1887

Chapter 7 : Chromosome Replication and Segregation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Chromosome Replication and Segregation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap07-2.gif

Abstract:

This chapter reviews our current understanding of bacterial DNA replication and chromosome partitioning in and makes comparisons to and other organisms where appropriate. Bacterial chromosome replication initiates once per cell division cycle in response to a signal that is tightly coupled to cell mass. Although the helicase function of DnaC has not yet been confirmed biochemically, two types of (TS) mutations, defective in initiation and elongation, map to . Strong interaction between the helicase and the primase has been demonstrated in . The current understanding of bacterial chromosome partitioning can be simplified into three steps: (i) origin region separation and repositioning, (ii) overall chromosome organization and compaction, and (iii) terminus region separation. This final step includes chromosome decatenation, chromosome dimer-to-monomer resolution when necessary, and movement of the termini to either side of midcell before completion of medial division. The structural maintenance of chromosomes (SMC) protein family is well conserved and is important for chromosome segregation in bacteria, archaea, and eukaryotes. Both and have proteins that appear to be involved in postseptational chromosome partitioning. These proteins, SpoIIIE and FtsK, respectively, have domains that are homologous to the DNA translocation domains of proteins involved in conjugative plasmid transfer. In and , SMC functions in chromosome partitioning presumably by affecting chromosome organization and compaction. All organisms seem to have proteins that contribute to chromosome folding and compaction.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7

Key Concept Ranking

DNA Synthesis
0.58099407
DNA Polymerase III
0.50233746
DNA Polymerase I
0.49934736
0.58099407
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Simplified cartoon of the bacterial cell cycle and chromosome orientation. The chromosome is indicated by a thin oval inside the cell. The origin of replication () is indicated by a small gray circle, and the terminus of replication () is indicated by a gray square. The replisome is indicated by two triangles, one for each replication fork that initiates from . In this model, replication initiates at or near midcell, the origins rapidly separate, replication continues as the newly replicated DNA is refolded (in part by Smc), and copies separate from each other. The cell division machinery assembles at midcell, and cells divide. This is simplified, because at rapid growth rates, newborn cells have a partly duplicated chromosome and the origin regions have already duplicated and separated to the cell quarters.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Model of initiation mechanism of chromosome replication. The gene constitutes an operon with ( ). DnaA boxes exist in two noncoding regions upstream and downstream of , where DnaA actually binds ( ). The operon is probably expressed after initiation of replication ( ) and is autoregulated by DnaA ( ). Thus, DnaA newly synthesized after initiation would stop its transcription. Two DnaA box clusters are required for initiation of replication in vivo (shown as , autonomously replicating sequence) ( ), and the regions form a loop mediated by DnaA in vitro ( ). It is unclear whether the loop is formed only at the time of initiation. This loop formation opens double-stranded DNA locally at an AT-rich sequence between and ( ), consistent with in vivo observations that plasmid and chromosome replication start at this non-coding region ( ). DnaB, DnaD, and Dnal are probably components of a primosome ( ) and thus play roles for loading the DnaC helicase into the unwound region. DnaD interacts with DnaA ( ), but the role of the interaction is still unclear. DnaB exhibits single-stranded DNA-binding activity ( ) and forms an oligomer ( ), similar to DnaC helicase loader. However, DnaB did not interact with DnaA, DnaC, DnaD, or Dnal by the yeast two-hybrid assay ( ). Its precise role is still obscure. Dnal interacted strongly with the DnaC helicase ( ), indicating that it acts as a component of the helicase loading system. Once the helicase is loaded into , primase (DnaG) and τ subunit (DnaX) of DNA polymerase III are assembled by protein-protein interaction followed by formation of the replisome on .

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model of proteins present at the replication fork of

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Spo0J binding sites on the chromosome. is at 0°/360° on the circular chromosome. The eight known sites ( ) are indicated.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Model of SMC. SMC is an antiparallel homodimer with two long coiled-coil regions separated by a flexible hinge ( ).

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Chromosome partitioning events specific to the terminus region. (A) Chromosome decatenation. (B) When necessary, a site-specific recombination resolves a chromosome dimer (left) to two monomers. (C) Model for SpoIIIE (or FtsK) movement of trapped chromosome out of the division septum.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap7
1. Adams, D. E.,, E. M. Shekhtman,, E. L. Zechiedrich,, M. B. Schmid,, and N. R. Cozzarelli. 1992. The role of topoi-somerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 71:277288.
2. Alonso, J. C.,, and L. M. Fisher. 1995. Nucleotide sequence of the recF gene cluster from Staphylococcus aureus and complementation analysis in Bacillus subtilis recF mutants. Mol. Gen. Genet. 246:680686.
3. Alonso, J. C.,, K. Shirahige,, and N. Ogasawara. 1990. Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis. Nucleic Acids Res. 18:67716777.
4. Autret, S.,, A. Levine,, F. Vannier,, Y. Fujita,, and S. J. Seror. 1999. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 31:16651679.
5. Baker, T. A.,, and S. P. Bell. 1998. Polymerases and the replisome: machines within machines. Cell 92:295305.
6. Barns, M. H.,, R. A. Hammond,, C. C. Kennedy,, S. L. Mack,, and N. C. Brown. 1992. Localization of the exonuclease and polymerase domains of Bacillus subtilis DNA polymerase III. Gene 111:4349.
7. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177:62116222.
8. Belmont, A. S.,, and A. F. Straight. 1998. In vivo visualization of chromosomes using lac operator-repressor binding. Trends Cell Biol. 8:121124.
9. Bird, L. E.,, H. Pan,, P. Soultanas,, and D. B. Wigley. 2000. Mapping protein-protein interactions within a stable complex of DNA primase and DnaB helicase from Bacillus stearotaermoprulus. Biochemistry 39:171182.
10. Boye, E.,, T. Stokke,, N. Weckner,, and K. Skarstad. 1996. Coordinating DNA replication initiation with cell growth: differential roles for DnaA and SeqA proteins. Proc. Natl. Acad. Sci. USA 93:1220612211.
11. Britton, R. A.,, and A. D. Grossman. 1999. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181: 58605864.
12. Britton, R. A.,, D. C. Lin,, and A. D. Grossman. 1998. Characterization of a prokaryotic SMC protein involved in chromosome partitioning. Genes Dev. 12:12541259.
13. Bruand, C.,, and S. D. Ehrlich. 1995. The Bacillus subtilis dnal gene is part of the dnaB operon. Microbiology 141: 11991200.
14. Bruand, C.,, S. D. Ehrlich,, and L. J. Janniere. 1995. Primosome assembly site in Bacillus subtilis. EMBO J. 14: 26422650.
15. Bruand, C.,, A. Sorokin,, P. Serror,, and S. D. Ehrlich. 1995. Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology 141:321322.
16. Bruck, I.,, and M. O'Donnell. 2000. The DNA replication machine of a gram-positive organism. J. Biol. Chem. 275: 2897128983.
17. Calcutt, M. J. 1994. Gene organization in the dnaA-gyrA region of the Streptomyces coelicolor chromosome. Gene 151:2328.
18. Cervin, M. A.,, G. B. Spiegelman,, B. Raether,, K. Ohlsen,, M. Perego,, and J. A. Hoch. 1998. A negative regulator linking chromosome segregation to developmental transcription in Bacillus subtilis. Mol. Microbiol. 29:8595.
19. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537544
20. Cox, M. M. 1998. A broadening view of recombinational DNA repair in bacteria. Genes Cells 3:6578.
21. Cox, M. M.,, M. F. Goodman,, K. N. Kreuzer,, D. J. Sherratt,, S. J. Sandler,, and K. J. Marians. 2000. The importance of repairing stalled replication forks. Nature 404: 3741.
22. Donachie, W. D. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219: 10771079.
23. Ehrlich, S. D.,, C. Bruand,, and P. Polard. Personal communication.
24. Erdmann, N.,, T. Petroff,, and B. E. Funnell. 1999. Intracellular localization of PI ParB protein depends on ParA and parS. Proc. Natl. Acad. Sci. USA 96:1490514910.
25. Fang, L.,, M. J. Davey,, and M. O'Donnell. 1999. Repli-some assembly at oriC, the replication origin of E. coli, reveals an explanation for initiation sites outside an origin. Mol. Cell. 4:541553.
26. Firshein, W. 1989. Role of the DNA/membrane complex in prokaryotic DNA replication. Annu. Rev. Microbiol. 43:89120.
27. Flett, F.,, D. de,, M. Jungmann-Campello,, V. Mersinias,, S. L.-M. Koh,, R. Godden,, and C. P. Smith. 1999. A “gram-negative-type” DNA polymerase III is essential for replication of the linear chromosome of Streptomyces coelicolor A3(2). Mol. Microbiol. 31:949958.
28. Frandsen, N.,, I. Barak,, C. Karmazyn-Campelli,, and P. Stragier. 1999. Transient gene asymmetry during sporula-tion and establishment of cell specificity in Bacillus subtilis. Genes Dev. 13:394399.
29. Fukuoka, T.,, S. Moriya,, H. Yoshikawa,, and N. Oga-sawara. 1990. Purification and characterization of an initiation protein for chromosomal replication, DnaA, in Bacillus subtilis. J. Biochem. (Tokyo) 107:732739.
30. Gerdes, K.,, J. M0ller-Jensen,, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phytogeny. Mol. Microbiol. 37:455466.
31. Glaser, P.,, M. E. Sharpe,, B. Raether,, M. Perego,, K. Ohlsen,, and J. Errington. 1997. Dynamic, mitotic-like behavior of a bacterial protein required for accurate chromosome partitioning. Genes Dev. 11:11601168.
32. Gordon, G. S.,, D. Sitnikov,, C. D. Webb,, A. Teleman,, A. Straight,, R. Losick,, A. W. Murray,, and A. Wright. 1997. Chromosome and low copy plasmid segregation in E. coli: visual evidence for distinct mechanisms. Cell 90:11131121.
33. Henckes, G.,, F. Harper,, A. Levine,, F. Vannier,, and S. J. Seror. 1989. Overreplication of the origin region in the dnaB37 mutant of Bacillus subtilis: postinitiation control of chromosomal replication. Proc. Natl. Acad. Sci. USA 86:86608664.
34. Herrick, J.,, M. Kohiyama,, T. Atlung,, and F. G. Hansen. 1996. The initiation mess? Mol. Microbiol. 19:659666.
35. Hill, T. M., 1996. Features of the chromosomal terminus region, p. 16021614. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington, D.C.
36. Himmelreich, R.,, H. Hilbert,, H. Plagens,, E. Pirkl,, B. C. Li,, and R. Herrmann. 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24:44204449.
37. Hingorani, M. M.,, and M. O'Donnell. 2000. Sliding clamps: a (tail)ored fit. Curr. Biol. 10:R25R29.
38. Hirano, T. 1999. SMC-mediated chromosome mechanics: a conserved scheme from bacteria to vertebrates? Genes Dev. 13:1119.
39. Holmes, V. F.,, and N. R. Cozzarelli. 2000. Closing the ring: links between SMC proteins and chromosome partitioning, condensation, and supercoiling. Proc. Natl. Acad. Sci. USA 97:13221324.
40. Hoshino, T.,, T. McKenzie,, S. Schmidt,, T. Tanaka,, and N. Sueoka. 1987. Nucleotide sequence of Bacillus subtilis dnaB: a gene essential for DNA replication initiation and membrane attachment. Proc. Natl. Acad. Sci. USA 84: 653657.
41. Huang, W.,, J. Libbey,, P. van der Hoeven,, and S. Yu. 1998. Bipolar localization of Bacillus subtilis topoisomerase IV, an enzyme required for chromosome segregation. Proc. Natl. Acad. Sci. USA 95:46524657.
42. Imai, Y.,, N. Ogasawara,, D. Ishigo-Oka,, R. Kadoya,, T. Daito,, and S. Moriya. 2000. Subcellular localization of Dna-initiation proteins of Bacillus subtilis: evidence that chromosome replication begins at either edge of nucleoids. Mol. Microbiol. 36:10371048.
43. Iordanescu, S. 1993. Characterization of the Staphylococcus aureus chromosomal gene pcrA, identified by mutations affecting plasmid pT181 replication. Mol. Gen. Genet. 241:185192.
44. Ireton, K.,, N. W. T. Gunther,, and A. D. Grossman. 1994- spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis. J. Bacteriol. 176:53205329.
45. Ishigo-oka, D.,, N. Ogasawara,, and S. Moriya. 2001. DnaD protein of Bacillus subtilis interacts with DnaA, the initiator protein of replication. J. Bacterial. 183:21482150.
46. Jensen, R. B.,, and L. Shapiro. 1999. The Caulobacter crescentus smc gene is required for cell cycle progression and chromosome segregation. Proc. Natl. Acad. Sci. USA 96: 1066110666.
47. Katayama, T.,, T. Kubota,, K. Kurokawa,, E. Crooke,, and K. Sekimizu. 1998. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94:6171.
48. Kato, J.,, Y. Nishimura,, R. Imamura,, H. Niki,, S. Hiraga,, and H. Suzuki. 1990. New topoisomerase essential for chromosome segregation in E. coli. Cell 63:393404.
49. Kelman, Z.,, and M. O'Donnell. 1995. DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64:171200.
50. Kelman, Z.,, A. Yuzhakov,, J. Andjelkovic,, and M. O'Donnell. 1998. Devoted to the lagging strand—the χ sub-unit of DNA polymerase III holoenzyme contacts SSB to promote processive elongation and sliding clamp assembly. EMBO J. 17:24362449.
51. Kitagawa, R.,, T. Ozaki,, S. Moriya,, and T. Ogawa. 1998. Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev. 12:30323043.
52. Kong, X. P.,, R. Onrust,, M. O'Donnell,, and J. Kuriyan. 1992. Three-dimensional structure of the beta subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69:425437.
53. Koonin, E. V.,, and P. Bork. 1996. Ancient duplication of DNA polymerase inferred from analysis of complete bacterial genomes. Trends Biochem. Sci. 21:128129.
54. Koonin, E. V.,, and P. Bork. 1992. DnaC protein contains a modified ATP-binding motif and belongs to a novel family of ATPases including also DnaA. Nucleic Acids Res. 20:1997.
55. Kornberg, A.,, and T. A. Baker. 1992. DNA Replication, 2nd ed. W. H. Freeman &. Co., San Francisco, Calif.
56. Koshland, D.,, and A. Strunnikov. 1996. Mitotic chromosome condensation. Annu. Rev. Cell. Dev. Biol. 12:305333.
57. Krause, M.,, B. Riickert,, R. Lurz,, and W. Messer. 1997. Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J. Mol. Biol. 274:365380.
58. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249256.
59. Larsen, B.,, N. M. Wills,, C. Nelson,, J. F. Atkins,, and R. F. Gesteland. 2000. Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc. Natl. Acad. Sci. USA 97:16831688.
60. Learn, B. A.,, S.-J. Urn,, L. Huang,, and R. McMacken. 1997. Cryptic single-stranded-DNA binding activities of the phage λ P and Escherichia coli DnaC replication initiation proteins facilitate the transfer of E. coli DnaB helicase onto DNA. Proc. Natl. Acad. Sci. USA 94:11541159.
61. Lee, P. S.,, D. C.-H. Lin,, and A. D. Grossman. Unpublished results.
62. Lemon, K. P.,, and A. D. Grossman. 1998. Localization of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:15161519.
63. Lemon, K. P.,, and A. D. Grossman. 2000. Movement of replicating DNA through a stationary replisome. Mol. Cell. 6:13211330.
64. Lemon, K. P.,, and A. D. Grossman. Unpublished results.
65. Lemon, K. P.,, I. Kurtser,, and A. D. Grossman. 2001. Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98:212217.
66. Levin, P. A.,, and A. D. Grossman. 1998. Cell cycle: the bacterial approach to coordination. Curr. Biol. 8:R28R31.
67. Levine, A.,, S. Autret,, and S. J. Seror. 1995. A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the stringent response in Bacillus subtilis. Mol. Microbiol. 15:287295.
68. Levine, A.,, F. Vannier,, M. Dehbi,, G. Henckes,, and S. J. Seror. 1991. The stringent response blocks DNA replication outside the ori region in Bacillus subtilis and at the origin in Escherichia coli. J. Mol. Biol. 219:605613.
69. Lewis, P. J.,, and J. Errington. 1997. Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the Spo0J partitioning protein. Mol. Microbiol. 25:945954.
70. Lin, D. C.-H., and A. D. Grossman. 1998. Identification and characterization of a bacterial chromosome partitioning site. Cell 92:675685.
71. Lin, D. C.-H. 1999. Chromosome partitioning in Bacillus subtilis. Ph.D. thesis. Massachusetts Institute of Technology, Cambridge, Mass.
72. Lin, D. C.-H.,, P. A. Levin,, and A. D. Grossman. 1997. Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 94:47214726.
73. Lindow, J.,, R. Britton,, and A. D. Grossman. Unpublished results.
74. Liu, G.,, G. C. Draper,, and W. D. Donachie. 1998. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29:893903.
75. Lobner-Olesen, A.,, K. Skarstad,, F. G. Hansen,, K. von Meyenburg,, and E. Boye. 1989. The DnaA protein determines the initiation mass of Escherichia coli K-12. Cell 57:881889.
76. Lohman, T. M.,, and M. E. Ferrari. 1994. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63:527570.
77. Losick, R.,, and L. Shapiro. 1999. Changing views on the nature of the bacterial cell: from biochemistry to cytology. J. Bacteriol. 181:41434145.
78. Lu, M.,, J. L. Campbell,, E. Boye,, and N. Kleckner. 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77:413426.
79. Marians, K. J. 1999. PriA: at the crossroads of DNA replication and recombination. Prog. Nucleic Acid Res. Mol. Biol. 63:3967.
80. Marians, K. J. 2000. PriA-directed replication fork restart in Escherichia coli. Trends Biochem. Sci. 25:185189.
81. Masai, H.,, J. Deneke,, Y. Furui,, T. Tanaka,, and K. I. Arai. 1999. Escherichia coli and Bacillus subtilis PriA proteins essential for recombination-dependent DNA replication: involvement of ATPase/helicase activity of PriA for inducible stable DNA replication. Biochimie 81:847857.
82. Melby, T. E.,, C. N. Ciampaglio,, G. Briscoe,, and H. P. Erickson. 1998. The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J. Cell Biol. 142:15951604.
83. Messer, W.,, and C. Weigel,. 1996. Initiation of chromosome replication, p. 15791601. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
84. Michel, B. 2000. Replication fork arrest and DNA recombination. Trends Biochem. Sci. 25:173178.
85. Mohl, D. A.,, and J. W. Gober. 1997. Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88:675684.
86. Moriya, S.,, T. Atlung,, F. G. Hansen,, H. Yoshikawa,, and N. Ogasawara. 1992. Cloning of an autonomously replicating sequence (ars) from the Bacillus subtilis chromosome. Mol. Microbiol. 6:309315.
87. Moriya, S.,, W. Firshein,, H. Yoshikawa,, and N. Ogasawara. 1994. Replication of a Bacillus subtilis oriC plasmid in vitro. Mol. Microbiol. 12:469478.
88. Moriya, S.,, Y. Imai,, A. K. Hassan,, and N. Ogasawara. 1999. Regulation of initiation of Bacillus subtilis chromosome replication. Plasmid 41:1729.
89. Moriya, S.,, K. Kato,, H. Yoshikawa,, and N. Ogasawara. 1990. Isolation of a dnaA mutant of Bacillus subtilis defective in initiation of replication: amount of DnaA protein determines cells' initiation potential. EMBO J. 9:29052910.
90. Moriya, S.,, and N. Ogasawara. 1996. Mapping of the replication origin of the Bacillus subtilis chromosome by the two-dimensional gel method. Gene 176:8184.
91. Moriya, S.,, and N. Ogasawara. Unpublished results.
92. Moriya, S.,, N. Ogasawara,, and H. Yoshikawa. 1985. Structure and function of the region of the replication origin of the Bacillus subtilis chromosome. III. Nucleotide sequence of some 10,000 base pairs in the origin region. Nucleic Acids Res. 13:22512265.
93. Moriya, S.,, E. Tsujikawa,, A. K. Hassan,, K. Asai,, T. Kodama,, and N. Ogasawara. 1998. A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol. Microbiol. 29:179187.
94. Niki, H.,, and S. Hiraga. 1998. Polar localization of the replication origin and terminus in Escherichia coli nucleoids during chromosome partitioning. Genes Dev. 12:10361045.
95. Niki, H.,, and S. Hiraga. 1997. Subcellular distribution of actively partitioning. F plasmid during the cell division cycle in E. coll. Cell 90:951957.
96. Niki, H.,, R. Imamura,, M. Kitaoka,, K. Yamanaka,, T. Ogura,, and S. Hiraga. 1992. E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11:51015109.
97. Niki, H.,, A. Jaffe,, R. Imamura,, T. Ogura,, and S. Hiraga. 1991. The new gene mukB codes for a 177 kd protein with coiled-coil domains involved in chromosome partitioning of E. coli. EMBO J. 10:183193.
98. Niki, H.,, Y. Yamaichi,, and S. Hiraga. 2000. Dynamic organization of chromosomal DNA in Escherichia coli. Genes Dev. 14:212223.
99. Ogasawara, N.,, S. Moriya,, P. G. Mazza,, and H. Yoshikawa. 1986. Nucleotide sequence and organization of dnaB gene and neighbouring genes on the Bacillus subtilis chromosome. Nucleic Acids Res. 14:99899999.
100. Ogasawara, N.,, S. Moriya,, K. von Meyenburg,, F. G. Hansen,, and H. Yoshikawa. 1985. Conservation of genes and their organization in the chromosomal replication origin region of Bacillus subtilis and Escherichia coli. EMBO J. 4:33453350.
101. Ogura, Y.,, Y. Imai,, N. Ogasawara,, and S. Moriya. 2001. Autoregulation of the dnaA-dnaN operon and effects of DnaA protein levels on replication initiation in Bacillus subtilis. J. Bacteriol. 183:38333841.
102. Pacitti, D. F.,, M. H. Barnes,, D. H. Li,, and N. C. Brown. 1995. Characterization and overexpression of the gene encoding Staphylococcus aureus DNa polymerase III. Gene 165:5156.
103. Petit, M.-A.,, E. Dervyn,, M. Rose,, K.-D. Entian,, S. Mc-Govern,, S. D. Ehrlich,, and C. Bruand. 1998. PcrA is an essential DNA helicase of Bacillus subtilis fulfilling functions both in repair and rolling-circle replication. Mol. Microbiol. 29:261273.
104. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:908962.
105. Qin, M.-H.,, M. V. V. W. Madiraju,, S. Zachariah,, and M. Rajagopalan. 1999. Characterization of the functional replication origin of Mycobacterium tuberculosis. Gene 233:121130.
106. Qin, M.-H.,, M. V. V. W. Madiraju,, S. Zachariah,, and M. Rajagopalan. 1997. Characterization of the oriC region of Mycobacterium smegmatis. J. Bacteriol. 179:63116317.
107. Quisel, J. D.,, and A. D. Grossman. 2000. Control of sporulation gene expression in Bacillus subtilis by the chromosome partitioning proteins Soj (ParA) and Spo0J (ParB). J. Bacteriol. 182:34463451.
108. Quisel, J. D.,, D. C.-H. Lin,, and A. D. Grossman. 1999. Control of development by altered localization of a transcription factor in B. subtilis. Mol. Cell. 4:665672.
109. Recchia, G. D.,, M. Aroyo,, D. Wolf,, G. Blakely,, and D. J. Sherratt. 1999. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J. 18:57245734.
110. Redenbach, M.,, H. M. Kieser,, D. Denapaite,, A. Eich-ner,, J. Cullum,, H. Kinashi,, and D. A. Hopwood. 1996. A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Srreptomyces coelicolor A3(2) chromosome. Mol. Microbiol. 21:7796.
111. Robinett, C. C.,, A. Straight,, G. Li,, C. Willhelm,, G. Sudlow,, A. Murray,, and A. S. Belmont. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135:16851700.
112. Roos, M.,, A. B. van Geel,, M. E. Aarsman,, J. T. Veuskens,, C. L. Woldringh,, and N. Nanninga. 1999. Cellular localization of oriC during the cell cycle of Escherichia coli as analyzed by fluorescent in situ hybridization. Biochimie 81:797802.
113. Sakamoto, Y.,, S. Nakai,, S. Moriya,, H. Yoshikawa,, and N. Ogasawara. 1995. The Bacillus subtilis dnaC gene encodes a protein homologous to the DnaB helicase of Escherichia coli. Microbiology 141:641644.
114. Salazar, L.,, H. Fsihi,, F. de Rossi,, G. Riccardi,, C. Rios,, S. T. Cole,, and H. E. Takiff. 1996. Organization of the origins of replication of the chromosomes of Mycobacterium smegmatis, Mycobacterium leprae and Mycobacterium tuberculosis and isolation of a functional origin from M. smegmatis. Mol. Microbiol. 20:283293.
115. Sanjanwala, B.,, and A. T. Ganesan. 1991. Genetic structure and domains of DNA polymerase III of Bacillus subtilis. Mol. Gen. Genet. 226:467472.
116. Sauer, U.,, A. Treuner,, M. Buchholz,, J. D. Santangelo,, and P. Durre. 1994. Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J. Bacteriol. 176:65726582.
117. Sawitzke, J. A.,, and S. Austin. 2000. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc. Natl. Acad. Sci. USA 97:16711676.
118. Sciochetti, S. A.,, P. J. Piggot,, and G. Blakely. 2001. Identification and characterization of the dif site from Bacillus subtilis. J. Bacteriol. 83:10581068.
119. Sciochetti, S. A.,, P. J. Piggot,, D. J. Sherratt,, and G. Blakely. 1999. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J. Bacteriol. 181:60536062.
120. Seitz, H.,, C. Weigel,, and W. Messer. 2000. The interaction domains of the DnaA and DnaB replication proteins of Escherichia coli. Mol. Microbiol. 37:12701279.
121. Seror, S. J.,, S. Casaregola,, F. Vannier,, N. Zouari,, M. Dahl,, and E. Boye. 1994. A mutant cysteinyl-tRNA synthetase affecting timing of chromosomal replication initiation in B. subtilis and conferring resistance to a protein kinase C inhibitor. EMBO J. 13:24722480.
122. Sharpe, M. E.,, and J. Errington. 1996. The Bacillus subtilis soj-spo0J locus is required for a centromere-like function involved in prespore chromosome partitioning. Mol. Microbiol. 21:501509.
123. Sharpe, M. E.,, and J. Errington. 1998. A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co-ordination of chromosome segregation and cell division. Mol. Microbiol. 28:981990.
124. Sharpe, M. E.,, and J. Errington. 1995. Postseptational chromosome partitioning in bacteria. Proc. Natl. Acad. Sci. USA 92:86308634.
125. Stein, A.,, and W. Firshein. 2000. Probable identification of a membrane-associated repressor of Bacillus subtilis DNA replication as the E2 subunit of the pyruvate dehydrogenase complex. J. Bocteriol. 182:21192124.
126. Steiner, W.,, G. Liu,, W. D. Donachie,, and P. Kuempel. 1999. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31: 579583.
127. Straight, A. F.,, A. S. Belmont,, C. C. Robinett,, and A. W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:15991608.
128. Sueoka, N. 1998. Cell membrane and chromosome replication in Bacillus subtilis. Prog. Nucleic Acid Res. Mol. Biol. 59:3553.
129. Sutton, M. D.,, K. M. Carr,, M. Vicente,, and J. M. Kaguni. 1998. Escherichia coli DnaA protein. J. Biol. Chem. 273:3425534262.
130. Teleman, A. A.,, P. L. Graumann,, D. C. H. Lin,, A. D. Grossman,, and R. Losick. 1998. Chromosome arrangement within a bacterium. Curr. Biol. 8:11021109.
131. Turner, J.,, M. M. Hingorani,, Z. Kelman,, and M. O'Donnell. 1999. The internal workings of a DNA polymerase clamp-loading machine. EMBO J. 18:771783.
132. Ullmann, S.,, and P. Duerre. 1996. Nucleotide sequence and molecular characterization of the DNA gyrase genes from Clostridium acetobutylicum. Anaerobe 2:239248.
133. Ullsperger, C.,, and N. R. Cozzarelli. 1996. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271:3154931555.
134. von Freiesleben, U.,, K. Rasmussen,, and M. Schaechter. 1994- SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 14:763772.
135. Wang, L.,, and J. Lutkenhaus. 1998. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29: 731740.
136. Webb, C. D.,, P. L. Graumann,, J. A. Kahana,, A. A. Teleman,, P. A. Silver,, and R. Losick. 1998. Use of time-lapse microscopy to visualize rapid movement of the replication origin region of the chromosome during the cell cycle in Bacillus subtilis. Mol. Microbiol. 28:883892.
137. Webb, C. D.,, A. Teleman,, S. Gordon,, A. Straight,, A. Belmont,, D. C. Lin,, A. D. Grossman,, A. Wright,, and R. Losick. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88:667674.
138. Weigel, C.,, A. Schmidt,, H. Seitz,, D. Tiingler,, M. Welzeck,, and W. Messer. 1999. The N-terminus promotes oligomerization of the Escherichia coli initiator protein DnaA. Mol. Microbiol. 34:5366.
139. White, O., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans Rl. Science 286:15711577.
140. Winston, S.,, and N. Sueoka. 1980. DNA-membrane association is necessary for initiation of chromosomal and plasmid replication in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 77:28342838.
141. Wold, S.,, K. Skarstad,, H. B. Steen,, T. Strokke,, and E. Boye. 1994. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J. 13:20972102.
142. Wu, L. J.,, and J. Errington. 1994. Bacillus subtilis spoIlIE protein required for DNA segregation during asymmetric cell division. Science 264:572575.
143. Wu, L. J.,, and J. Errington. 1997. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16:21612169.
144. Wu, L. J.,, P. J. Lewis,, R. Allmansberger,, P. M. Hauser,, and J. Errington. 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9:13161326.
145. Yamaichi, Y.,, and H. Niki. 2000. Active segregation by the Bacillus subtilis partitioning system in Escherichia coli. Proc. Nad. Acad. Sci. USA 97:1465614661.
146. Yamanaka, K.,, T. Ogura,, H. Niki,, and S. Hiraga. 1996. Identification of two new genes, mukE and mukF, involved in chromosome partitioning in Escherichia coli. Mol. Gen. Genet. 250:241251.
147. Yamazoe, M.,, T. Onogi,, Y. Sunako,, H. Niki,, K. Yamanaka,, T. Ichimura,, and S. Hiraga. 1999. Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J. 18:58735884.
148. Yoshikawa, H.,, and R. G. Wake,. 1993. Initiation and termination of chromosome replication, p. 507528. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.

Tables

Generic image for table
TABLE 1

genes involved in chromosomal DNA replication

The numbers indicate nucleotide positions of each gene (coding region) on the whole genome. To the left and right of the hyphen are positions of the first and last letters of start and stop codons, respectively. (See http://bacillus.genome.ad.jp/ or http://genolist.pasteur.fr/SubtiList/)

Personal communication from S.D. Ehrlich.

and constitute an operon ( ). is a member of the operon ( ). and belong to a putative operon ( ).

and , γ subunit is also produced from the gene by translational frameshifting and transcriptional slippage, respectively ( ). The existence of γ has not yet been confirmed in .

The core of DNA polymerase III consists of α, є, and θ subunits ( ). In , the activity of proofreading exonuclease (є) is included in the α subunit, and no homologs of θ are found.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7
Generic image for table
TABLE 2

Orthologous proteins involved in chromosome replication in gram-positive bacteria and

Orthologous genes were searched by BLAST 2.0 (Advanced) and specialized BLAST to Microbial Genomes (finished and unfinished) at the National Center for Biotechnology Information website using proteins as query. Where there were no orthologs in , proteins were used as query. The amino acid sequences of query proteins were obtained from http://bacillus.genome.ad.jp/ and http://dna.aist-nara.ac.jp/ecoli/ for and , respectively. Orthologous genes having alignment scores of >100 are listed except where noted. In , , , and , the presence of the orthologs is shown as “+” because the gene names were not available in the databases. When orthologs were not found but the genome sequencing had not yet been completed, the columns remain blank. Genome sequencing has finished in , but annotation of genes has not been done. Therefore, when orthologs are not detected, “−” is given in such columns.

Abbreviations of strains, with references: , ; , ; , ( ); , ; , ( ); , ( ); , ( ); , ; , ; , ( ); , ( ).

Alignment score, 30–50.

BLAST search (tblastn) identified a homologous gene here, but no coding sequence is assigned in the database.

Alignment score, 50–100.

In this organism, δ has been recently found, and a τδδ′ complex (without γ) actually acts as a clamp loader ( ).

These genes are named in their original databases but are renamed in this table.

Citation: Lemon K, Moriya S, Ogasawara N, Grossman A. 2002. Chromosome Replication and Segregation, p 73-86. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error