1887

Chapter 34 : Sporulation Genes and Intercompartmental Regulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Sporulation Genes and Intercompartmental Regulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap34-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap34-2.gif

Abstract:

This chapter discusses RNA polymerase sigma factors such as σ, σ, σ, and σ, their regulation, their activities, and the interrelationship between the sigma factors and morphological changes characteristic of spore formation. The DNA-binding protein SpoOA is the master regulator for entry into sporulation. A member of the response regulator family of transcription factors, SpoOA orchestrates changes in gene transcription during the transition from growth to sporulation. Several well-characterized sporulation genes are known to be under the direct control of σ and σ. The σ factor is synthesized in the forespore at the engulfment stage of sporulation. High-level transcription of is delayed compared with that of other genes known to be transcribed by σ-containing RNA polymerase, and is unique among this group, in that it requires σ activity; transcription also requires the prior σ-directed transcription of . The gene is a composite coding sequence that is generated in the mother-cell chromosome from two partial coding sequences by a DNA rearrangement that excises the element. BofC is an inhibitor of SpoIVB, and apparently in the absence of BofC the little SpoIVB that is produced under σ control is active and hence able to activate pro-σ processing. The processing of pro-σ in the mother cell is dependent upon σ-directed transcription in the forespore.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34

Key Concept Ranking

Fatty Acid Biosynthesis
0.44567955
Integral Membrane Proteins
0.42291346
RNA Polymerase
0.40591404
0.44567955
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Three principal stages of sporulation. At the predivisional stage, the developing cell has entered sporulation and is completing chromosome duplication but has not yet undergone asymmetric division. In the postdivisional stage, there has been an unequal division into a small cell, the forespore (or prespore), and a large cell, the mother cell. The forespore and mother cell each receive a chromosome during the postdivisional stage, and each remains in contact with the extracellular medium. Finally, in the postengulfment stage, the forespore is wholly engulfed as a free protoplast within the mother cell.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Principal targets of Spo0A∼P in the establishment of compartment-specific gene expression. The transcription factor Spo0A∼P is responsible for directing the transcription of genes involved in establishing compartment-specific transcription under the control of σF (the operon and the spoIIE gene) and σΕ (the operon) and of an unknown gene or genes involved in switching the site of Z-ring formation to sites near the cell poles.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cyclic pathway governing the activation of σF. The figure shows the relationship between σF and the regulatory proteins SpoIIAA (AA), SpoIIAB (AB), and SpoIIE (E). SpoIIAA exists in two states, phosphorylated (AA-P) and unphosphorylated (AA). Likewise, SpoIIAB exists in two forms, an ATP-containing form [(ATP)AB] and an ADP-containing form [(ADP)AB]. The activation of σF is depicted as a cycle in which SpoIIAA becomes phosphorylated by reaction with the ATP-containing complex of SpoIIAB and σF [(ΑΤΡ)ΑΒ·σF] and dephosphorylated by the action of the SpoIIE phosphatase. SpoIIAA is also capable of becoming trapped in an inactive complex [(ADP)AB-AA] with the ADP-containing form of SpoIIAB [(ADP)AB]. Evidence indicates the existence of an additional, unknown regulatory step (not shown in the figure, but see text for details) acting after the dephosphorylation of SpoIIAA-P that is required for the activation of σF.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The σF factor escapes from SpoIIAB in the forespore. The σF factor is held in an inactive complex with SpoIIAB (ΑΒ·σF) in the predivisional cell and in the mother-cell chamber following division. The σF factor escapes from SpoIIAB in the forespore in a process that is accompanied by the dephosphorylation of SpoIIAA-P (AA-P) and the binding of AB to the unphosphorylated form of SpoIIAA (AA) to form the SpoIIAB-SpoIIAA complex (AB-AA). For simplicity, the presence of ATP or ADP in the SpoIIAB complexes is not shown. Also, for simplicity, SpoIIAA is only shown in its phos-phorylated state in the predivisional cell, although, as explained in the text, some dephosphorylation of SpoIIAA-P probably commences prior to asymmetric division. Dephosphorylation of SpoIIAA-P is catalyzed by the phosphatase SpoIIE (E), which localizes in bipolar Ε-rings in the predivisional cell and in the septum following division. It is not definitively known whether SpoIIE is localized on one (the forespore) or both faces of the polar septum, and the figure is not intended to favor one or the other possibility.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Intercompartmental signal transduction pathways governing the proteolytic activation of pro-σE and pro-σκ. In the pro-σE pathway, σF turns on the synthesis of the signaling protein SpoIIR, which is secreted into the space between the two cellular compartments where it directly or indirectly activates SpoIIGA (GA), an integral membrane protein that is responsible for converting pro-σE to mature σΕ. In the pro-σK pathway, σG turns on the synthesis of the signaling protein SpoIVB, which is believed to be secreted into the space between the two cellular compartments where it reverses the inhibition of the pro-σK processing enzyme SpoIVFB (IVFB) by the inhibitory proteins SpoIVFA (IVFA) and BofA. SpoIVFB, SpoIVFA, and BofA are integral membrane proteins. A fundamental difference between the pathways is that SpoIIGA is inactive in its default state and needs to be activated by SpoIIR, whereas SpoIVFB is active in its default state and is held inactive by SpoIVFA and BofA.

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Crisscross regulation. The activities of the four compartment-specific sigma factors are linked in a crisscross fashion by intercompartmental signaling. Events (arrow) under the control of the transcription factors Spo0A∼P and σΗ lead to the activation of σF in the forespore. Next, an intercellular signal transduction pathway (horizontal arrow) under the control of σΕ causes the appearance of σΕ in the mother cell by proteolytic processing of the proprotein precursor pro-σE (not shown). The σΕ factor, in turn, acting by an unknown intercellular pathway (diagonal arrow), triggers the appearance σG in the forespore compartment after engulfment. Finally, an intercellular signal transduction pathway (horizontal arrow) under the control of σG causes the appearance of σκ in the mother cell by proteolytic processing of the proprotein precursor pro-σK (not shown).

Citation: Piggot P, Losick R. 2002. Sporulation Genes and Intercompartmental Regulation, p 483-517. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch34
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap34
1. Abe, A.,, H. Koide,, T. Kohno,, and K. Watabe. 1995. A Bacillus subtilis spore coat polypeptide gene, cotS. Microbiology 141:14331442.
2. Abhayawardhane, Y.,, and G. C. Stewart. 1995. Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J. Bacteriol. 177:765773.
3. Adams, L. F.,, K. L. Brown,, and H. R. Whiteley. 1991. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J. Bacteriol. 173:38463854.
4. Adler, E.,, A. Donella-Deana,, F. Arigoni,, L. A. Pinna,, and P. Stragier. 1997. Structural relationship between a bacterial developmental protein and eukaryotic PP2C protein phosphatases. Mol. Microbiol. 23:5762.
5. Akrigg, A.,, and J. Mandelstam. 1978. Extracellular manganese stimulated deoxyribonuclease as a marker event in sporulation of Bacillus subtilis. Biochem.J. 172:6367.
6. Alper, S.,, L. Duncan,, and R. Losick. 1994. An adenosine nucleotide switch controlling the activity of a cell type-specific transcription factor in B. subtilis. Cell 77:195205.
7. Amaya, E. I.,, and P. J. Piggot. Unpublished results.
8. Anagnostopoulos, C.,, P. J. Piggot,, and J. A. Hoch,. 1993. The genetic map of Bacillus subtilis , p. 425461. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
9. Antoniewski, C.,, B. Savelli,, and P. Stragier. 1990. The spoIIJ gene, which regulates early developmental steps in Bacillus subtilis, belongs to a class of environmentally responsive genes. J. Bacteriol. 172:8693.
10. Arigoni, F.,, A.-M. Guerout-Fleury,, I. Barak,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31:14071415.
11. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270:637640.
12. Aronson, A. I.,, H.-Y. Song,, and N. Bourne. 1988. Gene structure and piecuisor processing of a novel Bacillus subtilis spore coat protein. Mol. Microbiol. 3:437444.
13. Atrih, A.,, P. Zollner,, G. Allmaier,, and S. J. Foster. 1996. Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation. J. Bacteriol. 178:61736183.
14. Bagyan, I.,, L. Casillas-Martinez,, and P. Setlow. 1998. The katX gene, which codes for the catalase in spores of Bacillus subtilis, is a forespore-specific gene controlled by σF, and KatX is essential for hydrogen peroxide resistance of the germinating spore. J. Bacteriol. 180:20572062.
15. Bagyan, I.,, J. Hobot,, and S. Cutting. 1996. A compartmentalized regulator of developmental gene expression in Bacillus subtilis. J. Bacteriol. 178:45004507.
16. Bagyan, I.,, B. Setlow,, and P. Setlow. 1998. New small, acid-soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and regulation and function of two of these genes. J. Bacteriol. 180:67046712.
17. Bai, U.,, M. Lewandowski,, E. Dubnau,, and I. Smith. 1990. Temporal regulation of the Bacillus subtilis early sporulation gene spo0F. J. Bacteriol. 172:54325439.
18. Bai, U.,, I. Mandic-Mulec,, and I. Smith. 1993. SinI modulates the activity of SinR, a developmental switch protein of Bacillus subtilis, by protein-protein interaction. Genes Dev. 7:139148.
19. Balassa, G.,, P. Milhaud,, E. Raulet,, M. T. Silva,, and J. C. F. Sousa. 1979. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores. J. Gen. Microbiol. 110:365379.
20. Barak, I.,, J. Behari,, G. Olmedo,, P. Guzmán,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19:10471060.
21. Barak, I.,, and P. Youngman. 1996. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178:49844989.
21a.. Bath, J.,, L. J. Wu,, J. Errington,, and J. C. Wang. 2000. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell-prespore division septum. Science 290: 995997.
22. Bauer, T.,, S. Little,, A. G. Stover,, and A. Driks. 1999. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 181:70437051.
23. Beall, B.,, A. Driks,, R. Losick,, and C. P. Moran, Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol. 175: 17051716.
24. Beall, B.,, M. Lowe,, and J. Lutkenhaus. 1988. Cloning and characterization of Bacillus subtilis homologs of Escherichia coii cell division genes ftsZ and ftsA. J. Bacteriol. 170:48554864.
25. Beall, B.,, and J. Lutkenhaus. 1989. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and tempetature sensitivity.J. Bacteriol. 171:68216834.
26. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5:447455.
27. Beall, B.,, and J. Lutkenhaus. 1992. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174:23982403.
28. Beall, B.,, and C. P. Moran, Jr. 1994. Cloning and characterization of spoVR, a gene from Bacillus subtilis involved in spore cortex formation. J. Bacteriol. 176:20032012.
29. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli gene, ftsK. J. Bacteriol. 177:62116222.
30. Behravan, J.,, H. Chirakkal,, A. Masson,, and A. Moir. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J. Bacteriol. 182:19871994.
31. Biaudet, V.,, F. Samson,, C. Anagnostopoulos,, S. D. Ehrlich,, and P. Bessieres. 1996. Computerized genetic map of Bacillus subtilis. Microbiology 142:26692729.
32. Boland, F. M.,, A. Atrih,, H. Chirakkal,, S. J. Foster,, and A. Moir. 2000. Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. Microbiology 146:5764.
33. Bourne, N.,, P. C. Fitz-James,, and A. 1. Aronson. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173:66186625.
34. Bouvier, J.,, P. Stragier,, C. Bonamy,, and J. Szulmajster. 1984. Nucleotide sequence of the spo0B gene of Bacillus subtilis and regulation of its expression. Proc. Natl. Acad. Sci. USA 81:71027106.
35. Bramucci, M. Personal communication.
36. Britton, R. A.,, and A. D. Grossman. 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181: 58605864.
37. Britton, R. A.,, B. S. Powell,, S. Dasgupta,, Q. Sun,, W. Margolin,, J. R. Lupski,, and D. L. Court. 1998. Cell cycle arrest in Era GTPase mutants: a potential growth rate-regulated checkpoint in Escherichia coit. Mol. Microbiol. 27: 739750.
38. Bryan, E. M.,, B. W. Beall,, and C. P. Moran, Jr. 1996. A σE-dependent operon subject to catabolite repression during sporulation in Bacillus subtilis. J. Bacteriol. 178:47784786.
39. Buchanan, C. E.,, and A. Gustafson. 1992. Mutagenesis and mapping of the gene for a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174: 54305435.
40. Buchanan, C. E.,, and M.-L. Ling. 1992. Isolation and sequence analysis of dacB, which encodes a sporulation-specific penicillin-binding protein in Bacillus subtilis. J. Bacteriol. 174:17171725.
41. Burbulys, D.,, K. A. Trach,, and J. A. Hoch. 1991. Initiation of sporulation in Bacillus subtilis is controlled by a multicomponent phosphorelay. Cell 64:545552.
42. Cabrera-Hernandez, A.,, J.-L. Sanchez-Salas,, M. Paid-hungat,, and P. Setlow. 1999. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232:110.
43. Cabrera-Hernandez, A.,, and P. Setlow. 2000. Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 248:169181.
44. Campbell, E. A.,, and S. A. Darst. 2000. The anti-σ factor SpoIIAB forms a 2:1 complex with σF, contacting multiple conserved regions of the σ factor. J. Mol. Biol. 300:1728.
45. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179: 74207425.
46. Cervin, M. A.,, and G. B. Spiegelman. 1999. The Spo0A sof mutations reveal regions of the tegulatory domain that interact with a sensor kinase and RNA polymerase. Mol. Microbiol. 31:597607.
47. Cervin, M. A.,, G. B. Spiegelman,, B. Raether,, K. Ohlsen,, M. Perego,, and J. A. Hoch. 1998. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol. Microbiol. 29:8595.
48. Chapman, J. W.,, and P. J. Piggot. 1987. Analysis of the inhibition of sporulation of Bacillus subtilis caused by increasing the number of copies of the spo0F gene. J. Gen. Microbiol. 133:20792088.
49. Charnock, S. J.,, and G. J. Davies. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:63806385.
50. Chary, V. K.,, and P. J. Piggot. Unpublished observations.
51. Chibazakura, T.,, F. Kawamura,, and H. Takahashi. 1991. Differential regulation of spo0A transcription in Bacillus subtilis: glucose represses promotet switching at the initiation of sporulation. J. Bacteriol. 173:26252632.
52. Connors, M. J.,, J. M. Mason,, and P. Setlow. 1986. Cloning and nucleotide sequence of genes fot three small acid-soluble proteins of Bacillus subtilis spores. J. Bacteriol. 166:417425.
53. Connors, M. J.,, and P. Setlow. 1985. Cloning of a small, acid-soluble spore protein gene from Bacillus subtilis and determination of its complete nucleotide sequence. J. Bacteriol. 161:333339.
54. Coote, J. G. 1972. Genetic analysis of oligosporogenous mutants. J. Gen. Microbiol. 71:1727.
55. Coppolecchia, R.,, H. DeGrazia,, and C. P. Moran, Jr. 1991. Deletion of spoIIAB blocks endospore formation in Bacillus subtilis at an early stage. J. Bacteriol. 173:66786685.
56. Corfe, B. M.,, A. Moir,, D. Popham,, and P. Setlow. 1994. Analysis of the expression and regulation of the gerB spore germination operon of Bacillus subtilis 168. Microbiology 140:30793083.
57. Craig, J. E.,, M. J. Ford,, D. C. Blaydon,, and A. L. Sonenshein. 1997. A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-depen-dent gene exptession. J. Bacteriol. 179:73517359.
58. Cutting, S.,, A. Driks,, R. Schmidt,, B. Kunkel,, and R. Losick. 1991. Forespore-specific transcription of a gene in the signal transduction pathway that governs pro-σK processing in Bacillus subtilis. Genes Dev. 5:456466.
59. Cutting, S.,, and J. Mandelstam. 1986. The nucleotide sequence and the transcription during sporulation of the gerE gene of Bacillus subtilis. J. Gen. Microbiol. 132:30133024.
60. Cutting, S.,, V. Oke,, A. Driks,, R. Losick,, S. Lu,, and L. Kroos. 1990. A forespore checkpoint for mother cell gene expression during development in B. subriiis. Cell 62: 239250.
61. Cutting, S.,, S. Panzer,, and R. Losick. 1989. Regulatory studies on the promoter for a gene governing synthesis and assembly of the spore coat in Bacillus subtilis. J. Mol. Biol. 207:393404.
62. Cutting, S.,, S. Roels,, and R. Losick. 1991. Sporulation operon spoIVF and the characterization of mutations that uncouple mother cell from forespore gene expression in Bacillus subtilis. J. Mol. Biol. 221:12371256.
63. Cutting, S.,, L. Zheng,, and R. Losick. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J. Bacteriol. 173:29152919.
64. Dancer, B.,, and J. Mandelstam. 1981. Complementation of sporulation mutations in fused protoplasts of Bacillus subtilis.J. Gen. Microbiol. 123:1726.
65. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle,, and J. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209220.
66. Daniel, R. A.,, and J. Errington. 1993. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. J. Mol. Biol. 232: 468483.
67. Dartois, V.,, T. Djavakhishvili,, and J. A. Hoch. 1996. Identification of a membrane protein involved in activation of the KinB pathway to sporulation in Bacillus subtilis. J. Bacteriol. 178:11781186.
68. Dartois, V.,, T. Djavakhishvili,, and J. A. Hoch. 1997. KapB is a lipoprotein required for KinB signal transduction and activation of the phosphorelay to sporulation in Bacillus subtilis. Mol. Microbiol. 26:10971108.
69.>[Reference deleted.].
70. Decatur, A.,, and R. Losick. 1996. Identification of additional genes under the control of the transcription factor σ F of Bacillus subtilis. J. Bacteriol. 178:50395041.
71. Decatur, A.,, M. T. McMurry,, B. N. Kunkel,, and R. Losick. 1997. Translation of the mRNA for the sporulation gene spoIIID of Bacillus subtilis is dependent upon translation of a small upstream open reading frame. J. Bacteriol. 179:13241328.
72. Deits, T. Personal communication.
73. De La Vega, F. M.,, J. M. Galindo,, I. G. Old,, and G. Guarneros. 1996. Microbial genes homologous to the peptidyl-tRN A hydrolase-encoding gene of Escherichia coli. Gene 169:97100.
73a.. De Lencastre, H.,, and P. J. Piggot. 1979. Identification of different sites of expression for spo loci by transformation of Bacillus subtilis. J. Gen. Microbiol. 114:377389.
74. Diederich, B.,, J. F. Wilkinson,, T. Magnin,, M. A. Najafi,, J. Errington,, and M. D. Yudkin. 1994. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor σF of Bacillus subtilis. Genes Dev. 8:26532663.
75. Donovan, W.,, L. Zheng,, K. Sandman,, and R. Losick. 1987. Genes encoding spore coat polypeptides from Bacillus subtilis. J. Mol. Biol. 196:110.
76. Driks, A.,, and R. Losick. 1991. Compartmentalized expression of a gene under the control of sporulation transcription factor σE in Bacilus subtilis. Proc. Natl. Acad. Sci. USA 88:99349938.
77. Driks, A.,, S. Roels,, B. Beall,, C. P. Moran, Jr.,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of 8:234-244.
78. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
79. Duncan, L.,, S. Alper,, and R. Losick. 1996. SpoIIAA governs the release of the cell-type specific transcription factor σF from its anti-sigma factor SpoIIAB. J. Mol. Biol. 260:147164.
80. Duncan, L.,, and R. Losick. 1993. SpoIIAB is an anti-σ factor that binds to and inhibits transcription by regulatory protein σ F from Bacillus subtilis. Proc. Natl. Acad.. Sci. USA 90:23252329.
81. Dunn, G.,, and J. Mandelstam. 1977. Cell polarity in Bacillus subtilis: effect of growth conditions on spore positions in sister cells. J. Gen. Microbiol. 103:201205.
82. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24:905915.
83. Errington, J. Personal communication.
84. Errington, J. 1993. Sporulation in Bacillus subtilis: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57:133.
85. Errington, J.,, L. Appleby,, R. A. Daniel,, H. Goodfellow,, S. R. Partridge,, and M. Yudkin. 1992. Structure and expression of the spoIIIJ gene of Bacillus subtilis: a vegetatively expressed gene that is essential for σG activity at an intermediate stage of sporulation. J. Gen. Microbiol. 138: 26092618.
86. Errington, J.,, P. Fort,, and J. Mandelstam. 1985. Duplicated sporulation genes in bacteria: implication fot simple developmental systems. FEBS Lett. 188:184188.
87. Errington, J.,, and J. Mandelstam. 1984. Genetic and phenotypic characterization of a cluster of mutations in the spoVA locus of Bacillus subtilis. J. Gen. Microbiol. 130: 21152121.
88. Errington, J.,, and J. Mandelstam. 1986. Use of a lacZ gene fusion to determine the dependence pattern and the spore compartment expression of the sporulation operon spoVA in spo mutants of Bacillus subtilis. J. Gen. Microbiol. 132:29772985.
89. Errington, J.,, S. Rong,, M. S. Rosenkrantz,, and A. L. Sonenshein. 1988. Transcriptional regulation and structure of the Bacillus subtilis sporulation locus spoIIIC. J. Bacteriol. 170:11621167.
90. Errington, J.,, L. Wooten,, J. C. Dunkerley,, and D. Foulger. 1989. Differential gene expression during sporulation in Bacillus subtilis: regulation of the spoVJ gene. Mol. Microbiol. 3:10531060.
91. Fajardo-Cavazos, P.,, and W. L. Nicholson. 2000. The TRAP-like SplA protein is a trans-acting negative regulator of spore photoproduct lyase synthesis during Bacillus subtilis sporulation. J. Bacteriol. 182:555560.
92. Fajardo-Cavazos, P.,, C. Salazar,, and W. L. Nicholson. 1993. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spi) gene, which is involved in tepair of UV radiation-induced DNA damage during spore germination. J. Bacteriol. 175:17351744.
93. Fan, N.,, S. Cutting,, and R. Losick. 1992. Characterization of the Bacillus subtilis sporulation gene spoVK. J. Bacteriol. 174:10531054.
94. Farquhar, R.,, and M. D. Yudkin. 1988. Phenotypic and genetic characterization of mutations in the spoiVC locus of Bacillus subtilis. J. Gen. Microbiol. 134:917.
95. Fawcett, P.,, P. Eichenberger,, R. Losick,, and P. Youngman. 2000. The transcriptional profile of early to middle sporulation in Bocillus subtilis. Proc. Nad. Acad. Sci. USA 97:80638068.
96. Fawcett, P.,, A. Melnikov,, and P. Youngman. 1998. The Bacillus SpoIIGA protein is targeted to sites of spore septum formation in a SpoIIE-independent manner. Mol. Microbiol. 28:931943.
97. Feavers, I. M.,, J. Foulkes,, B. Setlow,, D. Sun,, W. Nicholson,, P. Setlow,, and A. Moir. 1990. The regulation of transcription of the gerA spore germination operon of Bacillus subtilis. Mol. Microbiol. 4:275282.
98. Feavers, I. M.,, J. S. Miles,, and A. Moir. 1985. The nucleotide sequence of a spore germination gene (gerA) of Bacillus subtilis 168. Gene 38:95102.
99. Feng, P.,, and A. I. Aronson. 1986. Characterization of a Bacillus subtilis germination mutant with pleiotropic alterations in spore coat structure. Curr. Microbiol. 13: 221226.
100. Ferrari, F. A.,, K. Trach,, and J. A. Hoch. 1985. Sequence analysis of the spo0B locus reveals a polycistronic transcription unit. J. Bacteriol. 161:556562.
101. Ferrari, F. A.,, K. Trach,, D. LeCoq,, J. Spence,, E. Ferrari,, and J. A. Hoch. 1985. Characterization of the spo0A locus and its deduced product. Proc. Nati. Acad. Sci. USA 82:26472651.
102. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33:10151026.
103. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10:794803.
104. Fort, P.,, and J. Errington. 1985. Nucleotide sequence and complementation analysis of a polycistronic sporulation operon, spoVA, in Bacillus subtilis. J. Gen. Microbiol. 131:10911105.
105. Fort, P.,, and P. J. Piggot. 1984. Nucleotide sequence of the sporulation locus spoIIA in Bacillus subtilis. J. Gen. Microbiol. 130:21472153.
106. Foulger, D.,, and J. Errington. 1989. The role of the sporulation gene spoIIIE in the regulation of prespore-spe-cific gene expression in Bacillus subtilis. Mol. Microbiol. 3: 12471255.
107. Foulger, D.,, and J. Errington. 1991. Sequential activation of dual promoters by different sigma factors maintains spoVJ expression during successive developmental stages of Bacillus subtilis. Mol. Microbiol. 5:13631373.
108. Francesconi, S. C.,, T. J. MacAlister,, B. Setlow, and P. Setlow. 1988. Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. Bacteriol. 170:59635967.
109. Frandsen, N.,, I. Barak,, C. Karmazyn-Campelli,, and P. Stragier. 1999. Transient gene asymmetry during sporulation and establishment of cell specificity in Bacillus subtilis. Genes Dev. 13:394399.
110. Frandsen, N.,, and P. Stragier. 1995. Identification and characterization of the Bacillus spoIIP locus. J. Bacteriol. 177:716722.
111. Gaur, N. K.,, K. Cabane,, and I. Smith. 1988. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol. 170:10461053.
112. Gaur, N. K.,, E. Dubnau,, and I. Smith. 1986. Characterization of a cloned Bacillus subtilis gene which inhibits sporulation in multiple copies. J. Bacteriol. 170:860869.
113. Gaur, N. K.,, J. Oppenheim,, and I. Smith. 1991. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes fot a DNA-binding protein. J. Bacteriol. 173:678686.
114. Gholamhoseinian, A.,, and P. J. Piggot. 1989. Timing of spoII gene expression relative to septum formation duting sporulation of Bacilus subtilis. J. Bacteriol. 171:57475749.
115. Gholamhoseinian, A.,, Z. Shen,, J.-J. Wu,, and P. Piggot. 1992. Regulation of transcription of the cell division gene ftsA during sporulation of Bacillus subtilis. J. Bacteriol. 174:46474656.
116. Glaser, P.,, F. Kunst,, M. Arnaud,, M.-P. Coudart,, W. Gonzales,, M.-F. Hullo,, M. Ionescu,, B. Lubochinsky,, L. Marcelino,, I. Moszer,, E. Presecan,, M. Santana,, E. Schneider,, J. Schweizer,, A. Vertes,, G. Rapoport,, and A. Danchin. 1993. Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325° to 333°. Mol. Microbiol. 10:371384.
117. Glaser, P.,, M. E. Sharpe,, B. Raether,, M. Perego,, K. Ohlsen,, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11:11601168.
118. Gomez, M.,, and S. M. Cutting. 1996. Expression of the Bacillus subtilis spoIVB gene is under dual σFG control. Microbiohgy 142:34533457.
119. Gomez, M.,, and S. M. Cutting. 1997. bojC encodes a putative forespore regulator of the Bacillus subtilis σK checkpoint. Microbiology 143:157170.
120. Gomez, M.,, S. Cutting,, and P. Stragier. 1995. Transcription of spoIVB is the only role of σG that is essential for pro-σK processing during spore formation in Bacillus subtilis. J. Bacteriol. 177:48254827.
121. Gonzy-Treboul, G.,, C. Karmazyn-Campelli,, and P. Stragier. 1992. Developmental regulation of transcription of the Bacillus subtilis ftsAZ operon. J. Mol. Biol. 224: 967979.
122. Green, B. D.,, G. Olmedo,, and P. Youngman. 1991. A genetic analysis of Spo0A structure and function. Res. Microbiol. 142:825830.
123. Green, D. H.,, and S. M. Cutting. 2000. Membrane topology of the Bacillus subtilis pro-σ K processing complex. J. Bacteriol. 182:278285.
124. Grossman, A.> Personal communication.
125. Guespin-Michel, J. F. 1971. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis. Genetic studies of polymyxin-resistant partial revertants. Mol. Gen. Genet. 112:243254.
126. Guzmán, P.,, J. Westpheling,, and P. Youngman. 1988. Characterization of the promoter region of the Bacillus subtilis spoIIE operon. J. Bacteriol. 170:15981609.
127. Hackett, R. H.,, and P. Setlow. 1987. Cloning, nucleotide sequencing, and genetic mapping of the gene for small, acid-soluble spore protein γ of Bacillus subtilis. J. Bacteriol. 169:19851992.
128. Halberg, R.,, and L. Kroos. 1992. Fate of the SpoIIID switch protein during Bacillus subtilis spotulation depends on the mother cell sigma factor σK. J. Mol. Biol. 228: 840849.
129. Halberg, R.,, and L. Kroos. 1994. Sporulation regulatory protein SpoIIID from Bacillus subtilis activates and represses transcription by both mother-cell-specific forms of RNA polymerase. J. Mol. Biol. 243:425436.
130. Han, W.-D.,, S. Kawamoto,, Y. Hosoya,, M. Fujita,, Y. Sadaie,, K. Suzuki,, Y. Ohashi,, F. Kawamura,, and K. Ochi. 1998. A novel sporulation-control gene (spo0M) of Bacillus subtilis with σH-regulated promoter. Gene 217: 3140.
130a.. Haraldsen, J.,, and A. L. Sonenshein. Personal communication.
131. Harry, E.,, K. Pogliano,, and R. Losick. 1995. Cell-specific gene expression in B. subtilis. J. Bacteriol. 177: 33863393.
132. Healy, J.,, J. Weir,, I. Smith,, and R. Losick. 1991. Post-transcriptional control of a sporulation regulatory gene encoding transcription factor σH in Bacillus subtilis. Mol. Microbiol. 5:477488.
133. Henriques, A. O. Personal communication.
134. Henriques, A. O.,, B. W. Beall,, and C. P. Moran, Jr. 1997. CotM of Bacillus subtilis, a member of the α-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179:18871897.
135. Henriques, A. O.,, B. W. Beall,, K. Roland,, and C. P. Moran, Jr. 1995. Characterization of cotJ, a σE-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J. Bacteriol. 177: 33943406.
136. Henriques, A. O.,, E. M. Bryan,, B. W. Beall,, and C. P. Moran, Jr. 1997. csel5, cse60, and csk22 are new members of the mother-cell-specific sporulation regulons of Bacillus subtilis. J. Bacteriol. 179:389398.
137. Henriques, A. O.,, P. Glaser,, P. J. Piggot,, and C. P. Moran, Jr. 1998. Control of cell shape and elongation by the rodA gene in Bacillus subtilis. Mol. Microbiol. 28: 235247.
138. Henriques, A. O.,, H. de Lencastre,, and P. J. Piggot. 1992. A Bacillus subtilis morphogene cluster that includes spoVE is homologous to the mra region of Escherichia coli. Biochimie 74:735748.
139. Henriques, A. O.,, L. R. Melson,, and C. P. Moran, Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180:22852291.
140. Hitchins, A. D.,, and R. A. Slepecky. 1969. Bacterial sporulation as a modified procaryotic cell division. Nature 223:804807.
141. Hoch, J. A., 1993. spo0 genes, the phosphorelay, and the initiation of sporulation, p. 747755. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Posirwe Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C..
142. Hoch, J. A.,, K. Trach,, F. Kawamura,, and H. Saito. 1985. Identification of the transcriptional suppressor sof1 as an alteration in the spo0A protein. J. Bacteriol. 161: 552555.
143. Hofmeister, A. Personal communication.
144. Hofmeister, A. 1998. Activation of the proprotein transcription factor pro-σE is associated with its progression through three patterns of subcellular localization during sporulation in Bacillus subtilis. J. Bacteriol. 180:24262433.
145. Hofmeister, A. E. M.,, A. Londono-Vallejo,, E. Harry,, P. Stragier,, and R. Losick. 1995. Extracellular signal protein triggering the proteolytic activation of a developmental ttanscription factor in B. subtilis. Cell 83:219226.
146. Hranueli, D.,, P. J. Piggot,, and J. Mandelstam. 1974. Statistical estimate of the total number of operons specific for Bacillus subtilis sporulation. J. Bacteriol. 119:684690.
147. Hudspeth, D. S. S.,, and P. S. Vary. 1992. spoVG sequence of Bacillus megaterium and Bacillus subtilis. Biochim. Biophys. Acta 1130:229231.
148. Hullo, M.-F.,, I. Martin-Verstraete,, I. Moszer,, and A. Danchin. 1999. CotA of Bacillus subtilis is a copper-dependent laccase, abstr. P55. Abstr. 10th International Conference on Bacilli, Baveno, Italy.
149. Ichikawa, H.,, R. Halberg,, and L. Kroos. 1999. Negative regulation by the Bacillus subtilis GerE protein. J. Biol. Chem. 274:83228327.
150. Ichikawa, H.,, and L. Kroos. 2000. Combined action of two transcription factors regulates genes encoding spore coat proteins of Bacillus subtilis. J. Biol. Chem. 275: 1384913855.
151. Igo, M.,, M. Lampe,, and R. Losick,. 1988. Structure and regulation of a Bacillus subtilis gene that is transcribed by the E-σB form of RNA polymerase holoenzyme, p. 151156. In A. T. Ganesan, and J. A. Hoch (ed.), Genetics and Biotechnology of Bacilli, vol. 2. Academic Press, Inc., San Diego, Calif..
152. Ikeda, M.,, T. Sato,, M. Wachi,, H. K. Jung,, F. Ishino,, Y. Kobayashi,, and M. Matsuhashi. 1989. Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively. J. Bacteriol. 171:63756378.
153. Illing, N.,, and J. Errington. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σE and σF in prespore engulfment. J. Bacteriol. 173:31593169.
154. Illing, N.,, and J. Errington. 1991. The spoIIIA operon of Bacillus subtilis defines a new temporal class of mother-cell-specific sporulation genes under the control of the σ E form of RNA polymerase. Mol. Microbiol. 5:19271940.
155. Inaoka, T.,, Y. Matsumura, and T. Tsuchido. 1998. Molecular cloning and nucleotide sequence of the superoxide dismutase gene and characterization of its product from Bacillus subtilis. J. Bacteriol. 180:36973703.
156. Ireton, K.,, and A. D. Grossman. 1992. Interactions among mutations that cause altered timing of gene expression during sporulation in Bacillus subtilis. J. Bacteriol. 174:31853195.
157. Ireton, K.,, N. W. Gunther IV,, and A. D. Grossman. 1994. spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176:53205329.
158. Ireton, K.,, D. Z. Rudner,, K. J. Siranosian,, and A. D. Grossman. 1993. Integration of multiple developmental signals in Bacillus subtilis through the Spo0A transcriptional factor. Genes Dev. 7:283294.
159. Ishikawa, S.,, K. Yamane,, and J. Sekiguchi. 1998. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlj) which affects germination of Bacillus subtilis spores. J. Bacteriol. 180:13751380.
160. Ito, M.,, A. A. Guffanti,, B. Oudega,, and T. A. Krulwich. 1999. mrp, a multigene, multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+ and in pH homeostasis. J. Bacteriol. 181:23942402.
161. Jaacks, K. J.,, J. Healy,, R. Losick,, and A. D. Grossman. 1989. Identification and characterization of genes controlled by the sporulation regulatory gene spo0H in Bacillus subtilis. J. Bacteriol. 171:41214129.
162. James, W.,, and J. Mandelstam. 1985. spoVIC, a new sporulation locus in Bacillus subtilis affecting spore coats, germination and the rate of sporulation. J. Gen. Microbiol. 131:24092419.
163. Jenkinson, H. F. 1981. Germination and resistance defects in spores of a Bacillus subtilis mutant lacking a coat polypeptide. J. Gen. Microbiol. 127:8191.
164. Jenkinson, H. F. 1983. Altered arrangement of proteins in the spore coat of a germination mutant of Bacillus subtilis. J. Gen. Microbiol. 129:19451958.
164a.. Jiang, M.,, W. Shao,, M. Perego,, and J. A. Hoch. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol. Microbiol. 38:535542.
165. Jiang, M.,, R. Grau,, and M. Perego. 2000. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J. Bacteriol. 182:303310.
166. Jiang, M.,, Y.-L. Tzeng,, V. A. Feher,, M. Perego,, and J. A. Hoch. 1999. Alanine mutants of the Spo0F response regulator modifying specificity for sensor kinases in sporulation initiation. Mol. Microbiol. 33:389395.
167. Jin, S.,, P. A. Levin,, K. Matsuno,, A. D. Grossman,, and A. L. Sonenshein. 1997. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. J. Bacteriol. 179:47254732.
168. Jonas, R. M.,, E. A. Weaver,, T. J. Kenney,, C. P. Moran, Jr.,, and W. G. Haldenwang. 1988. The Bacillus subtilis spoIIG operon encodes both σE and a gene necessary for σE activation. J. Bacteriol. 170:507511.
169. Joris, B.,, G. Dive,, A. Henriques,, P. J. Piggot,, and J. M. Ghuysen. 1990. The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol. Microbiol. 4:513517.
170. Ju, J.,, and W. G. Haldenwang. 1999. The “pro” sequence of the sporulation-specific σ transcription factor σE directs it to the mother cell side of the sporulation septum. J. Bacteriol. 181:61716175.
171. Ju, J.,, T. Luo,, and W. G. Haldenwang. 1997. Bacillus subtilis pro-σE fusion protein localizes to the forespore septum and fails to be processed when synthesized in the forespore. J. Bacteriol. 179:48884893.
172. Ju, J.,, T. Luo,, and W. G. Haldenwang. 1998. Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis. J. Bacteriol. 180: 16731681.
173. Ju, J.,, T. Mitchell,, H. Peters III,, and W. G. Haldenwang. 1999. Sigma factor displacement from RNA polymerase during Bacillus subtilis sporulation. J. Bacteriol. 181:49694977.
174. Kahn, D.,, and G. Ditta. 1991. Modular structure of FixJ: homology of the transcriptional activator domain with the -35 domain of sigma factors. Mol. Microbiol. 5:987997.
175. Kallio, P. T.,, J. E. Fagelson,, J. A. Hoch,, and M. A. Strauch. 1991. The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J. Biol. Chem. 266: 1341113417.
176. Karmazyn-Campelli, C.,, C. Bonamy,, B. Savelli,, and P. Stragier. 1989. Tandem genes encoding σ-factors for consecutive steps of development in Bacillus subtilis. Genes Dev. 3:150157.
177. Karmazyn-Campelli, C.,, L. Fluss,, T. Leighton,, and P. Stragier. 1992. The spoIIN279(ts) mutation affects the FtsA protein of Bacillus subtilis. Biochimie 74:689694.
178. Karow, M. L.,, P. Glaser,, and P. J. Piggot. 1995. Identification of a gene, spoIIR, that links the activation of σ E to the transcriptional activity of σF during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 92:20122016.
179. Karow, M. L.,, and P. J. Piggot. Unpublished observations.
180. Karow, M. L.,, and P. J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore fotmation. Gene 163: 6974.
181. Karow, M. L.,, E. J. Rogers,, P. S. Lovett,, and P. J. Piggot. 1998. Suppression of TGA mutations in the Bacillus subtilis spoIIR gene by prfB mutations. J. Bacteriol. 180: 41664170.
182. Kawamura, F.,, L. Wang,, and R. H. Doi. 1985. Catabolite-resistant sporulation (crsA) mutations in the Bacillus subtilis RNA polymerase σ43 gene (rpoD) can suppress and be suppressed by mutations in spo0 genes. Proc. Natl. Acad. Sci. USA 82:81248128.
183. Kellner, E. M.,, A. Decatur,, and C. P. Moran, Jr. 1996. Two-stage regulation of an anti-sigma factor determines developmental fate during bacterial endospore formation. Mol. Microbiol. 21:913924.
184. Kemp, E. H.,, R. L. Sammons,, A. Moir,, D. Sun,, and P. Setlow. 1991. Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis. J. Bacteriol. 173:46464652.
185. Kenney, T. J.,, and C. P. Moran, Jr. 1987. Organization and regulation of an operon that encodes a sporulation-essential sigma factor in Bacillus subtilis. J. Bacteriol. 169: 33293339.
186. Kenney, T. J.,, K. York,, P. Youngman,, and C. P. Moran, Jr. 1989. Genetic evidence that RNA polymerase associated with σA uses a sporulation-specific promoter in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 86:91099113.
187. Khvorova, A.,, V. K. Chary,, D. W. Hilbert,, and P. J. Piggot. 2000. The chromosomal location of the Bacillus subtilis sporulation gene spoIIR is important for its function. J. Bacteriol. 182:44254429.
188. Khvorova, A.,, L. Zhang,, M. L. Higgins,, and P. J. Piggot. 1998. The spoIIE locus is involved in the Spo0A-de-pendent switch in the location of FtsZ rings in Bacillus subtilis. J. Bacteriol. 180:12561260.
189. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of σF during sporulation in Bacillus subtilis. Genes Dev. 13:11561167.
190. Kirchman, P. A.,, H. DeGrazia,, E. M. Kellner,, and C. P. Moran, Jr. 1993. Forespore-specific disappearance of the sigma-factor antagonist SpoIIAB: implications for its role in determination of cell fate in Bacillus subtilis. Mol. Microbiol. 8:663671.
191. Kobayashi, K.,, K. Shoji,, T. Shimizu,, K. Nakano,, T. Sato,, and Y. Kobayashi. 1994. Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J. Bacteriol. 177:176182.
192. Kobayashi, Y. Personal communication.
193. Kodama, T.,, H. Takamatsu,, K. Asai,, K. Kobyashi,, N. Ogasawara,, and K. Watabe. 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J. Bacteriol. 181:45844591.
194. Koide, S.,, M. Perego,, and J. A. Hoch. 1999. ScoC regulates peptide transport and sporulation initiation in Bacillus subtilis. J. Bacteriol. 181:41144117.
195. Kok, J.,, K. A. Trach,, and J. A. Hoch. 1994. Effects on Bacillus subtilis of a conditional lethal mutation in the essential GTP-binding protein Obg. J. Bacteriol. 176:71557160.
196. Kong, L.,, and D. A. Dubnau. 1994. Regulation of competence-specific gene expression by Mec-mediated protein-protein intetaction in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:57935797.
197. Kosono, S.,, Y. Ohashi,, F. Kawamura,, M. Kitada,, and T. Kudo. 2000. Function of a principal Na+/H+ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis. J. Bacteriol. 182:898904.
198. Kovacs, H.,, D. Comfort,, M. Lord,, I. D. Campbell,, and M. D. Yudkin. 1998. Solution structute of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor σF of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 95:50675071.
199. Kroos, L.,, B. Kunkel,, and R. Losick. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526529.
200. Kriiger, E.,, U. Volker,, and M. Hecker. 1994. Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance. J. Bacteriol. 176:33603367.
201. Kudoh, J.,, T. Ikeuchi,, and K. Kurahashi. 1985. Nucleotide sequences of the sporulation gene spo0A and its mutant genes of Bacillus subtilis. Proc. Natl. Acad. Sci. USA 82:26652668.
202. Kunkel, B.,, L. Kroos,, H. Poth,, P. Youngman,, and R. Losick. 1989. Temporal and spatial control of the mother-cell regulatory gene spoIIID of Bacillus subtilis. GenesDev. 3:17351744.
203. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the developmental transcription factor σK is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4: 525535.
204. Kunkel, B.,, K. Sandman,, S. Panzer,, P. Youngman,, and R. Losick. 1988. The promoter for a sporulation gene in the spoIVC locus of Bacillus subtilis and its use in studies of temporal and spatial control of gene expression. J. Bacteriol. 170:35133522.
205. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249256.
206. Kuroda, A.,, Y. Asami,, and J. Sekiguchi. 1993. Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis. J. Bacteriol. 175:62606268.
207. Kuroda, A.,, M. H. Rashid,, and J. Sekiguchi. 1992. Molecular cloning and sequencing of the upstteam region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. J. Gen. Microbiol. 138:10671076.
208. LaBell, T. L.,, J. E. Trempy,, and W. G. Haldenwang.1987. Sporulation-specific σ factor σ29 of Bacillus subtilis is synthesized from a precursor protein, P31. Proc. Natl. Acad. Sci. USA 84:17841788.
209. Lampel, K. A.,, B. Uratani,, G. R. Chaudhry,, R. F. Ramaley,, and S. Rudikoff. 1986. Characterization of the de-velopmentally regulated Bacillus subtilis glucose dehydrogenase gene. J. Bacteriol. 166:238243.
210. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis lyt-RABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138:19491961.
211. Lazazzera, B. A.,, I. G. Kurster,, R. S. McQuade,, and A. D. Grossman. 1999. An autoregulatory circuit affecting peptide signalling in Bacillus subtilis. J. Bacteriol. 181: 51935200.
212. Leatherbarrow, A. J. H.,, M. A. Yazid,, J. P. Curson,, and A. Moir. 1998. The gerC locus of Bacillus subtilis, required for menaquinone biosynthesis, is concerned only indirectly with spore germination. Microbiology 144:21252130.
213. Lecamwasam, M.,, and A. L. Sonenshein. Personal communication.
214. LeDeaux, J. R.,, and A. D. Grossman. 1994. Isolation and chatacterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J. Bacteriol. 177:166175.
215. LeDeaux, J. R.,, N. Yu,, and A. D. Grossman. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 177:861863.
217. Levin, P. A.,, N. Fan,, E. Ricca,, A. Driks,, R. Losick,, and S. Cutting. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9:761771.
218. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176:14511459.
219. Levin, P. A.,, and R. Losick. 1996. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10:478488.
220. Levin, P. A.,, R. Losick,, P. Stragier,, and F. Arigoni. 1997. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Microbiol. 25:839846.
221. Lewandoski, M.,, E. Dubnau,, and I. Smith. 1986. Transcriptional regulation of the spo0F gene of Bacillus subtilis. J. Bacteriol. 168:870877.
222. Lewis, P. J.,, and J. Errington. 1996. Use of gteen fluorescent protein for detection of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. Microbiology 142:733740.
223. Lewis, R. J.,, J. A. Brannigan,, W. A. Offen,, I. Smith,, and A. J. Wilkinson. 1998. An evolutionary link between spotulation and prophage induction in the structute of a repressor: anti-repressor complex. J. Mol. Biol. 283:907912.
224. Lin, D. C.-H.,, P. A. Levin,, and A. D. Grossman. 1997. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 94:47214726.