1887

Chapter 36 : Proteins of the Spore Core and Coat

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Proteins of the Spore Core and Coat, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap36-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap36-2.gif

Abstract:

Abundant proteins found within the spore core (the small, acid-soluble proteins, or SASP) as well as surrounding the spore (the coat proteins) help to protect the spore from these assaults such as extremes of temperature, radiation, desiccation, and attack by a wide variety of toxic molecules. The SASP and coat proteins have been studied for many years, and much is known about their roles in resistance. The predominant proteins of the spore core are the SASP, making up as much as 20% of total spore protein. YrbB, which has been localized to the cortex and to the inner coat, and SspG , which is synthesized in the mother cell, may also be coat proteins. Measuring the effects of the loss of a single protein might require highly sensitive and specific assays. Given their unique roles in spore dormancy and survival, it will be of great interest to compare SASP and coat protein genes of the various spore-forming bacteria as their genome sequences become available. At the moment, relatively little information is available, making a detailed comparative analysis difficult. Homologues of CotE are encoded in three of the genomes of endospore-forming bacteria (, , ) for which data are available, and homologues of SpoIVA are encoded by these genomes as well as those of two species ( and ). Therefore, it is tempting to speculate that the formation of a basement layer by SpoIVA is a universal early step in coat assembly.

Citation: Driks A. 2002. Proteins of the Spore Core and Coat, p 527-535. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch36

Key Concept Ranking

Sodium Dodecyl Sulfate
0.46434826
0.46434826
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The spore. Thin-section electron micrograph of a wild-type spore, prepared as described ( ). Inset shows an arc of coat, also from a wild-type spore. Outer coat (OC), inner coat (IC), under coat (UC), cortex (Cx), and core (Cr) are indicated. Bar, 500 nm (micrograph) and 100 nm (inset).

Citation: Driks A. 2002. Proteins of the Spore Core and Coat, p 527-535. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of coat assembly. Panels A, B, and C represent successive stages of coat assembly. Forespore (FS) and mother cell (MC) sides of the forespore membranes and the probable locations of SpoIVA, SpoVM, SpoVID, and SafA are indicated. Below the model are the proteins likely to assemble into the coat at each stage. The genes encoding the proteins assembled in the final stage (in panel C) are expressed first under the control of σ and then by σ and GerE. Proteins in bold-face type are known to affect coat structure or biochemical composition. Daggers indicate proteins known or likely to be assembled independently of CotE. Asterisks indicate proteins known or likely to require CotE for assembly.

Citation: Driks A. 2002. Proteins of the Spore Core and Coat, p 527-535. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch36
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap36
1. Aronson, A. I.,, and P. Fitz-James. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40:360402.
2. Aronson, A. I.,, and D. Horn,. 1972. Characterization of the spore coat protein of Bacillus cereus T, p. 1927. In H. O. Halvorson,, R. Hansen,, and L. L. Campbell (ed.), Spores V. American Society for Microbiology, Washington, D.C.
3. Bagyan, I.,, B. Setlow,, and P. Setlow. 1998. New small, acid-soluble proteins unique to spores of Bacillus subtilis: identification of the coding genes and regulation and function of two of these genes. J. Bacteriol. 180:67046712.
4. Bauer, T.,, S. Little,, A. G. Stover,, and A. Driks. 1999. Functional regions of the B. subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 181:70437051.
5. Beall, B.,, A. Driks,, R. Losick,, and C. P. Moran, Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol. 175:17051716.
6. Behravan, J.,, H. Chirakkal,, A. Masson,, and A. Moir. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus cereus affect access of germinants to their targets in spores. J. Bacteriol. 182:19871994.
7. Bloomfield, S. F.,, and R. Megid. 1994. Interaction of iodine with Bacillus subtilis spores and spore forms. J. Appl. Bacteriol. 76:492499.
8. Bourne, N.,, P. C. Fitz-James,, and A. I. Aronson. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173:66186625.
9. Cabrera-Hernandez, A.,, J. L. Sanchez-Salas,, M. Paidhungat,, and P. Setlow. 1999. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 232:110.
10. Cabrera-Hernandez, A.,, and P. Setlow. 2000. Analysis of the regulation and function of five genes encoding small, acid-soluble spore proteins of Bacillus subtilis. Gene 248:169181.
11. Casillas-Martinez, L.,, and P. Setlow. 1997. Alkyl hydroperoxide reductase, catalase, MrgA, and superoxide dismutase are not involved in resistance of Bacillus subtilis spores to heat or oxidizing agents. J. Bacteriol. 179:74207425.
12. Catalano, F. A.,, J. Meador-Parton,, D. L. Popham,, and A. Driks. 2001. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J. Bacteriol. 183:16451654.
13. Charnock, S. J.,, and G. J. Davies. 1999. Cloning, crystallization and preliminary X-ray analysis of a nucleotide-diphospho-sugar transferase spsA from Bacilius subtilis. Acta Crystallogr. D Biol. Crystallogr. 55:677678.
14. Charnock, S. J.,, and G. J. Davies. 1999. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38:63806385.
15. Cutting, S.,, L. Zheng,, and R. Losick. 1991. Gene encoding two alkali-soluble components of the spore coat from Bacillus subtilis. J. Bacteriol. 173:29152919.
16. Donellan, J. E.,, and R. B. Setlow. 1966. Thymine photo-products but not thymine dimers are found in ultraviolet irradiated bacterial spores. Science 149:308310.
17. Driks, A. 1999. The Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:120.
18. Driks, A., 1999. Spatial and temporal control of gene expression in prokaryotes. In V. E. A. Russo,, D. J. Cove,, L. G. Edgar,, R. Jaenisch,, and F. Salamini (ed.), Development: Genetics, Epigenetics and Environmental Regulation. Springer, Berlin, Germany.
19. Driks, A.,, S. Roels,, B. Beall,, C. P. Moran, Jr.,, and R. Losick. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8:234244.
20. Driks, A.,, and P. Setlow,. 2000. Morphogenesis and properties of the bacterial spore, p. 191218. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. American Society for Microbiology, Washington, D.C.
21. Fairhead, H.,, B. Setlow,, and P. Setlow. 1993. Prevention of DNA damage in spores and in vitro by small, acid-soluble proteins from Bacillus species. J. Bacteriol. 175:13671374.
22. Fairhead, H.,, and P. Setlow. 1992. Binding of DNA to alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers, and bipyrimidine photoadducts after UV irradiation. J. Bacteriol. 174:28742880.
23. Fajardo-Cavazos, P.,, C. Salazar,, and W. L. Nicholson. 1993. Molecular cloning and characterization of the Bacillus subtilis spore photoproduct lyase (spl) gene, which is involved in repair of UV radiation-induced DNA damage during spore germination. J. Bacteriol. 175:17351744.
24. Francesconi, S. C.,, T. J. MacAlister,, B. Setlow,, and P. Setlow. 1988. Immunoelectron microscopic localization of small, acid-soluble spore proteins in sporulating cells of Bacillus subtilis. J. Bacteriol. 170:59635967.
25. Francis, C. A.,, F. Catalano,, A. Driks,, and B. M. Tebo. Unpublished results.
26. Francis, C. A.,, and B. M. Tebo. 1999. Marine Bacillus spore as catalyists for oxidative precipitation and sorption of metals. J. Mol. Microbiol. Biotechnol. 1:7178.
27. Gerhardt, P. 1967. Cytology of Bacillus anthracis. Fed. Proc. 26:15041517.
28. Griffith, J.,, A. Makhov,, L. Santiago-Lara,, and P. Setlow. 1994. Electron microscopic studies of the interaction between a Bacillus subtilis alpha/beta-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA, and induces negative supercoiling. Proc. Natl. Acad. Sci. USA 91:82248228.
29. Hayes, C. S.,, B. Illades-Aguiar,, L. Casillas-Martinez,, and P. Setlow. 1998. In vitro and in vivo oxidation of methionine residues in small, acid-soluble spore proteins from Bacillus species. J. Bacteriol. 180:26942700.
30. Hayes, C. S.,, and P. Setlow. 1997. Analysis of deamidation of small, acid-soluble spore proteins from Bacillus subtilis in vitro and in vivo. J. Bacteriol. 179:60206027.
31. Henriques, A. O.,, B. W. Beall,, and C. P. J. Moran. 1997. CotM of Bacillus subtilis, a member of the alpha-crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179:18871897.
32. Henriques, A. O.,, L. R. Melsen,, and C. P. Moran. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180:22852291.
33. Henriques, A. O.,, and C. P. Moran, Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods Companion Methods Enzymol. 20:95110.
34. Hiragi, Y. 1972. Physical, chemical and morphological studies of spore coat of Bacillus subtilis. J. Gen. Microbiol. 72:8799.
35. Holt, S. C.,, and E. R. Leadbetter. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33:346378.
36. Kobayashi, K.,, K. Hashiguchi,, K. Yokozeki,, and S. Yamanaka. 1998. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 62:11091114.
37. Kobayashi, K.,, Y. Kumazawa,, K. Miwa,, and S. Yamanaka. 1996. є-(��-Glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol. Lett. 144:157160.
38. Kobayashi, K.,, S.-I. Suzuki,, Y. Izawa,, K. Yokozeki,, K. Miwa,, and S. Yamanaka. 1998. Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44:8591.
39. Kodama, T.,, H. Takamatsu,, K. Asai,, K. Kobayashi,, N. Ogasawara,, and K. Watabe. 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J. Bacteriol. 181:45844591.
40. Kornberg, A.,, J. A. Spudich,, D. L. Nelson,, and M. Deutscher. 1968. Origin of proteins in sporulation. Annu. Rev. Biochem. 37:5178.
41. Levin, P. A.,, N. Fan,, E. Ricca,, A. Driks,, R. Losick,, and S. Cutting. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9:761771.
42. Little, S.,, and A. Driks. Unpublished results.
43. Loshon, C. A.,, P. Kraus,, B. Setlow,, and P. Setlow. 1997. Effects of inactivation or overexpression of the sspF gene on properties of Bacillus subtilis spores. J. Bacteriol. 179:272275.
44. Margolis, P. S.,, A. Driks,, and R. Losick. 1993. Sporulation gene spoIIB from Bacillus subtilis. J. Bacteriol. 175: 528540.
45. Mason, J. M.,, R. H. Hackett,, and P. Setlow. 1988. Regulation of expression of genes coding for small, acid-soluble proteins of Bacilius subtilis spores: studies using lacZ gene fusions. J. Bacteriol. 170:239244.
46. Mason, J. M.,, and P. Setlow. 1987. Different small, acid-soluble proteins of the alpha/beta type have interchangeable roles in the heat and UV radiation resistance of Bacillus subtilis spores. J. Bacteriol. 169:36333637.
47. Mason, J. M.,, and P. Setlow. 1986. Essential role of small, acid-soluble spore proteins in resistance of Bacillus subtilis spores to UV light. J. Bacteriol. 167:174178.
48. Mohr, S. C.,, N. V. Sokolov,, C. M. He,, and P. Setlow. 1991. Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proc. Natl. Acad. Sci. USA 88:7781.
49. Munakata, N.,, and C. S. Rupert. 1972. Genetically controlled removal of “spore photoproduct” from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J. Bacteriol 111:192198.
50. Naclerio, G.,, L. Baccigalupi,, R. Zilhao,, M. De Felice,, and E. Ricca. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J. Bacteriol 178:43754380.
51. Nicholson, W. L.,, B. Setlow,, and P. Setlow. 1991. Ultraviolet irradiation of DNA complexed with alpha/beta-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers. Proc. Natl. Acad. Sci. USA 88:82888292.
52. Nicholson, W. L.,, and P. Setlow. 1990. Dramatic increase in negative superhelicity of plasmid DNA in the forespore compartment of sporulating cells of Bacillus subtilis. J. Bacteriol. 172:714.
53. Nishihara, T. Y.,, E. Takubo,, T. Kawamata,, J. Koshikawa,, J. Ogaki,, and M. Kondo. 1989. Role of outer coat in resistance of Bacillus megaterium spore. J. Biochem. 106:270273.
54. Ozin, A. J.,, A. O. Henriques,, H. Yi,, and C. P. Moran, Jr. 2000. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtitis spore coat. J. Bacteriol. 182:18281833.
55. Paidhungat, M.,, B. Setlow,, A. Driks,, and P. Setlow. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. J. Bacteriol. 182:55055512.
56. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:908962.
57. Pogliano, K.,, E. Harry,, and R. Losick. 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluotescence microscopy. Mol. Microbiol. 18:459470.
58. Polacheck, I.,, V. J. Hearing,, and K. J. Kwon-Chung. 1982. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J. Bacteriol. 150:12121220.
59. Popham, D. L.,, S. Sengupta,, and P. Setlow. 1995. Heat, hydrogen peroxide, and UV resistance of Bacillus subtilis spotes with increased core water content and with or without major DNA-bindingproteins. Appl. Environ. Microbiol. 61:36333638.
60. Presecan, E.,, I. Moszer,, L. Boursier,, H. C. Cruz Ramos,, V. de la Fuente,, M. F. Hullo,, C. Lelong,, S. Schleich,, A. Sekowska,, B. H. Song,, G. Villani,, F. Kunst,, A. Danchin,, and P. Glaser. 1997. The Bacillus subtilis genome from gerBC (311 degrees) to licR (334 degrees). Microbiology 143:33133328.
61. Price, K. D.,, and R. Losick. 1999. A four-dimensional view of assembly of a morphogenetic protein during sporulation in Bacillus subtitis. J. Bacteriol. 181:781790.
62. Ragkousi, K.,, A. E. Cowan,, M. A. Ross,, and P. Setlow. 2000. Analysis of nucleoid morphology during germination and outgrowth of spores of Bacillus species. J. Bacteriol. 182:55565562.
63. Riesenman, P. J.,, and W. L. Nicholson. 2000. Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol. 66:620626.
64. Roels, S.,, A. Driks,, and R. Losick. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174: 575585.
65. Roels, S.,, and R. Losick. 1995. Adjacent and divergently oriented operons under the control of the sporulation regulatory protein GerE in Bacillus subtilis. J. Bacteriol. 177: 62636275.
66. Ryden, L. G.,, and L. T. Hunt. 1993. Evolution of protein complexity: the blue copper-containing oxidases and related proteins. J. Mol. Evol. 36:4166.
67. Sanchez-Salas, J. L.,, M. L. Santiago-Lara,, B. Setlow,, M. D. Sussman,, and P. Setlow. 1992. Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination. J. Bacteriol. 174807814
68. Scherrer, R.,, T. C. Beaman,, and P. Gerhardt. 1971. Macromolecular sieving by the dormant spore of Bacillus cereus. J. Bacteriol. 108:868873.
69. Setlow, B.,, K. A. McGinnis,, K. Ragkousi,, and P. Setlow. 2000. Effects of major spore-specific DNA binding proteins on Bacillus subtilis sporulation and spore properties. J. Bacteriol. 182:69066912.
70. Setlow, B.,, C. A. Setlow,, and P. Setlow. 1997. Killing bacterial spores by organic hydroperoxides. J. Ind. Microbiol. 18:384388.
71. Setlow, B.,, and P. Setlow. 1993. Binding of small, acid-soluble spore proteins to DNA plays a significant role in the resistance of Bacillus subtitis spores to hydrogen peroxide. Appl. Environ. Microbiol. 59:34183423.
72. Setlow, B.,, and P. Setlow. 1995. Binding to DNA protects alpha/beta-type, small, acid-soluble spore proteins of Bacillus and Clostridium species against digestion by their specific protease as well as by other proteases. J. Bacteriol. 177: 41494151.
73. Setlow, B.,, and P. Setlow. 1995. Small, acid-soluble proteins bound to DNA protect Bacillus subtilis spores from killing by dry heat. Appl. Environ. Microbiol. 61:27872790.
74. Setlow, B.,, and P. Setlow. 1987. Thymine-containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins. Proc. Natl. Acad. Set. USA 84:421423.
75. Setlow, B.,, D. Sun,, and P. Setlow. 1992. Studies of the interaction between DNA and ��/��-type small, acid soluble spore proteins: a new class of DNA binding protein. J. Bacteriol. 174:23122322.
76. Setlow, P. 1992. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Microbiol. 6:563567.
77. Setlow, P. 1992. I will survive: protecting and repairing spore DNA. J. Bacteriol. 174:27372241.
78. Setlow, P. 1995. Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49:2954.
79. Setlow, P. 1988. Small, acid-soluble spore proteins of Bacillus species: structure, synthesis, genetics, function, and degradation. Annu. Rev. Microbiol. 42:319338.
80. Setlow, P.,, and W. M. Waites. 1976. Identification of several unique, low-molecular-weight basic proteins in dormant spores of Clostridium bifermentans and their degradation during spore germination. J. Bacteriol. 127:10151017.
81. Seyler, R. W., Jr.,, A. O. Henriques,, A. J. Ozin,, and C. P. Moran, Jr. 1997. Assembly and interactions of cotJ-encoded proteins, constituents of the inner layers of the Bacillus subtilis spore coat. Mol. Microbiol. 25:955966.
82. Sousa, J. C.,, M. T. Silva,, and G. Balassa. 1976. An exosporium-like outer layer in Bacillus subtilis spores. Nature 263:5354.
83. Sousa, J. C.,, M. T. Silva,, and G. Balassa. 1978. Ultra-structure and development of an exosporium-like outer spore envelope in Bacillus subtilis. Ann. Microbiol. (Paris) 129:339362.
84. Stephens, M. A.,, N. Lang,, K. Sandman,, and R. Losick. 1984. A promoter whose utilization is temporally regulated during sporulation in Bacillus subtilis. J. Mol. Biol. 176: 333348.
85. Sun, Y. L.,, M. D. Sharp,, and K. Pogliano. 2000. A dispensable role for forespore-specific gene expression in engulfment of the forespore during sporulation of Bacillus subtilis. J. Bacteriol. 182:29192927.
86. Takamatsu, H.,, T. Hiraoka,, T. Kodama,, H. Koide,, S. Kozuka,, K. Tochikubo,, and K. Watabe. 1998. Cloning of a novel gene yrbB, encoding a protein located in the spore integument of Bacillus subtilis. FEMS Microbiol. Lett. 166: 361367.
87. Takamatsu, H.,, T. Kodama,, A. Imamura,, K. Asai,, K. Kobayashi,, T. Nakayama,, N. Ogasawara,, and K. Watabe. 2000. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition. J. Bacteriol. 182:18831888.
88. Takamatsu, H.,, T. Kodama,, T. Nakayama,, and K. Watabe. 1999. Characterization of the yrbA gene of Bacillus subtilis, involved in resistance and germination of spores. J. Bacteriol. 181:49864994.
89. Takamatsu, H.,, and K. Watabe. Unpublished results.
90. Tennen, R.,, B. Setlow,, K. L. Davis,, C. A. Loshon,, and P. Setlow. 2000. Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J. Appl. Microbiol. 89:330338.
91. Tipper, D. J.,, and J. J. Gauthier,. 1972. Structure of the bacterial endospore, p. 312. In H. O. Halvorson,, R. Hanson,, and L. L. Cambell (ed.), Spores V. American Society for Microbiology, Washington D.C.
92. van Ooij, C.,, and R. Losick. Unpublished results.
93. Warth, A. D.,, D. F. Ohye,, and W. G. Murrell. 1963. The composition and structure of bacterial spores. J. Cell Biol. 16:579592.
94. Webb, C. D.,, A. Decatur,, A. Teleman,, and R. Losick. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177:59065911.
95. Zheng, L.,, W. P. Donovan,, P. C. Fitz-James,, and R. Losick. 1988. Gene encoding a morphogenic protein required in the assembly of the outer coat of the Bacillus ndospore. Genes Dev. 2:10471054.
96. Zheng, L.,, and R. Losick. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212:645660.
97. Zilhao, R.,, G. Naclerio,, A. O. Henriques,, L. Baccigalupi,, C. P. Moran, Jr.,, and E. Ricca. 1999. Assembly requirements and role of CotH during spore coat formation in Bacillus subtilis. J. Bacteriol. 181:26312633.

Tables

Generic image for table
TABLE 1

Major spore proteins: SASP and coat proteins

Assignments of proteins to specific locations are inferences, with the exceptions of the α,β- and γ-type SASP, CotE, CotS, SafA, SpoIVA, SpoVID, and YrbB. FSM, forespore membrane; Ct, coat; CX, cortex; IC, inner coat; OC, outer coat; UC, under coat.

For SASP, the number of amino acids (aa) is indicated. For coat proteins, masses (kDa) based on migration in sodium dodecyl sulfate polyacrylamide gel electrophoresis are given, when known.

Role of σ in expression is an inference based on the data in reference 85.

Citation: Driks A. 2002. Proteins of the Spore Core and Coat, p 527-535. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch36

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error