Chapter 6 : Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap06-2.gif


The cell wall envelope of gram-positive bacteria is composed of the peptidoglycan macromolecule that functions to protect microbes from osmotic lysis. Small molecules can diffuse through the peptidoglycan layer; however, cellular uptake requires dedicated mechanisms for transport across the cytoplasmic membrane. These and other functions in gram-positive bacteria require lipoproteins, polypeptides that are tethered to the cytoplasmic membrane by an N-terminal lipid modification. This chapter summarizes what is known about the cell wall-anchored surface proteins as well as the targeting mechanism of lipoproteins. Furthermore, some of the many biological functions that these polypeptides fulfill are described. Cell wall sorting signals from surface proteins of other gram-positive bacteria display similar functions. Gram-positive bacteria cannot recycle degraded peptidoglycan fragments and release these compounds into the extracellular medium. A database search using the lipobox of lipoproteins revealed 114 lipoprotein genes in the genome of as compared with 89 lipoproteins encoded in the genome. Several proteins that are periplasmic carbohydrate binding proteins in gram-negative bacteria were observed to be lipid-modified in gram-positive bacteria. These lipoproteins function to capture specific import substrates and deliver them to the membrane-embedded transport machinery. Several lipoproteins are required for sporulation or geimination of , while the PrsA lipoprotein is a peptidyl-prolyl isomerase that assists the folding of secreted polypeptides. Other lipoproteins are thought to be involved in DNA binding or uptake, oxidative phosphorylation, cell wall biogenesis, and autolysis.

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6

Key Concept Ranking

Bacterial Proteins
Bacterial Cell Wall
Cell Wall Proteins
Amino Acids
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Cell wall anchor structure of staphylococcal protein A. The C-terminal threonine of protein A is amide-linked to the pentaglycine cross bridge within the staphylococcal cell wall. Cell wall anchor peptides are generally composed of a murein tetrapeptide [L-Ala-D-iGln-L-Lys (Glys)-D-Ala] tethered to the glycan strands [(MurNac-GlcNac)] and cross-linked via the D-Ala at position four. The neighboring wall subunit shown is a non-cross-linked murein pentapeptide [MurNac-(L-Ala-D-iGln-L-Lys(Gly)-D-Ala-D-Ala)-GlcNac].

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Phenotypes of protein A cell wall sorting signal mutants. Wild-type protein A is cleaved at the LPXTG motif and linked to the peptidoglycan (cell wall anchored). Deletions of the charged tail, the charged tail and the hydrophobic domain, or the entire sorting signal of protein A result in secretion of the uncleaved polypeptide into the extracellular medium. Deletion of the LPXTG motif of the C-terminal abolishes cleavage of the polypeptide, and the mutant protein A is loosely associated with the bacterial envelope.

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Surface protein anchoring in gram-positive bacteria, (i) (Export) Precursor proteins with an N-terminal signal peptide are initiated into the secretory (Sec) pathway, and the signal pep-tide is removed, (ii) (Retention) The C-terminal sorting signal retains polypeptides within the secretory pathway, (iii) (Cleavage) Sortase cleaves between the threonine and the glycine of the LPXTG motif, resulting in the formation of a thioester enzyme intermediate, (iv) (Linkage) Nucle-ophilic attack of the free amino group of lipid II at the thioester bond resolves the acyl enzyme intermediate, synthesizing the amide bond between surface proteins and the pentaglycine cross bridge and regenerating the active site sulfhydryl. (v) (cell wall incorporation) Lipid-linked surface protein is first incorporated into the cell wall via the transglycosylation reaction. The murein pentapeptide subunit with attached surface protein is then cross-linked to other cell wall peptides, generating the mature murein tetrapeptide anchor structure.

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Lipoprotein biosynthesis. After ribosomal synthesis and membrane translocation of the lipoprotein precursor (pro-lipoprotein), the cysteine residue of the lipobox (Leu-Ala-Gly-Cys) is modified by diacylglyceride. The reaction is catalyzed by lipoprotein diacylglyceride transferase (Lgt) in a manner requiring phosphatidylglycerol as a substrate. Diacylglyceride-modified lipoprotein is cleaved at the lipobox by lipoprotein signal peptidase (Lsp). The liberated amino group of the N-terminal cysteine is amide linked to fatty acid by lipoprotein -acyltransferase (Lnt) in a reaction that can utilize phosphatidylethanolamine (PE), phosphatidylglycerol (PG), or cardiolipin (CL) as a substrate. This reaction has been described for gram-negative species but not for gram-positive bacteria.

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. An, F. Y.,, and D. B. Clewell. 1994. Characterization of the determinant (traB) encoding sex pheromone shutdown by the hemolysin/bacteriocin plasmid pADl in Enterococcus faecalis. Plasmid 31:215221.
2. An, F. Y.,, M. C Sulavik,, and D. B. Clewell. 1999. Identification and characterization of a determinant (eep) on the Enterococcus faecalis chromosome that is involved in production of the peptide sex pheromone cADl. J. Bacteriol. 181:59155921.
3. Berger-Bachi, B. 1994. Expression of resistance to methi-cillin. Trends Microbiol. 2:389390.
4. Berry, A. M.,, R. A. Lock,, S. M. Thomas,, D. P. Rajan,, D. Hansman,, and J. C. Paton. 1994. Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from recombinant Escherichia coli. Infect. Immun. 62:11011108.
5. Braun, V.,, and H. C. Wu,. 1994. Lipoproteins, structure, function, biosynthesis and model for protein export, p. 319337. In J.-M. Ghuysen, and R. Hakenbeck (éd.), Bacterial Cell Wall, vol. 27. Elsevier Biomédical Press, Amsterdam, The Netherlands.
6. Burne, R. A.,, and J. E. Penders. 1992. Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase. Infect. Immun. 60:46214632.
7. Camara, M.,, G. J. Boulnois,, P. W. Andrew,, and T. J. Mitchell. 1994· A neuraminidase from Streptococcus pneumoniae has the features of a surface protein. Infect. Immun. 62:36883695.
8. Chen, C. C.,, and P. P. Cleary. 1990. Complete nucleotide sequence of the streptococcal C5a peptidase gene of Streptococcus pyogenes. J. Biol. Chem. 263:31613167.
9. Chmouryguina, I.,, A. Suvorov,, P. Ferrieri,, and P. P. Cleary. 1996. Conservation of the C5a peptidase genes in group A and B streptococci. Infect. Immun. 64:23872390.
10. Choi, D.-S.,, H. Yamada,, T. Mizuno,, and S. Mizushima. 1986. Trimeric structure and localization of the major lipoprotein in the cell surface of Escherichia coli. J. Biol. Chem. 261:89538957.
11. Clarke, V. A.,, N. Platt,, and T. D. Butters. 1995. Cloning and expression of the beta-N-acetylglucosaminidase gene from Streptococcus pneumoniae. Generation of truncated enzymes with modified aglycon specificity. J. Biol. Chem. 270:88058814.
12. Clewell, D. B. 1993. Bacterial sex pheromone-induced plasmid transfer. Cell 73:912.
13. Clewell, D. B.,, F. Y. An,, S. E. Flannagan,, M. Antiporta,, and G. Dunny. 2000. Enterococcal sex pheromone precursors are part of signal sequences for surface lipoproteins. Mol. Microbiol. 35:246247.
14. de Chateau, M.,, and L. Björck. 1996. Identification of interdomain sequences promoting the intronless evolution of a bacterial protein family. Proc. Natl. Acad. Sci. USA 93: 84908495.
15. de Chateau, M.,, and L. Björck. 1994· Protein PAB, a mosaic albumin-binding bacterial protein representing the first contemporary example of module shuffling. J. Biol. Chem. 269:1214712151.
16. de Chateau, M.,, E. Hoist,, and L. Björck. 1996. Protein PAB, an albumin-binding bacterial surface protein promoting growth and virulence. J. Biol. Chem. 271:2660926615.
17. Deisenhofer, J. 1981. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20:23612370.
18. Deisenhofer, J.,, T. A. Jones,, R. Huber,, J. Sjödahl,, and J. Sjöquist. 1978. Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus. Hoppe Seyler's Z. Physiol. Chem. 359:975985.
19. Demuth, D. R.,, Y. Duan,, W. Brooks,, A. R. Holmes,, R. McNab,, and H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol. Microbiol. 20:403413.
20. Demuth, D. R.,, M. S. Lammey,, M. Huck,, E. T. Lally,, and D. Malamud. 1990. Comparison of Streptococcus mutons and Streptococcus sanguis receptors for human salivary agglutinin. Microb. Pathog. 9:199211.
21. Dramsi, S.,, P. Dehoux,, and P. Cossart. 1993. Common features of Gram-positive bacterial proteins involved in cell recognition. Mol. Microbiol. 9:11191122.
22. Dramsi, S.,, P. Dehoux,, M. Lebrun,, P. Goosens,, and P. Cossart. 1997. Identification of four new members of the internalin multigene family of Listeria monocytogenes EGD. Infect. Immun. 65:16151625.
23. Dunny, G. M.,, and B. A. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Annu. Rev. Microbiol. 51:527564.
24. Fahnestock, S. R.,, P. Alexander,, J. Nagle,, and D. Filpula. 1986. Gene for an immunoglobulin-binding protein from a group G streptococcus. J. Bacteriol. 167:870880.
25. Ferretti, J. J.,, R. R. B. Russel,, and M. L. Dao. 1989. Sequence analysis of the wall-associated protein precursor of Streptococcus mutons antigen A. Mol. Microbiol. 3:469478.
26. Fischetti, V. A.,, V. Pancholi,, and O. Schneewind. 1990. Conservation of a hexapeptide sequence in the anchor region of surface proteins from gram-positive cocci. Mol. Microbiol. 4:16031605.
27. Foster, T. J.,, and M. Hook. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6:484488.
28. Gaillard, J.-L.,, P. Berche,, C. Frehel,, E. Gouin,, and P. Cossart. 1991. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:11271141
29. Galli, D.,, A. Friesenegger,, and R. Wirth. 1992. Transcriptional control of sex-pheromone-inducible genes on plasmid pADl of Enterococcus faecalis and sequence analysis of a third structural gene for (pPDl-encoded) aggregation substance. Mol. Microbiol. 6:895904.
30. Galli, D.,, F. Lottspeich,, and R. Wirth. 1990. Sequence analysis of Enterococcus faecalis aggregation substance encoded by the sex pheromone plasmid pADl. Mol. Microbiol. 4:895904.
31. Galli, D.,, and R. Wirth. 1991. Comparative analysis of Enterococcus faecalis sex pheromone plasmids identifies a single homologous DNA region which codes for aggregation substance. J. Bacteriol. 173:30293033.
32. Gan, K.,, S. D. Gupta,, K. Sankaran,, M. B. Schmid,, and H. C. Wu. 1993. Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification. J. Biol. Chem. 268: 1654416550.
33. Ghuysen, J.-M. 1968. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol. Rev. 32:425464.
34. Ghuysen, J.-M.,, and R. Hakenbeck (éd.). 1994. Bacterial Cell WaR. Elsevier Science B.S., Amsterdam, The Netherlands.
35. Gilson, E.,, G. Alloing,, T. Schmidt,, J. P. Claverys,, R. Dudler,, and M. Hofnung. 1988. Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J. 7:39713974.
36. Godon, J. J.,, K. Jury,, C. A. Shearman,, and M. J. Gasson. 1994- The Lactococcus lactis sex-factor aggregation gene cluA. Mol. Microbiol. 12:655663.
37. Gouda, H.,, H. Torigoe,, A. Saito,, M. Sato,, Y. Rata,, and I. Shimada. 1992. Three-dimensional solution structure of the B domain of staphylococcal protein A: a comparison of the solution and crystal structures. Biochemistry 31:96659672.
38. Gupta, S. D.,, W. Dowhan,, and H. C. Wu. 1991. Phos-phatidylethanolamine is not essential for the N-acylation of apolipoprotein in Escherichia coli. J. Biol. Chem. 266: 99839986.
39. Gupta, S. D.,, K. Gan,, M. B. Schmid,, and H. C. Wu. 1993. Characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in apolipoprotein N-acyltransferase. J. Biol. Chem. 268:1655116556.
40. Gupta, S. D.,, and H. C. Wu. 1991. Identification and sub-cellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol. Lett. 62:3741.
41. Guss, B.,, M. Eliasson,, A. Olsson,, M. Uhlén,, A. K. Frej,, H. Jörnvall,, J.-I. Flock,, and M. Lindberg. 1986. Structure of the IgG-binding regions of streptococcal protein G. EMBO J. 5:15671575.
42. Guss, B.,, M. Uhlén,, B. Nilsson,, M. Lindberg,, J. Sjöquist,, and J. Sjödahl. 1984. Region X, the-cell-wall-attachment part of staphylococcal protein A. Eur. J. Biochem. 138: 413420.
43. Haanes, E. J.,, and P. P. Cleary. 1989. Identification of a divergent M protein gene and an M protein-related gene family in Streptococcus pyogenes serotype 49. J. Bacteriol. 171:63976408.
44. Hartford, O.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1997. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol. Microbiol. 25:10651076.
45. Hayashi, S.,, and H. C. Wu. 1983. Biosynthesis of Bocillus licheniformis penicillinase in Escherichia coli and in Bacillus subtilis. J. Bacteriol. 156:773777.
46. Hayashi, S.,, and H. C. Wu. 1990. Lipoproteins in bacteria. J. Bioenerg. Biomembr. 22:451471.
47. Heaton, M. P.,, L. F. Discotto,, M. J. Pucci,, and S. Handwerger. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:917.
48. Heden, L.-O.,, E. Frithz,, and G. Lindahl. 1991. Molecular characterization of IgA receptor from group B streptococci: sequence of the gene, identification of a proline-rich region with unique structure and isolation of N-terminal fragments with IgA-binding capacity. Eur. J. Immunol. 21: 14811490.
49. Higashi, Y.,, J. L. Strominger,, and C. C. Sweeley. 1967. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of C55 isoprenoid alcohol. Proc. Natl. Acad. Sci. USA 57:18781884.
50. Hoick, A.,, and H. Naes. 1992. Cloning, sequencing and expression of the gene encoding the cell-envelope-associated proteinase from Loctobocillus paracasei subsp. paracasei NCDO 151. J. Gen. Microbiol. 138:13531364.
51. Hollingshead, S. K.,, V. A. Fischetti,, and J. R. Scott. 1986. Complete nucleotide sequence of type 6 M protein of the group A streptococcus. J. Biol. Chem. 261:16771686.
52. Hussain, M.,, S. Ichihara,, and S. Mizushima. 1980. Accumulation of the glyceride-containing precursor of the outer membrane lipoprotein in the cytoplasmic membrane of Escherichia coli treated with globomycin. J. Biol. Chem. 255: 37073712.
53. Igarashi, T.,, A. Yamamoto,, and N. Goto. 1995. Sequence analysis of the Streptococcus mutans Ingbritt dexA gene encoding extracellular dextranase. Microbiol. Immunol. 39: 853860.
54. Inouye, S.,, S. Wang,, J. Sekizawa,, S. Halegoua,, and M. Inouye. 1977. Amino acid sequence for the peptide extension on the prolipoprotein of the Escherichia coli outer membrane. Proc. Natl. Acad. Sci. USA 74:10041008.
55. Inukai, M.,, M. Takeuchi,, K. Shimizu,, and M. Arai. 1978. Globomycin, a new peptide antibiotic with spheroplast forming activity. J. Antibiot. 31:12031205.
56. Jacobs, M.,, J. B. Andersen,, V. Kontinen,, and M. Sarvas. 1993. Bocillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol. Microbiol. 8:957966.
57. Jaffe, J.,, S. Natanson-Yaron,, M. G. Caparon,, and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21:373384
58. Jerlstrom, P. G.,, G. S. Chhatwal,, and K. N. Timmis. 1991. The IgA-binding B antigen of the c protein complex of group B streptococci: sequence determination of the gene and detection of two binding regions. Mol. Microbiol. 5:843849.
59. Johansson, M. U.,, M. de Chateau,, M. Wikstrom,, S. Forsen,, T. Drakenberg,, and L. Björck. 1997. Solution structure of the albumin-binding GA module: a versatile bacterial protein domain. J. Mol. Biol. 257:859865.
60. Jonsson, H.,, L. Frykberg,, L. Rantamaki,, and B. Guss. 1994. MAG, a novel plasma protein receptor from Streptococcus dysgalactiae. Gene 143:8589.
61. Jonsson, H.,, H. Lindmark,, and B. Guss. 1995. A protein G-related cell surface protein in Streptococcus zooepidemieus. Infect. Immun. 63:29682975.
62. Jonsson, H.,, and H. P. Muller. 1994. The type-Ill Fc receptor from Streptococcus dysgalactiae is also an alpha 2-macroglobulin receptor. Eur. J. Biochem. 220:819826.
63. Jonsson, K.,, C. Signas,, H. P. Muller,, and M. Lindberg. 1991. Two different genes encode fibronectin binding proteins in Staphyhcoccus aureus. The complete nucleotide sequence and characterization of the second gene. Eur. J. Biochem. 202:10411048.
64. Josefsson, E.,, K. W. McCrea,, D. Ni Eidhin,, D. O'Connell,, J. Cox,, M. Hook,, and T. J. Foster. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphyhcoccus aureus. Microbiology 144:33873395.
65. Kao, S. M.,, S. B. Olmsted,, A. S. Visksnins,, J. C. Gallo,, and G. M. Dunny. 1991. Molecular and genetic analysis of a region of plasmid pCFlO containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J. Bacterial. 173:76507664.
66. Kastern, W.,, E. Hoist,, E. Nielsen,, U. Sjöbring,, and L. Björck. 1990. Protein L, a bacterial immunoglobulin-binding protein and possible virulence determinant. Infect. Immun. 58:12171222.
67. Kelly, C.,, P. Evans,, L. Bergmeier,, S. F. Lee,, A. Progulske-Fox,, A. C. Harris,, A. Aitken,, A. S. Bleiweis,, and T. Lehner. 1989. Sequence analysis of the cloned streptococcal cell surface antigen I/II. FEBS Lett. 258: 127132.
68. Kelly, C.,, P. Evans,, J. K. Ma,, L. A. Bergmeier,, W. Taylor,, L. J. Brady,, S. F. Lee,, A. S. Bleiweis,, and T. Lehner. 1990. Sequencing and characterization of the 185 kDa cell surface antigen of Streptococcus mutons. Arch. Oral Biol. 35:33S38S.
69. Kline, J. B.,, S. Xu,, A. L. Bisno,, and C. M. Collins. 1996. Identification of a fibronectin-binding protein (GfbA) in pathogenic group G streptococci. Infect. Immun. 64:21222129.
70. Kontinen, V. P.,, P. Saris,, and M. Sarvas. 1991. A gene (prsA) of Bacillus subtilis involved in a novel, late stage of protein export. Mol. Microbiol. 5:12731283.
71. Kontinen, V. P.,, and M. Sarvas. 1993. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion. Mol. Microbiol. 8:727737.
72. Kopp, U.,, M. Roos,, J. Wecke,, and H. Labischinski. 1996. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel anti-staphylococcal target? Microb. Drug Resist. 2:2941.
73. Koshland, D.,, and D. Botstein. 1980. Secretion of beta-lactamase requires the carboxy end of the protein. Cell 20: 749760.
74. Krebs, B.,, A. Kaufhold,, M. D. Boyle,, and A. Podbiel-ski. 1996. Different alleles of the fcrA/mrp gene of Streptococcus pyogenes encode M-related proteins exhibiting an identical immunoglobulin-binding pattern. Med. Microbiol. Immunol. 185:3947.
75. Kreikemeyer, B.,, S. R. Talay,, and G. S. Chhatwal. 1995. Characterization of a novel fibronectin-binding surface protein in group A streptococci. Mol. Microbiol. 17:137145.
76. Labischinski, H.,, and H. Maidhof,. 1994. Bacterial peptidoglycan: overview and evolving concepts, p. 2338. In J.-M. Ghuysen, and R. Hakenbeck (ed.) Bacterial Cell Wall, vol. 27. Elsevier Biochemical Press, Amsterdam, The Netherlands.
77. Leskela, S.,, E. Wahlstrom,, V. P. Kontinen,, and M. Sarvas. 1999. Lipid modification of prelipoproteins is dispensable for growth but essential for efficient protein secretion in Bacillus subtilis: characterization of the Igt gene. Mol. Microbiol. 31:10751085.
78. Li, T.,, I. Johansson,, D. I. Hay,, and N. Strömberg. 1999. Strains of Actinonryces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect. Immun. 67:20532059.
79. Lindgren, P. E.,, M. J. McGavin,, C. Signas,, B. Guss,, S. Gurusiddappa,, M. Höök,, and M. Lindberg. 1993. Two different genes coding for fibronectin-binding proteins from Streptococcus dysgalactiae. The complete nucleotide sequences and characterization of the binding domains. Eur. J. Biochem. 214:819827.
80. Lindgren, P. E.,, C. Signas,, L. Rantamaki,, and M. Lindberg. 1994. A fibronectin-binding protein from Streptococcus equisimilis: characterization of the gene and identification of the binding domain. Vet. Microbiol. 41:235247.
81. Lindmark, H.,, K. Jacobsson,, L. Frykberg,, and B. Guss. 1996. Fibronectin-binding protein of Streptococcus equi subsp. zooepidemicus. Infect. Immun. 64:39933999.
82. Löfdahl, S.,, B. Guss,, M. Uhlén,, L. Philipson,, and M. Lindberg. 1983. Gene for staphylococcal protein A. Proc. Natl. Acad. Sci. USA 80:697701.
83. Matsuhashi, M.,, C. P. Dietrich,, and J. L. Stromingen 1967. Biosynthesis of the peptidoglycan of bacterial cell walls. III. J. Biol. Chem. 242:31913206.
84. Matsuhashi, M.,, C. P. Dietrich,, and J. L. Strominger. 1965. Incorporation of glycine into the cell wall glycopeptide in Staphyhcoccus aureus: role of sRNA and lipid intermediates. Proc. Natl. Acad. Sci. USA 54:587594.
84a. Mazmanian, S. K. Unpublished observations.
85. Mazmanian, S. K.,, G. Liu,, E. R. Jensen,, E. Lenoy,, and O. Schneewind. 2000. Staphyhcoccus aureus mutants defective in the display of surface proteins and in the pathogenesis of animal infections. Proc. Natl. Acad. Sci. USA 97:55105515.
86. Mazmanian, S. K.,, G. Liu,, H. Ton-That,, and O. Schneewind. 1999. Staphyhcoccus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285:760763.
87. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphyhcoccus aureus. Mol. Microbiol. 11:237248.
88. McNab, R.,, and H. F. Jenkinson. 1992. Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties in Streptococcus gordonii. Mol. Microbiol. 6:29392949.
89. McNab, R.,, H. F. Jenkinson,, D. M. Loach,, and G. W. Tannock. 1994· Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol. Microbiol. 14:743754.
90. Michel, J. L.,, L. C. Madoff,, K. Olson,, D. E. Kling,, D. L. Kasper,, and F. M. Ausubel. 1992. Large, identical tandem repeat units in the C protein alpha antigen gene, bca, of group B streptococci. Proc. Natl. Acad. Sci. USA 89: 1006010064.
91. Murphy, J. P.,, A. R. Trowern,, and C. J. Duggleby. 1994. Nucleotide sequence of the gene for peptostreptococcal protein L. DNA Sequence 4:259265.
92. Nakagawa, J.,, S. Tamaki,, S. Tomioka,, and M. Matsuhashi. 1984. Functional biosynthesis of cell wall pepti-doglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1 Bs of Escherichia coli with activities of transglycosylase and transpeptidase. J. Biol. Chem. 259:1393713946.
93. Nakajima, M.,, M. Inukai,, T. Hneishi,, A. Terahara,, M. Arai,, T. Kinoshita,, and C. Tamura. 1978. Globomycin, a new peptide antibiotic with spheroplast-forming activity. III. Structural determination of globomycin. J. Antibiot. 31:426432.
94. Nakayama, J.,, G. M. Dunny,, D. B. Clewell,, and A. Suzuki. 1995. Quantitative analysis for pheromone inhibitor and pheromone shutdown in Enterococcus faecalis. Dev. Biol Stand. 85:3538.
95. Nakayama, J.,, K. Yoshida,, H. Kobayashi,, A. Isogai,, D. B. Clewell,, and A. Suzuki. 1995. Cloning and characterization of a region of Enterococcus faecaüs plasmid pPDl encoding pheromone inhibitor (ipd), pheromone sensitivity (craC), and pheromone shutdown (traB) genes. J. Bacteriol. 177:55675573.
96. Navarre, W. W.,, and O. Schneewind. 1996. Cell wall sorting of lipoproteins in Staphyhcoccus aureus. J. Bacteriol. 178:441446.
97. Navarre, W. W.,, and O. Schneewind. 1994- Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol. Microbiol. 14:115121.
98. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of Gram-positive bacteria and the mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174229.
99. Navarre, W. W.,, H. Ton-That,, K. F. Faull,, and O. Schneewind. 1998. Anchor structure of staphylococcal surface proteins. II. COOH-terminal structure of muramidase and amidase-solubilized surface protein. J. Biol. Chem. 273:2913529142.
100. Navarre, W. W.,, H. Ton-That,, K. F. Faull,, and O. Schneewind. 1999. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage ϕ11. Identification of a D-alanyl-glycine endopeptidase activity. J. Biol. Chem. 274:1584715856.
101. Ni Eidhin, D.,, S. Perkins,, P. Francois,, P. Vaudaux,, M. Hook,, and T. J. Foster. 1998. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphyhcoccus aureus. Mol. Microbiol. 30:245257.
102. Nielsen, J. B. K.,, M. P. Caulfield,, and J. O. Lampen. 1981. Lipoprotein nature of Bacillus licheniformis membrane penicillinase. Proc. Natl. Acad. Sci. USA 78:35113515.
103. Nielsen, J. B. K.,, and J. O. Lampen. 1983. Beta-lactamase III of Bocillus cereus 569: Membrane lipoprotein and secreted protein. Biochemistry 22:46524656.
104. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Glyceride-cysteine lipoproteins and secretion by Gram-positive bacteria. J. Bacteriol. 152:315322.
105. Nielsen, J. B. K.,, and J. O. Lampen. 1982. Membrane-bound penicillinases in Gram-positive bacteria. J. Biol. Chem. 257:44904495.
106. Nilsson, M.,, L. Frykberg,, J.-I. Flock,, L. Pei,, M. Lindberg,, and B. Guss. 1998. A fibrinogen binding protein of Staphyhcoccus epidermidis. Infect, lmmun. 66:26662673.
107. Okahashi, N.,, C. Sasakawa,, M. Yoshikawa,, S. Hamada,, and T. Koga. 1989. Molecular characterization of a surface protein antigen gene from serotype c Streptococcus mutans, implicated in dental caries. Mol. Microbiol. 3: 673678.
108. Pancholi, V.,, and V. A. Fischetti. 1988. Isolation and characterization of the cell-associated region of group A streptococcal M protein. J. Bacteriol. 170:26182624.
109. Paragai, Z.,, H. Tjalsma,, A. Bolhuis,, J. M. van Dijl,, G. Venema,, and S. Bron. 1997. The signal peptidase II(Isp) gene of Bacillus subtilis. Microbiology 143:13271333.
110. Parti, J. M.,, B. L. Allen,, M. J. McGavin,, and M. Höök. 1994· MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48:89115.
111. Patti, J. M.,, H. Jonsson,, B. Guss,, L. M. Switalski,, K. Wiberg,, M. Lindberg,, and M. Hook. 1992. Molecular characterization and expression of a gene encoding a Staphyhcoccus aureus collagen adhesin. J. Biol. Chem. 267:47664772.
112. Podbielski, A.,, M. Woischnik,, B. Pohl,, and K. H. Schmidt. 1996. What is the size of the group A A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185:171181.
113. Rakonjac, J. V.,, J. C. Robbins,, and V. A. Fischetti. 1995. DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect. Immun. 63:622631.
114. Rasmussen, M.,, H.-P. Müller,, and L. Björck. 1999. Pro-ten GRAB of Streptococcus pyogenes regulates proteolysis at the bacterial surface by binding ci2-macroglobulin. J. Biol. Chem. 274:1533615344.
115. Roos, S.,, F. Kamer,, L. Axelsson,, and H. Jonsson. 2000. Lactobacillus mucosae sp. nov., a new species with in vitro mucus-binding activity isolated from pig intestine. Int. J. Syst. Evol. Microbiol. 50:251258.
116. Sandermann, H.,, and J. L. Stromingen 1972. Purification and properties of G 55-isoprenoid alcohol phospho-kinase from Staphlococcus aureus. J. Biol. Chem. 247:51235131.
117. Sankaran, K.,, S. D. Gupta,, and H. C. Wu. 1994. Pro-lipoprotein signal peptidase. Methods Ençymol. 248:169180.
118. Sankaran, K.,, and H. C. Wu. 1994. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J. Biol. Chem. 269:1970119706.
119. Sato, Y.,, Y. Yamamoto,, and H. Kizaki. 1997. Cloning and sequence analysis of the gbpC gene encoding a novel glucan-binding protein of Streptococcus mutans. Infect, lmmun. 65:668675.
120. Schindler, C. A.,, and V. T. Schuhardt. 1964. Lysostaphin: a new bacteriolytic agent for the staphylococcus. Proc. Nad. Acad. Sci. USA 51:414421.
121. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103106.
122. Schneewind, O.,, K. F. Jones,, and V. A. Fischetti. 1990. Sequence and structural characteristics of the trypsin-resistant T6 surface protein of group A streptococci. J. Bacteriol. 172:33103317.
123. Schneewind, O.,, D. Mihaylova-Petkov,, and P. Model. 1993. Cell wall sorting signals in surface protein of Gram-positive bacteria. EMBO J. 12:48034811.
124. Schneewind, O.,, P. Model,, and V. A. Fischetti. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267281.
125. Sela, S.,, A. Aviv,, A. Tovi,, I. Burstein,, M. G. Caparon,, and E. Hanski. 1993. Protein F: an adhesin of Streptococcus pyogenes binds fibronectin via two distinct domains. Mol. Microbiol. 10:10491055.
126. Signas, C.,, G. Raucci,, K. Jönsson,, P.-E. Lindgren,, G. M. Anantharamaiah,, M. Höok,, and M. Lindberg. 1989. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86:699703.
127. Sjöquist, J.,, B. Meloun,, and H. Hjelm. 1972. Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. Eur. J. Biochem. 29:572578.
128. Sjöquist, J.,, J. Movitz,, I.-B. Johansson,, and H. Hjelm. 1972. Localization of protein A in the bacteria. Eur. J. Biochem. 30:190194.
129. Smith, H. E.,, U. Vecht,, A. L. Gielkens,, and M. A. Smits. 1992. Cloning and nucleotide sequence of the gene encoding the 136-kilodalton surface protein (mu-ramidase-released protein) of Streptococcus suis type 2. Infect. Immun. 60:23612367.
130. Stenberg, L.,, P. W. O'Toole,, J. Mestecky,, and G. Lin-dahl. 1994. Molecular characterization of protein Sir, a streptococcal cell surface protein that binds both immunoglobulin A and immunoglobulin G. J. Biol. Chem. 269:1345813464.
131. Strauss, A.,, and F. Götz. 1996. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol. Microbiol. 21:491500.
132. Sutcliffe, I. C.,, and R. R. Russell. 1995. Lipoproteins of Gram-positive bacteria. J. Bacterial. 177:11231128.
133. Sutcliffe, I. C.,, L. Tao,, J. J. Ferretti,, and R. R. Russell. 1993. MsmE, a lipoprotein involved in sugar transport in Streptococcus mutans. J. Bacteriol. 175:18531855.
134. Swinfield, T. J.,, J. D. Oultram,, D. E. Thompson,, J. K. Brehm,, and N. P. Minton. 1990. Physical characterization of the replication region of the Streptococcus faecalis plasmid pAM��1 gene. Gene 87:7990.
135. Talay, S. R.,, M. P. Grammel,, and G. S. Chhatwal. 1996. Structure of a group C streptococcal protein that binds to fibrinogen, albumin and immunoglobulin G via overlapping modules. Biochem. J. 315:577582.
136. Talay, S. R.,, P. Valentin-Weigand,, K. N. Timmis,, and G. S. Chhatwal. 1994. Domain structure and conserved epitopes of Sfb protein, the fibronectin-binding adhesin of Streptococcus pyogenes. Mol. Microbiol. 13:531539.
137. Timoney, J. F.,, S. C. Artiushin,, and J. S. Boschwitz. 1997. Comparison of the sequences and functions of Streptococcus equi M-like proteins SeM and SzPSe. Infect. Immun. 65:36003605.
138. Timoney, J. F.,, J. Walker,, M. Zhou,, and J. Ding. 1995. Cloning and sequence analysis of a protective M-like protein gene from Streptococcus equi subsp. zooepidemicus. Infect. Immun. 63:14401445.
139. Tipper, D. J.,, and J. L. Stromingen 1968. Biosynthesis of the peptidoglycan of bacterial cell walls. XII. Inhibition of cross-linking by penicillins and cephalosporins: studies in Staphylococcus aureus in vivo. J. Biol. Chem. 243:31693179.
140. Tipper, D. J.,, and J. L. Strominger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-alanine. Proc. Natl. Acad. Sci. USA 54:11331141.
141. Tjalsma, H.,, V. P. Kontinen,, Z. Pragai,, H. Wu,, R. Meima,, G. Venema,, S. Bron,, M. Sarvas,, and J. M. van Dijl. 1999. The role of lipoprotein processing by signal peptidase II in the Gram-positive eubacterium Bacillus subtilis. Signal peptidase is required for the efficient secretion of alpha-amylase, a non-lipopotein. J. Biol. Chem. 274:16981707.
142. Tokuda, M.,, N. Okahashi,, I. Takahashi,, M. Nakai,, S. Nagaoka,, M. Kawagoe,, and T. Koga. 1991. Complete nucleotide sequence of the gene for a surface protein antigen of Streptococcus sobrinus. Infect. Immun. 59:33093312.
143. Tokunaga, M.,, J. M. Loranger,, and H. C. Wu. 1984. Prolipoprotein modification and processing enzymes in Escherichiacoli. J. Biol. Chem. 259:38253820.
144. Tokunaga, M.,, H. Tokunaga,, and H. C. Wu. 1982. Post-translational modification and processing of Escherichia coli prolipoprotein in vitro. Proc. Natl. Acad. Sci. USA 79:22532259.
145. Ton-That, H.,, K. F. Faull,, and O. Schneewind. 1997. Anchor structure of staphylococcal surface proteins. A branched peptide that links the carboxyl terminus of proteins to the cell wall. J. Biol. Chem. 272:2228522292.
146. Ton-That, H.,, H. Labischinski,, B. Berger-Bâchi,, and O. Schneewind. 1998. Anchor structure of staphyococcal surface proteins. III. The role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 273:2914329149.
147. Ton-That, H.,, G. Liu,, S. K. Mazmanian,, K. F. Faull,, and O. Schneewind. 1999. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc. Natl. Acad. Sci. USA 96:1242412429.
148. Ton-That, H.,, H. Mazmanian,, K. F. Faull,, and O. Schneewind. 2000. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3 substrates. J. Biol. Chem. 275:98769881.
149. Ton-That, H.,, S. K. Mazmanian,, G. Liu,, and O. Schneewind,. Surface protein anchoring and display in staphylococci. In H. Friedman (ed.), Staphylococcal Disease and Infection, in press.
150. Ton-That, H.,, and O. Schneewind. 1999. Anchor structure of staphylococcal surface proteins. IV. Inhibitors of the cell wall sorting reaction. J. Biol. Chem. 274:2431624320.
151. Uhlén, M.,, B. Guss,, B. Nilsson,, S. Gatenbeck,, L. Philipson,, and M. Lindberg. 1984. Complete sequence of the staphylococcal gene encoding protein A. J. Biol. Chem. 259:16951702. Erratum, 259:13628.
152. Uhlén, M.,, B. Guss,, B. Nilsson,, F. Götz,, and M. Lindberg. 1984Expression of the gene encoding protein A in Staphyhcoccus aureus and coagulase-negative staphylococci. J. Bacteriol. 159:713719.
153. van der Meer, J. R.,, J. Polman,, M. M. Beerthuyzen,, R. J. Siezen,, O. P. Kuipers,, and W. M. de Vos. 1993. Characterization of the Lactococcus lactis nisin A operon genes nisP, encoding a subtilisin-like serine protase involved in precursor processing, and nisR, encoding a regulatory protein involved in nisin biosynthesis. J. Bacteriol. 175: 25782588.
154. von Heijne, G. 1989. The structure of signal peptides from bacterial lipoproteins. Protein Eng. 2(7):531534.
155. Vos, P.,, M. van Asseldonk,, F. van Jeveren,, R. Siezen,, G. Simons,, and W. M. de Vos. 1989. Primary structure and organization of the gene for a prokaryotic, cell envelope-located serine proteinase. J. Biol. Chem. 264:1357913585.
156. Wanda, S. Y.,, and R. I. Curtiss. 1994. Purification and characterization of Streptococcus sobrinus dextranase produced in recombinant Escherichia coli and sequence analysis of the dextranase gene. J. Bacteriol. 176:38393850.
157. Wàstfelt, M.,, M. Stalhammar-Carlemalm,, A. M. Deliss,, T. Cabezon,, and G. Lindahl. 1996. Identification of a family of streptococcal surface proteins with extremely repetitive structure. J. Biol. Chem. 271:1889218897.
158. Weidlich, G.,, R. Wirth,, and D. Galli. 1992. Sex pheromone plasmid pADl-encoded surface exclusion protein of Enterococcus faecalis. Mol. Gen. Genet. 233: 161168.
159. Yamagata, H.,, C. Ippolito,, M. Inukai,, and M. Inouye. 1982. Temperature-sensitive processing of outer membrane lipoprotein in an Escherichia coli mutant. J. Bacteriol. 156:773777.
160. Yeung, M. K.,, and J. O. Cisar. 1988. Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae. J. Bacteriol. 170:38033809.
161. Yeung, M. K.,, and J. O. Cisar. 1990. Sequence homology between the subunits of two immunologically and functionally distinct types of fimbriae of Actinomyces spp. J. Bacteriol. 172:24622468.
162. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar,, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. J. Bacteriol. 66:14821491.


Generic image for table

Surface proteins containing cell wall sorting signals

ORF, open reading frame; TIGR, The Institute for Genomic Research. Boldface sequence indicates LPXTG motif.

Citation: Mazmanian S, Schneewind O. 2002. Cell Wall-Anchored Surface Proteins and Lipoproteins of Gram-Positive Bacteria, p 57-70. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error