced from homology search; proposed new name and function need experimental verification.

MinD ()is not a flagellar protein, but it may affect the efficiency of flagellation.

Citation: Aizawa S, Zhulin I, Márquez-Magaña L, Ordal G. 2002. Chemotaxis and Motility, p 437-452. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch31

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error