1887

Chapter 32 : Transformation and Recombination

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Transformation and Recombination, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap32-2.gif

Abstract:

This chapter emphasizes competence regulation and the roles of recombination and repair enzymes. More than a dozen genes encoding transformation proteins have been identified in . Orthologs of these proteins have been recognized in other transformation systems, both gram negative and gram positive, and it appears that many aspects of the DNA uptake mechanism are conserved. The contribution of competence and sporulation factor (CSF) to modulating the expression of is relatively minor, exerting only a two-to-threefold effect, but increasing the level of extracellular CSF exerts a profound inhibitory effect on expression, while stimulating sporulation. Homologous recombination in is central to both genetic transformation in competent cells and DNA repair following exposure to agents that damage DNA. Correspondingly, many of the genes that code for recombination proteins are regulated by either ComK or the SOS DNA repair regulon; the critical recombination gene, recA, is regulated by both ComK and the SOS pathway. The current models for homologous recombination in prokaryotes are based primarily on a large body of genetic and biochemical studies in . More than a dozen genes encoding recombination proteins have been identified in . All but two of these, and , seem to have functional counterparts in ; on the other hand, homologs of several known recombination genes, including , , , , and , have not been found in .

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32

Key Concept Ranking

Transcription Start Site
0.5668108
DNA Synthesis
0.5553502
Genetic Recombination
0.55414814
Bacterial Proteins
0.55414706
Holliday Junction Resolvase
0.45401514
0.5668108
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cartoon representation of DNA uptake during transformation of gram-positive and gram-negative bacteria.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The backbone pathway of competence regulation in

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The quorum-sensing system (see module 1, Fig. 2 ). (A) Genetic map of the quorum-sensing locus. The black and shaded boxes indicate the extent of the N-terminal hydrophobic and linker regions, respectively, of ComP. (B) Diagram of the quorum-sensing pathways. The box represents a cell. The circled + and — symbols indicate positive and negative effects.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Operation of the Mec switch (see module 2, Fig. 2 ). The dotted outlines indicate degradation. The circled + symbol indicates that ComK operates positively on its own promoter. A, C, P, and S represent MecA, ClpC, ClpP, and ComS, respectively.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Additional inputs to the backbone pathway of competence regulation (compare with Fig. 2 ). Genes above and below the backbone act positively and negatively, respectively. The quorum-sensing genes and those involved in the Mec switch are omitted from this figure. ClpP is included because it affects competence independently of its direct function in the Mec switch.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Biochemical model for genetic recombination in Β. , adapted from reference .

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap32
1. Albano, M.,, R. Breitling,, and D. Dubnau. 1989. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J. Bacteriol. 171: 5386 5404.
2. Albano, M.,, and D. Dubnau. Unpublished results.
3. Albano, M.,, J. Hahn,, and D. Dubnau. 1987. Expression of competence genes in Bacillus subtilis. J. Bacteriol. 169: 3110 3117.
4. Alonso, J. C.,, K. Shirahige,, and N. Ogasawara. 1990. Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis. Nucleic Acids Res. 18: 6771 6777.
5. Alonso, J. C.,, A. C. Stiege,, and G. Luder. 1993. Genetic recombination in Bacillus subtilis 168: effect of recN, recF, recH and addAB mutations on DNA repair and recombination. Mol. Gen. Genet. 239: 129 136.
6. Alonso, J. C.,, R. H. Tailor,, and G. Luder. 1988. Characterization of recombination-deficient mutants of Bacillus subtilis. J. Bacteriol. 170: 3001 3007.
7. Anderson, D. G.,, and S. C. Kowalczykowski. 1997. The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90: 77 86.
8. Arwert, F.,, and G. Venema. 1973. Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. Mol. Gen. Genet. 123: 185 198.
9. Ayora, S.,, and J. C. Alonso. 1997. Purification and characterization of the RecF protein from Bacillus subtilis 168. Nucleic Acids Res. 25: 2766 2772.
10. Ayora, S.,, A. C. Stiege,, R. Lurz,, and J. C. Alonso. 1997. Bacillus subtilis 168 RecR protein-DNA complexes visualized as looped structures. Mol. Gen. Genet. 254: 54 62.
11. Bai, U.,, I. Mandic-Mulec,, and I. Smith. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7: 139 148.
12. Banky, P.,, V. Mandava,, and C. M. Lovett, Jr. Unpublished results.
13. Bothwell, L.,, S. Canny,, S. Colavito,, S. Fuller,, E. Groban,, L. Hensley,, C. M. Lovett, Jr.,, T. O'Brien,, T. M. O'Gara,, and L. Tomm. Unpublished results.
14. Braedt, G.,, and G. R. Smith. 1989. Strand specificity of DNA unwinding by RecBCD enzyme. Proc. Natl. Acad. Sci. USA 86: 871 875.
15. Bresler, S. E.,, R. A. Kreneva,, and V. V. Kushev. 1968. Correction of molecular heterozygotes in the course of transformation. Mol. Gen. Genet. 102: 257 268.
16. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in B. subtilis is controlled by a multi-component phosphorelay. Cell 64: 545 552.
17. Campbell, E. A.,, S. Y. Choi,, and H. R. Masure. 1998. A competence regulon in Streptococcus pneumoniae revealed by genomic analysis. Mol. Microbiol. 27: 929 939.
18. Carter, H. L.,, K. M. Tatti,, and C. P. Moran, Jr. 1990. Cloning of a promoter used by sigma H RNA polymerase in Bacillus subtilis. Gene 96: 101 105.
19. Chaudhuri, B.,, and C. M. Lovett, Jr. Unpublished results.
20. Chedin, F.,, S. D. Ehrlich,, and S. C. Kowalczykowski. 2000. The Bacillus subtilis AddAB helicase/nuclease is regulated by its cognate Chi sequence in vitro. J. Mol. Biol. 298: 7 20.
21. Chedin, F.,, P. Noirot,, V. Biaudet,, and S. D. Ehrlich. 1998. A five-nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue of Bacillus subtilis. Mol. Microbiol. 29: 1369 1377.
22. Cheo, D. L.,, K. W. Bayles,, and R. E. Yasbin. 1991. Cloning and characterization of DNA damage-inducible promoter regions from Bacillus subtilis. J. Bacteriol. 173: 1696 1703.
23. Chung, Y. S.,, F. Breidt,, and D. Dubnau. 1998. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Mol. Microbiol. 29: 905 913.
24. Chung, Y. S.,, and D. Dubnau. 1998. All seven comG open reading frames are required for DNA binding during the transformation of competent Bacillus subtilis. J. Bacteriol. 180: 41 45.
25. Chung, Y. S.,, and D. Dubnau. 1994. ComC is required for the processing and translocation of ComGC, a pilin-like competence protein of Bacillus subtilis. Mol. Microbiol. 15: 543 551.
26. Claverys, J. P.,, and S. A. Lacks. 1986. Heteroduplex deoxyribonucleic acid base mismatch repair in bacteria. Microbiol. Rev. 50: 133 165.
27. Claverys, J. P.,, M. Prudhomme,, I. Mortier-Barriere,, and B. Martin. 2000. Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol. Microbiol. 35: 251 259.
28. Connolly, B.,, C. A. Parsons,, F. E. Benson,, H. J. Dunderdale,, G. J. Sharpies,, R. G. Lloyd,, and S. C. West. 1991. Resolution of Holliday junctions in vitro requires the Escherichia coli ruvC gene product. Proc. Natl. Acad. Sci. USA 88: 6063 6067.
29. Craig, N. L.,, and J. W. Roberts. 1980. E. Coli recA protein-directed cleavage of phage lambda repressor requires polynucleotide. Nature 283: 26 30.
30. Danner, D. B.,, R. A. Deich,, K. L. Sisco,, and H. O. Smith. 1980. An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11: 311 318.
31. de Vos, W. M.,, S. C. de Vries,, and G. Venema. 1983. Cloning and expression of the Escherichia coli recA gene in Bacillus subtilis. Gene 25: 301 308.
32. Dixon, D. A.,, and S. C. Kowalczykowski. 1991. Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66: 361 371.
33. Dixon, D. A.,, and S. C. Kowalczykowski. 1993. The recombination hotspot chi is a regulatory sequence that acts by attenuating the nuclease activity of the E. Coli RecBCD enzyme. Cell 73: 87 96.
34. Dooley, D. C.,, C. T. Hadden,, and E. W. Nester. 1971. Macromolecular synthesis in Bacillus subtilis during development of the competent state. J. Bacteriol. 108: 668 679.
35. Draskovic, I.,, and D. Dubnau. Unpublished results.
36. D'Souza, C.,, M. M. Nakano,, and P. Zuber. 1994. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc. Nad. Acad. Sci. USA 91: 9397 9401.
37. Dubnau, D. 1999. DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 214 244.
38. Dubnau, D., 1993. Genetic exchange and homologous recombination, p. 555 584. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology and Molecular Genetics. American Society for Microbiology, Washington, D.C.
39. Dubnau, D., 1976. Genetic transformation of Bacillus subtalis: a review with emphasis on the recombination mechanism, p. 14 27. In D. Schlessinger (ed.), Microbiology 1976. American Society for Microbiology, Washington, D.C.
40. Dubnau, D.,, and C. Cirigliano. 1973. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: nonrequirement of deoxyribonucleic acid replication for uptake and integration of transforming deoxyribonucleic acid. J. Bacteriol. 113: 1512 1514.
41. Dubnau, D.,, and C. Cirigliano. 1972. Fate of transforming DNA following uptake by competent Bacillus subtilis. III. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J. Mol. Biol. 64: 9 29.
42. Dubnau, D.,, and C. Cirigliano. 1972. Fate of transforming DNA following uptake by competent Bacillus subtilis. IV. The endwise attachment and uptake of transforming DNA. J. Mol. Biol. 64: 3l 46.
43. Dubnau, D.,, and M. Roggiani. 1990. Growth medium-independent genetic competence mutants of Bacillus subtilis. J. Bacteriol. 172: 4048 4055.
44. Dubnau, D.,, and K. Turgay,. 2000. The regulation of competence in Bacillus subtilis and its relation to stress response, p. 249 260. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. American Society for Microbiology, Washington, D.C.
45. Dubnau, E.,, J. Weir,, G. Nair,, H. L. Carter III,, C. P. Moran, Jr.,, and I. Smith. 1988. Bacillus sporulation gene spo0H codes for �� 30 (�� H). J. Bacteriol. 170: 1054 1062.
46. Elkins, C.,, C. E. Thomas,, H. S. Seifert,, and P. F. Sparling. 1991. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173: 3911 3913.
47. Fernandez, S.,, Y. Kobayashi,, N. Ogasawara,, and J. C. Alonso. 1999. Analysis of the Bacillus subtilis recO gene: RecO forms part of the RecFLOR function. Mol. Gen. Genet. 261: 567 573.
48. Fernandez, S.,, A. Sorokin,, and J. C. Alonso. 1998. Genetic recombination in Bacillus subtilis 168: effects of recU and recS mutations on DNA repair and homologous recombination. J. Bacteriol. 180: 3405 3409.
49. Friedberg, E. C.,, G. C. Walker,, and W. Siede (ed.). 1995. DNA Repair and Mutagenesis. ASM Press, Washington, D.C.
50. Gerth, U.,, E. Kriiger,, I. Derre,, T. Msadek,, and M. Hecker. 1998. Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol. Microbiol. 28: 787 802.
51. Gerth, U.,, A. Wipat,, C. R. Harwood,, N. Carter,, P. T. Emmerson,, and M. Hecker. 1996. Sequence and transcriptional analysis of cipX, a class-Ill heat-shock gene of Bacillus subtilis. Gene 181: 77 83.
52. Green, W. H.,, T. Jackson,, and C. M. Lovett, Jr. Unpublished results.
53. Grossman, A. D. 1995. Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29: 477 508.
54. Guillen, N.,, Y. Weinrauch,, and D. Dubnau. 1989. Cloning and characterization of the regulatory Bacillus subtilis competence genes, comA and comB. J. Bacteriol. 171: 5354 5361.
55. Hadden, C.,, and E. W. Nester. 1968. Purification of competent cells in the Bacillus subtilis transformation system. J. Bacteriol. 95: 876 885.
56. Hahn, J.,, J. Bylund,, M. Haines,, M. Higgins,, and D. Dubnau. 1995. Inactivation of mecA prevents recovery from the competent state and the partitioning of nucleoids in Bacillus subtilis. Mol. Microbiol. 18: 755 767.
57. Hahn, J.,, and D. Dubnau. 1991. Growth stage signal transduction and the requirements for srfA induction in the development of competence. J. Bacteriol. 173: 7275 7282.
58. Hahn, J.,, and J. Dubnau. Unpublished results.
59. Hahn, J.,, B. J. Haijema,, and D. Dubnau. Unpublished results.
60. Hahn, J.,, G. Inamine,, Y. Kozlov,, and D. Dubnau. 1993. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol. Microbiol. 10: 99 111.
61. Hahn, J.,, L. Kong,, and D. Dubnau. 1994. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J. Bacteriol. 176: 5753 5761.
62. Hahn, J.,, A. Luttinger,, and D. Dubnau. 1996. Regulatory inputs for the synthesis of ComK, the competence transcription factor of Bacillus subtilis. Mol. Microbiol. 21: 763 775.
63. Hahn, J.,, M. Persuh,, R. Berka,, A. Sloma,, and D. Dubnau. Unpublished results.
64. Hahn, J.,, M. Roggiani,, and D. Dubnau. 1995. The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J. Bacteriol. 177: 3601 3605.
65. Haijema, B. J.,, L. W. Hamoen,, J. Kooistra,, G. Venema,, and D. van Sinderen. 1995. Expression of the ATP-dependent deoxyribonuclease of Bacillus subtilis is under competence-mediated control. Mol. Microbiol. 15: 203 211.
66. Haijema, B. J.,, D. van Sinderen,, K. Winterling,, J. Kooistra,, G. Venema,, and L. W. Hamoen. 1996. Regulated expression of the dinR and recA genes during competence development and SOS induction in Bacillus subtilis. Mol. Microbiol. 22: 75 85.
67. Hamoen, L.,, B. J. Haijema,, G. Venema,, and C. M. Lovett, Jr. Unpublished results.
68. Hamoen, L.,, M. Marahiel,, and P. Serror. Unpublished results.
69. Hamoen, L. W.,, H. Eshuis,, J. Jongbloed,, G. Venema,, and D. van Sinderen. 1995. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol. Microbiol. 15: 55 63.
70. Hamoen, L. W.,, A. F. Van Werkhoven,, J. J. Bijlsma,, D. Dubnau,, and G. Venema. 1998. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes Dev. 12: 1539 1550.
72. Hamoen, L. W.,, A. F. Van Werkhoven,, G. Venema,, and D. Dubnau. 2000. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 97: 9246 9251.
73. Haseltine-Cahn, F.,, and M. S. Fox. 1968. Fractionation of transformable bacteria from competent cultures of Bacillus subtilis on renografin gradients. J. Bacteriol. 95: 867 875.
74. Havarstein, L. S.,, R. Hakenbeck,, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J. Bacteriol. 179: 6589 6594.
75. Havarstein, L. S.,, and D. A. Morrison,. 1999. Quorum sensing and peptide pheromones in streptococcal competence for genetic transformation, p. 9 26. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C.
76. Hegde, S. P.,, M. Rajagopalan,, and M. V. Madiraju. 1996. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J. Bacteriol. 178: 184 190.
77. Holliday, A. R.,, R. B. Morris,, and R. P. Sharpley. 1964. Compound 84/F 1983 compared with D-amphetamine and placebo in regard to effects on human performance. Psychopharmacohgia 6: 192 200.
78. Hurstel, S.,, M. Granger-Schnarr,, and M. Schnarr. 1988. Contacts between the LexA repressor—or its DNA-binding domain—and the backbone of the recA operator DNA. EMBOJ. 7: 269 275.
79. Inamine, G. S.,, and D. Dubnau. 1995. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J. Bacteriol. 177: 3045 3051.
80. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation-regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171: 4121 4129.
81. Ji, G.,, R. Beavis,, and R. P. Novick. 1997. Bacterial interference caused by autoinducing peptide variants. Science 276: 2027 2030.
82. Ji, G.,, R. C. Beavis,, and R. P. Novick. 1995. Cell density control of staphylococcal virulence mediated by an octapeptide pheromone. Proc. Natl. Acad. Sci. USA 92: 12055 12059.
83. Johnson, M.,, and C. M. Lovett, Jr. Unpublished results.
84. Karudapuram, S.,, and G. J. Barcak. 1997. The Haemophilus influenzae dprABC genes constitute a competence-inducible operon that requires the product of the tfoX (sry) gene for transcriptional activation. J. Bacteriol. 179: 4815 4820.
85. Karudapuram, S.,, X. Zhao,, and G. J. Barcak. 1995. DNA sequence and characterization of Haemophilus influenzae dprA+, a gene required for chromosomal but not plasmid DNA transformation. J. Bacteriol. 177: 3235 3240.
86. Kleerebezem, M.,, L. E. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895 904.
87. Kong, L.,, and D. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein interaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 5793 5797.
88. Kong, L.,, K. J. Siranosian,, A. D. Grossman,, and D. Dubnau. 1993. Sequence and properties of mecA, a negative regulator of genetic competence in Bacillus subtilis. Mol. Microbiol. 9: 365 373.
89. Kooistra, J.,, B. J. Haijema,, and G. Venema. 1993. The Bacillus subtilis addAB genes are fully functional in Escherichia coli. Mol. Microbiol. 7: 915 923.
90. Kooistra, J.,, and G. Venema. 1991. Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis. J. Bacteriol. 173: 3644 3655.
91. Kooistra, J.,, B. Vosman,, and G. Venema. 1988. Cloning and characterization of a Bacillus subtilis transcription unit involved in ATP-dependent DNase synthesis. J. Bacteriol. 170: 4791 4797.
92. Kowalczykowski, S. C.,, D. A. Dixon,, A. K. Eggleston,, S. D. Lauder,, and W. M. Rehrauer. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58: 401 465.
93. Kruger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176: 3360 3367.
94. Kuzminov, A. 1995. Collapse and repair of replication forks in Escherichia coli. Mol. Microbiol. 16: 373 384.
95. Lacks, S.,, B. Greenberg,, and M. Neuberger. 1975. Identification of a deoxyribonuclease implicated in genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 123: 222 232.
96. Lacks, S.,, B. Greenberg,, and M. Neuberger. 1974. Role of a deoxyribonuclease in the genetic transformation of Diplococcus pneumoniae. Proc. Natl. Acad. Sci. USA 71: 2305 2309.
97. Lacks, S.,, and M. Neuberger. 1975. Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. J. Bacteriol. 124: 1321 1329.
98. Lacks, S. A., 1999. DNA uptake by transformable bacteria, p. 138 168. In J. K. Broome-Smith,, S. Baumberg,, C.J. Stirling,, and F. B. Ward (ed.), Transport of Molecules Across Microbial Membranes. Cambridge University Press, Cambridge, England.
99. Larson, T. G.,, and S. H. Goodgal. 1992. Donor DNA processing is blocked by a mutation in the com1OlA locus of Haemophilus influenzae. J. Bacteriol. 174: 3392 3394.
100. Larson, T. G.,, and S. H. Goodgal. 1991. Sequence and transcriptional regulation of comlOlA, a locus required for genetic transformation in Haemophilus influenzae. J. Bacteriol. 173: 4683 4691.
101. Lavery, P. E.,, and S. C. Kowalczykowski. 1992. A postsynaptic role for single-stranded DNA-binding protein in recA protein-promoted DNA strand exchange. J. Biol. Chem. 267: 9315 9320.
102. Lazazzera, B. A.,, T. Palmer,, J. Quisel,, and A. D. Grossman,. 1999. Cell density control of gene expression and development in Bacillus subtilis, p. 27 46. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C.
103. Lazazzera, B. A.,, J. M. Solomon,, and A. D. Grossman. 1997. An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis. Cell 89: 917 925.
104. Lee, M. S.,, and K. J. Marians. 1990. Differential ATP requirements distinguish the DNA translocation and DNA unwinding activities of the Escherichia coli PriA protein. J. Biol. Chem. 265: 17078 17083.
105. Lee, M. S.,, and D. A. Morrison. 1999. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J. Bacteriol. 181: 5004 5016.
106. Lina, G.,, S. Jarraud,, G. Ji,, T. Greenland,, A. Pedraza,, J. Etienne,, R. P. Novick,, and F. Vandenesch. 1998. Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol. Microbiol. 28: 655 662.
107. Little, J. W. 1984. Autodigestion of lexA and phage lambda repressors. Proc. Natl. Acad. Sci. USA 81: 1375 1379.
108. Little, J. W.,, and S. A. Hill. 1985. Deletions within a hinge region of a specific DNA-binding protein. Proc. Natl. Acad. Sci. USA 82: 2301 2305.
109. Little, J. W.,, and D. W. Mount. 1982. The SOS regulatory system of Escherichia coli. Cell 29: 11 22.
110. Little, J. W.,, D. W. Mount,, and C. R. Yanisch-Perron. 1981. Purified lexA protein is a repressor of the recA and lexA genes. Proc. Natl. Acad. Sci. USA 78: 4199 4203.
111. Liu, J.,, and P. Zuber. 1998. A molecular switch controlling competence and motility: competence regulatory factors ComS, MecA, and ComK control sigmaD-dependent gene expression in Bacillus subtilis. J. Bacteriol. 180: 4243 4251.
112. Liu, L.,, M. Nakano,, O. H. Lee,, and P. Zuber. 1996. Plasmid-amplified comS enhances genetic competence and suppresses sinR in Bacillus subtilis. J. Bacteriol. 178: 5144 5152.
113. Londofio-Vallejo, J. A.,, and D. Dubnau. 1993. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol. Microbiol. 9: 119 131.
114. Londofio-Vallejo, J. A.,, and D. Dubnau. 1994. Membrane association and role in DNA uptake of the Bacillus subtilis PriA analog ComF1. Mol. Microbiol. 13: 197 205.
115. Londofio-Vallejo, J. A.,, and D. Dubnau. 1994. Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J. Bacteriol. 176: 4642 4645.
116. Love, P. E.,, M. J. Lyle,, and R. E. Yasbin. 1985. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82: 6201 6205.
117. Lovett, C. M., Jr.,, K. C. Cho,, and T. M. O'Gara. 1993. Purification of an SOS repressor from Bacillus subtilis. J. Bacteriol. 175: 6842 6849.
118. Lovett, C. M., Jr.,, P. E. Love,, and R. E. Yasbin. 1989. Competence-specific induction of the Bacillus subtilis RecA protein analog: evidence for dual regulation of a recombination protein. J. Bacteriol. 171: 2318 2322.
119. Lovett, C. M., Jr.,, P. E. Love,, R. E. Yasbin,, and J. W. Roberts. 1988. SOS-like induction in Bacillus subtilis: induction of the RecA protein analog and a damage-inducible operon by DNA damage in Rec+ and DNA repair-deficient strains. J. Bacteriol. 170: 1467 1474.
120. Lovett, C. M., Jr.,, T. M. O'Gara,, and J. N. Woodruff. 1994. Analysis of the SOS inducing signal in Bacillus subtilis using Escherichia coli LexA as a probe. J. Bacteriol. 176: 4914 4923.
121. Lovett, C. M., Jr.,, and J. W. Roberts. 1985. Purification of a RecA protein analogue from Bacillus subtilis. J. Biol. Chem. 260: 3305 3313.
122. Luttinger, A.,, J. Hahn,, and D. Dubnau. 1996. Polynucleotide phosphorylase is necessary for competence development in Bacillus subtilis. Mol. Microbiol. 19: 343 356.
123. Macfadyen, L. P.,, I. R. Dorocicz,, J. Reizer,, M. H. Saier, Jr.,, and R. J. Redfield. 1996. Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate:fructose phosphotransferase system. Mol. Microbiol. 21: 941 952.
124. Madiraju, M. V.,, and A. J. Clark. 1992. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J. Bacteriol. 174: 7705 7710.
125. Magnuson, R.,, J. Solomon,, and A. D. Grossman. 1994 Biochemical and genetic characterization of a competence pheromone. Cell 77: 207 216.
126. Mandic-Mulec, I.,, N. Gaur,, U. Bai,, and I. Smith. 1992. Sin, a stage-specific repressor of cellular differentiation. J. Bacteriol. 174: 3561 3569.
127. Marciano, D. K.,, M. Russel,, and S. M. Simon. 1999. An aqueous channel for filamentous phage export. Science 284: 1516 1519.
128. Mayville, P.,, G. Ji,, R. Beavis,, H. Yang,, M. Goger,, R. P. Novick,, and T. W. Muir. 1999. Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc. Natl. Acad. Sci. USA 96: 1218 1223.
129. McCarthy, C.,, and E. W. Nester. 1967. Macromolecular synthesis in newly transformed cells of Bacillus subtilis. J. Bacteriol. 94: 131 140.
130. Mejean, V.,, and J. Claverys. 1988. Polarity of DNA entry in transformation of Streptococcus pneumoniae. Mol. Gen. Genet. 213: 444 448.
131. Mejean, V.,, and J. P. Claverys. 1993. DNA processing during entry in transformation of Streptococcus pneumoniae. J. Biol. Chem. 268: 5594 5599.
132. Michod, R. E.,, M. F. Wojciechowski,, and M. A. Hoelzer. 1988. DNA repair and the evolution of transformation in the bacterium Bacillus subtilis. Genetics 118: 31 39.
133. Miller, M. C.,, J. B. Resnick,, B. T. Smith,, and C. M. Lovett, Jr. 1996. The Bacillus subtilis dinR gene codes for the analogue of Escherichia coii LexA. Purification and characterization of the DinR protein. J. Biol. Chem. 271: 33502 33508.
134. Mohan, S.,, J. Aghion,, N. Guillen,, and D. Dubnau. 1989. Molecular cloning and characterization of cotnC, a late competence gene of Bacillus subtilis. J. Bacteriol. 171: 6043 6051.
135. Mohan, S.,, and D. Dubnau. 1990. Transcriptional regulation of comC: evidence for a competence-specific factor in Bacillus subtilis. J. Bacteriol. 172: 4064 4071
136. Msadek, T.,, V. Dartois,, F. Kunst,, M. L. Herbaud,, F. Denizot,, and G. Rapoport. 1998. ClpP is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol. Microbiol. 27: 899 914.
137. Msadek, T.,, F. Kunst,, D. Henner,, A. Klier,, G. Rapoport,, and R. Dedonder. 1990. Signal transduction pathway controlling the synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J. Bacteriol. 172: 824 834.
138. Msadek, T.,, F. Kunst,, A. Klier,, and G. Rapoport. 1991. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J. Bacteriol. 173: 2366 2377.
139. Msadek, T.,, F. Kunst,, and G. Rapoport. 1994. MecB of Bacillus subtilis is a pleiotropic regulator of the ClpC AT-Pase family, controlling competence gene expression and survival at high temperature. Proc. Natl. Acad. Sci. USA 91: 5788 5792.
140. Msadek, T.,, F. Kunst,, and G. Rapoport,. 1995. A signal transduction network in Bacillus subtilis includes the DegS/DegU and ComP/ComA two-component systems, p. 447 471. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, D.C.
141. Muniyappa, K.,, S. L. Shaner,, S. S. Tsang,, and C. M. Radding. 1984. Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination. Proc. Natl. Acad. Sci. USA 81: 2757 2761.
142. Nakano, M. M.,, L. Xia,, and P. Zuber. 1991. Transcription initiation region of the srfA operon which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J. Bacteriol. 173: 5487 5493.
143. Nakano, M. M.,, Y. Zhu,, J. Liu,, D. Y. Reyes,, H. Yoshikawa,, and P. Zuber. 2000. Mutations conferring amino acid residue substitutions in the carboxy-terminal domain of RNA polymerase can suppress clpX and clpP with respect to developmentally regulated transcription in Bacillus subtilis. Mol. Microbiol. 37: 869 884.
144. Nakano, M. M.,, and P. Zuber. 1989. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J. Bacteriol. 171: 5347 5353.
145. Nakano, M. M.,, and P. Zuber. 1991. The primary role of ComA in establishment of the competent state in Bacillus subtilis is to activate the expression of srfA. J. Bacteriol. 173: 7269 7274.
146. Nester, E. W.,, and B. A. D. Stocker. 1963. Biosynthetic latency in early stages of deoxyribonucleic acid transformation in Bacillus subtilis. J. Bacteriol. 86: 785 796.
147. Ogura, M.,, L. Liu,, M. Lacelle,, M. M. Nakano,, and P. Zuber. 1999. Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol. Microbiol. 32: 799 812.
148. Ogura, M.,, Y. Ohshiro,, S. Hirao,, and T. Tanaka. 1997. A new Bacillus subtilis gene, med, encodes a positive regulator of comK. J. Bacteriol. 179: 6244 6253.
149. Ogura, M.,, and T. Tanaka. 2000. Bacillus subtilis comZ (yjzA) negatively affects expression of comG but not comK. J. Bacteriol. 182: 4992 4994.
150. Otto, M.,, R. Sussmuth,, G. Jung,, and F. Gotz. 1998. Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett. 424: 89 94
151. Otto, M.,, R. Sussmuth,, C. Vuong,, G. Jung,, and F. Gotz. 1999. Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett. 450: 257 262.
152. Palmen, R.,, and K. J. Hellingwerf. 1997. Uptake and processing of DNA by Acinetobacter calcoaceticus—a review. Gene 192: 179 190.
153. Parsons, C. A.,, A. Stasiak,, R. J. Bennett,, and S. C. West. 1995. Structure of a multisubunit complex that promotes DNA branch migration. Nature 374: 375 378.
154. Perego, M., 1999. Self-signaling by Phr peptides modulates Bacillus subtilis development, p. 243 258. In G. M. Dunny, and S. C. Winans (ed.), Cell-Cell Signaling in Bacteria. American Society for Microbiology, Washington, D.C.
155. Persuh, M.,, and D. Dubnau. Unpublished results.
156. Persuh, M.,, K. Turgay,, I. Mandic-Mulec,, and D. Dubnau. 1999. The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol. Microbiol. 33: 886 894.
157. Phizicky, E. M.,, and J. W. Roberts. 1981. Induction of SOS functions: regulation of proteolytic activity of E. Coli RecA protein by interaction with DNA and nucleoside triphosphate. Cell 25: 259 267.
158. Piazza, F.,, P. Tortosa,, and D. Dubnau. 1999. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. J. Bacteriol. 181: 4540 4548.
159. Pozzi, G.,, L. Masala,, F. Iannelli,, R. Manganelli,, L. S. Havarstein,, L. Piccoli,, D. Simon,, and D. A. Morrison. 1996. Competence for genetic transformation in encapsulated strains of Streptococcus pneumoniae: two allelic variants of the peptide pheromone. J. Bacteriol. 178: 6087 6090.
160. Prowedi, R.,, and D. Dubnau. 1998. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Mol. Microbiol. 31: 271 280.
161. Prowedi, R.,, and D. Dubnau. Unpublished results.
162. Puyet, A.,, B. Greenberg,, and S. A. Lacks. 1990. Genetic and structural characterization of EndA. A membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J. Mol. Biol. 213: 727 738.
163. Ratnayake-Lecamwasam, M.,, and A. L. Sonenshein. Personal communication.
164. Raymond-Denise, A.,, and N. Guillen. 1992. Expression of the Bacillus subtilis dinR and recA genes after DNA damage and during competence. J. Bacteriol. 174: 3171 3176.
165. Raymond-Denise, A.,, and N. Guillen. 1991. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J. Bacteriol. 173: 7084 7091.
166. Redfield, R. J. 1988. Evolution of bacterial transformation: is sex with dead cells ever better than no sex at all? Genetics 119: 213 221.
167. Redfield, R. J. 1993. Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics 133: 755 761.
168. Redfield, R. J. 1993. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. J . Hered. 84: 400 404.
169. Redfield, R. J. 1991. sxy-1, a Haemophilus influenzae mutation causing greatly enhanced spontaneous competence. J. Bacteriol. 173: 5612 5618.
170. Roggiani, M.,, and D. Dubnau. 1993. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J. Bacteriol. 175: 3182 3187.
171. Roggiani, M.,, J. Hahn,, and D. Dubnau. 1990. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J. Bacteriol. 172: 4056 4063.
172. Sancar, A.,, and G. B. Sancar. 1988. DNA repair enzymes. Annu. Rev. Biochem. 57: 29 67.
173. Sassanfar, M.,, and J. W. Roberts. 1990. Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J. Mol. Biol. 212: 79 96.
174. Schirmer, E. C.,, J. R. Glover,, M. A. Singer,, and S. Lindquist. 1996. HSP1OO/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21: 289 296.
175. Schnarr, M.,, J. Pouyet,, M. Granger-Schnarr,, and M. Daune. 1985. Large-scale purification, oligomerization equilibria, and specific interaction of the LexA repressor of Escherichia coli. Biochemistry 24: 2812 2818.
176. Serror, P.,, and A. L. Sonenshein. 1996. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J. Bacteriol. 178: 5910 5915.
177. Shah, A.,, and C. M. Lovett, Jr. Unpublished results.
178. Shan, Q.,, J. M. Bork,, B. L. Webb,, R. B. Inman,, and M. M. Cox. 1997. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265: 519 540.
179. Shibata, T.,, C. DasGupta,, R. P. Cunningham,, and C. M. Radding. 1979. Purified Escherichia coli recA protein catalyzes homologous pairing of superhelical DNA and single-stranded fragments. Proc. Natl. Acad. Sci. USA 76: 1638 1642.
180. Singh, R. M. 1972. Number of deoxyribonucleic acid uptake sites in competent cells of Bacillus subtilis. J. Bacteriol. 110: 266 272.
181. Slack, F. J.,, P. Serror,, E. Joyce,, and A. L. Sonenshein. 1995. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon. Mol. Microbiol. 15: 689 702.
182. Slilaty, S. N.,, and J. W. Little. 1987. Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc. Natl. Acad. Sci. USA 84: 3987 3991.
183. Smeets, L. C.,, J. J. Bijlsma,, E. J. Kuipers,, C. M. Vandenbroucke-Grauls,, and J. G. Kusters. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 27: 99 102.
184. Smith, H.,, K. Wiersma,, S. Bron,, and G. Venema. 1984 -Transformation in Bacillus subtilis: a 75,000-dalton protein complex is involved in binding and entry of donor DNA. J . Bacteriol. 157: 733 738.
185. Smith, H.,, K. Wiersma,, S. Bron,, and G. Venema. 1983. Transformation in Bacillus subtilis: purification and partial characterization of a membrane-bound DNA-binding protein. J. Bacteriol. 156: 101 108.
186. Smith, H.,, K. Wiersma,, G. Venema,, and S. Bron. 1985. Transformation in Bacillus subtilis: further characterization of a 75,000-dalton protein complex involved in binding and entry of donor DNA. J. Bacteriol. 164: 201 206.
187. Smith, I. Personal communication.
188. Smith, I., 1993. Regulatory proteins that control late-growth development, p. 785 800. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
189. Solomon, J.,, R. Magnuson,, A. Srivastava,, and A. D. Grossman. 1995. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis . Genes Dev. 9: 547 558.
190. Solomon, J. M.,, and A. D. Grossman. 1996. Who's competent and when: regulation of natural genetic competence in bacteria. Trends Genet. 12: 150 155.
191. Solomon, J. M.,, B. A. Lazazzera,, and A. D. Grossman. 1996. Purification and characterization of an extracellular peptide factor that affects two developmental pathways in Bacillus subtilis. Genes Dev. 10: 2014 2024.
192. Stasiak, A.,, I. R. Tsaneva,, S. C. West,, C. J. Benson,, X. Yu,, and E. H. Egelman. 1994. The Escherichia coli RuvB branch migration protein forms double hexameric rings around DNA. Proc. Natl. Acad. Sci. USA 91: 7618 7622.
193. Strauch, M., 1993. AbrB, a transition state regulator, p. 757 764. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
194. Tanaka, T.,, and M. Kawata. 1988. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases. J. Bacteriol. 170: 3593 3600.
195. Tomb, J.-F.,, H. El-Hajj,, and H. O. Smith. 1991. Nucleotide sequence of a cluster of genes involved in the transformation of Haemophilus influenzae RD. Gene 104: 1 10.
196. Tortosa, P.,, M. Albano,, and D. Dubnau. 2000. Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol. Microbiol. 35: 1110 1119.
197. Tortosa, P.,, M. Albano,, T. H. Tran,, and D. Dubnau. Unpublished results.
198. Tortosa, P.,, and D. Dubnau. 1999. Competence for transformation: a matter of taste. Curr. Opin. Microbiol. 2: 588 592.
199. Tortosa, P.,, and D. Dubnau. Unpublished results.
200. Tortosa, P.,, L. Logsdon,, B. Kraigher,, Y. Itoh,, I. Mandic-Mulec,, and D. Dubnau. 2001. Specificity and genetic polymorphism of the Bacillus competence quorum-sensing system. J. Bacteriol. 183: 451 460.
201. Tran, T. H.,, and D. Dubnau. Unpublished results.
202. Tsaneva, I. R.,, B. Muller,, and S. C. West. 1992. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. Coli. Cell 69: 1171 1180.
203. Turgay, K.,, J. Hahn,, J. Burghoorn,, and D. Dubnau. 1998. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J. 17: 6730 6738.
204. Turgay, K.,, L. W. Hamoen,, G. Venema,, and D. Dubnau. 1997. Biochemical characterization of a molecular switch involving the heat shock protein ClpC, that controls the activity of ComK, the competence transcription factor of Bacillus subtilis. GenesDev. 11: 119 128.
205. Umezu, K.,, and R. D. Kolodner. 1994. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 269: 30005 30013.
206. Vagner, V.,, J.-P. Claverys,, S. D. Ehrlich,, and V. Mejean. 1990. Direction of DNA entry in competent cells of Bacillus subtilis. Mol. Microbiol. 4: 1785 1788.
207. van Sinderen, D.,, R. Kiewiet,, and G. Venema. 1995. Differential expression of two closely related deoxyri-bonucleases, nucA and nucB in Bacillus subtilis. Mol. Microbiol. 15: 213 223.
208. van Sinderen, D.,, A. Luttinger,, L. Kong,, D. Dubnau,, G. Venema,, and L. Hamoen. 1995. comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol. Microbiol. 15: 455 462.
209. van Sinderen, D.,, A. ten Berge,, B. J. Hayema,, L. Hamoen,, and G. Venema. 1994. Molecular cloning and sequence of comK, a gene required for genetic competence in Bacillus subtilis. Mol. Microbiol. 11: 695 703.
210. van Sinderen, D.,, and G. Venema. 1994. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. J. Bacteriol. 176: 5762 5770.
211. Vosman, B.,, J. Kooistra,, J. Olijve,, and G. Venema. 1987. Cloning in Escherichia coii of the gene specifying the DNA-entry nuclease of Bacillus subtilis. Gene 52: 175 183.
212. Vosman, B.,, G. Kuiken,, and G. Venema. 1988. Transformation in Bacillus subtilis: involvement of the 17-kilo-dalton DNA-entry nuclease and the competence-specific 18-kilodalton protein. J. Bacteriol. 170: 3703 3710.
213. Walker, G. C. 1984. Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol. Rev. 48: 60 93.
214. Webb, B. L.,, M. M. Cox,, and R. B. Inman. 1997. Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91: 347 356.
215. Weinrauch, Y.,, N. Guillen,, and D. Dubnau. 1989. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol. 171: 5362 5375.
216. Weinrauch, Y.,, T. Msadek,, F. Kunst,, G. Rapoport,, and D. Dubnau. 1991. Sequence and properties of comQ, a new competence gene of Bacillus subtilis. J. Bacteriol. 173: 5685 5693.
217. Weinrauch, Y.,, R. Penchev,, E. Dubnau,, I. Smith,, and D. Dubnau. 1990. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev. 4: 860 872.
218. West, S. C. 1996. The RuvABC proteins and Holliday junction processing in Escherichia coli. J. Bacteriol. 178: 1237 1241.
219. Whatmore, A. M.,, V. A. Barcus,, and C. G. Dowson. 1999. Genetic diversity of the streptococcal competence (com) gene locus. J. Bacteriol. 181: 3144 3154.
220. Williams, P. M.,, L. A. Bannister,, and R. J. Redfield. 1994 The Haemophilus influenzae sxy-1 mutation is in a newly identified gene essential for competence. J. Bacteriol. 176: 6789 6794.
221. Winterling, K. W.,, D. Chafin,, J. J. Hayes,, J. Sun,, A. S. Levine,, R. E. Yasbin,, and R. Woodgate. 1998. The Bacillus subtilis DinR binding site: redefinition of the consensus sequence. J. Bacteriol. 180: 2201 2211.
222. Winterling, K. W.,, A. S. Levine,, R. E. Yasbin,, and R. Woodgate. 1997. Characterization of DinR, the Bacillus subtilis SOS repressor. J. Bacteriol. 179: 1698 1703.
223. Yasbin, R. E. 1977. DNA repair in Bacillus subtilis. II. Activation of the inducible system in competent bacteria. Mol. Gen. Genet. 153: 219 225.
224. Yasbin, R. E.,, D. L. Cheo,, and K. W. Bayles. 1992. Inducible DNA repair and differentiation in Bacillus subtilis: interactions between global regulons. Mol. Microbial. 6: 1263 1270.
225. Zulty, J. J.,, and G. J. Barcak. 1995. Identification of a DNA transformation gene required for coml01A+ expression and supertransformer phenotype in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 92: 3616 3620.

Tables

Generic image for table
TABLE 1

Transformation genes of

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Generic image for table
TABLE 2

Competence regulatory proteins of

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Generic image for table
TABLE 3

recombination genes

Organisms containing homologs with highest identity; homologs with at least 60% identity are in boldface.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32
Generic image for table
TABLE 4

din genes

Approximate position of center of operator sequence based on locations of putative +1. Only the promocer has been mapped.

Apparent binding constants were determined by quantitative mobility shift assays ( ).

Organisms containing homologs with highest identity; homologs with at least 60% identity are in boldface.

Citation: Dubnau D, Lovett C. 2002. Transformation and Recombination, p 453-471. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error