1887

Chapter 8 : Termination of Chromosome Replication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Termination of Chromosome Replication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap08-2.gif

Abstract:

This chapter discusses the components of the terminus-region replication fork-arrest system, their organization and structural features, and their functioning during termination of a round of vegetative replication in . Progress in characterizing and understanding the components and features associated with termination of replication in and proceeded almost in parallel. The current status of the system in is discussed in this chapter. There is emerging evidence to suggest that the replication fork trap might enable more efficient operation of this system. The basis for this will become apparent in the discussion of the various components and features associated with their operation. The functional fork-arrest complex contains two dimers of replication terminator protein (RTP) bound to overlapping A and B sites within the 30-bp terminator. Successful partitioning of replicated daughter chromosomes, generated upon completion of the termination phase of replication, requires the formation of completely separable chromosomes. The existence of multiple sequences of ~8 nt in length with a skewed distribution between the two strands of each C-terminus arm (replichore) of the chromosome has more recently been uncovered, and it is now clear that the polarity switch point for these sequences within the terminus region of coincides with . Finally, the chapter focuses on replication fork arrest near under stringent conditions.

Citation: Duggin I, Wake R. 2002. Termination of Chromosome Replication, p 87-95. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch8

Key Concept Ranking

Type II Topoisomerase
0.4431619
0.4431619
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Features of the terminus region of the 168 chromosome. The position and orientation of each of the nine replication terminators are shown diagrammatically in the upper section, which covers the ∼150 to 190° segment of the chromosome. , , , and are oriented to block the clockwise replication fork; , , , , and are oriented to block the counterclockwise fork. In the majority of replicating chromosomes, the two forks meet in the close vicinity of (see text). The shaded region corresponds to the segment occupied by the SPβ prophage, with lying within the prophage. The positions of (for SPβ) and a number of genes and features associated with replication fork arrest and daughter chromosome resolution are also shown. The site is at ∼166° ( ). The lower sections provide more detailed information on the location of the terminators. The nucleotide positions are for nt 1 of the terminator (see Fig. 2 ) and have been rounded to the nearest 100 nt. The lower right section shows the position and orientation of each terminator (AB) in relation to flanking genes or unidentified reading frames. A and B correspond to the A site and B site for RTP binding in each case (see Fig. 2 ), with the shaded regions corresponding to the SPβ prophage. The positions of rho-independent transcription terminators are indicated by the conventional stemmed circles.

Citation: Duggin I, Wake R. 2002. Termination of Chromosome Replication, p 87-95. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree showing the position of 168 relative to the most closely related species. The horizontal distances correspond to the magnitude of sequence divergence ( ).

Citation: Duggin I, Wake R. 2002. Termination of Chromosome Replication, p 87-95. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(A) A ribbon diagram of a dimer of RTP with the two α3 helices and the two β2 strands (“wing” regions) as well as the B terminus identified (modified from reference ). (В) A model showing the positioning of two dimers of RTP on the DNA when bound to adjacent binding sites as present in a complete terminator (based on the positioning of RTP bound to a single site [60a]). Amino acid residues for both dimers (shaded light and dark) are shown as space-filling models. Interaction between the two dimers positioned on approximately opposite sides of the DNA helix is possible because part of the “winged-helix” domain protrudes from the DNA on the same side for both dimers. The images were generated using Molscript ( ).

Citation: Duggin I, Wake R. 2002. Termination of Chromosome Replication, p 87-95. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap8
1. Ahn, K. S.,, M. S. Malo,, M. T. Smith,, and R. G. Wake. 1993. Autoregulation of the gene encoding the replication terminator protein of Bacillus subtilis. Gene 132:713.
2. Andersen, P. A.,, A. A. Griffiths,, I. G. Duggin,, and R. G. Wake. 2000. Functional specificity of the replication fork-arrest complexes of Bacillus subtilis and Escherichia coli: significant specificity for Tus-Ter functioning in E. coli. Mol. Microbiol. 36:13271335.
3. Autret, S.,, A. Levine,, F. Vannier,, Y. Fujita,, and S. J. Séror. 1999. The replication checkpoint control in Bacillus subtilis: identification of a novel RTP-binding sequence essential for the replication fork arrest after induction of the stringent response. Mol. Microbiol. 31:16651679.
4. Begg, K. J.,, S. J. Dewar,, and W. D. Donachie. 1995. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177:62116222.
5. Blakely, G.,, S. Colloms,, G. May,, M. Burke,, and D. Sherratt. 1991. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol. 3: 789798.
6. Bussiere, D. E.,, and D. Bastia. 1999. Termination of DNA replication of bacterial and plasmid chromosomes. Mol. Microbiol. 31:16111618.
7. Bussiere, D. E.,, D. Bastia,, and S. W. White. 1995. Crystal structure of the replication terminator protein from B. subtilis at 2.6 Å. Cell 80:651660.
8. Carrigan, C. M.,, J. A. Haarsma,, M. T. Smith,, and R. G. Wake. 1987. Sequence features of the replication terminus of the Bacillus subtilis chromosome. Nucleic Acids Res. 15: 85018509.
9. Clerget, M. 1991. Site-specific recombination promoted by a short DNA segment of plasmid Rl and by a homologous segment in the terminus region of the Escherichia coli chromosome. New Biol. 3:780788.
10. Cornet, F.,, J. Louarn,, J. Patte,, and J.-M. Louarn. 1996. Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev. 10:11521161.
11. Corre, J.,, F. Cornet,, J. Patte,, and J.-M. Louarn. 1997. Unravelling a region-specific hyper-recombination phenomenon: genetic control and modalities of terminal recombination in Escherichia coli. Genetics 147:979989.
12. Corre, J.,, J. Patte,, and J.-M. Louarn. 2000. Prophage λ induces terminal recombination in Escherichia coli by inhibiting chromosome dimer resolution: an orientation dependent cis-effect lending support to bipolarization of the terminus. Genetics 154:3948.
13. Coskun-Ari, F. F.,, and T. M. Hill. 1997. Sequence-specific interactions in the Tus-Ter complex and the effect of base pair substitutions on arrest of DNA replication in Escherichia coli. J. Biol. Chem. 272:2644826456.
13a. Duggin, I. G.,, and R. G. Wake. Unpublished observations.
15. 14. Duggin, I. G.,, P. A. Andersen,, M. T. Smith,, J. A. Wilce,, G. F. King,, and R. G. Wake. 1999. Site-directed mutants of RTP of Bacillus subtilis and the mechanism of replication fork arrest. J. Mol. Biol. 286:13251335.
15. Gottlieb, P. A.,, S. Wu,, X. L. Zhang,, M. Tecklenburg,, P. L. Kuempel,, and T. M. Hill. 1992. Equilibrium, kinetic, and footprinting studies of the Tus-Ter protein-DNA interaction. J Biol. Chem. 267:74347443.
16. Griffiths, A. A.,, P. A. Andersen,, and R. G. Wake. 1998. Replication terminator protein-based replication fork-arrest systems in various Bacillus species. J. Bacteriol. 180: 33603367.
17. Griffiths, A. A.,, and R. G. Wake. 1997. Search for additional terminators in the Bacillus subtilis 168 chromosome. J. Bacteriol. 179:33583361.
18. Griffiths, A. A.,, and R. G. Wake. 2000. Utilization of subsidiary chromosomal replication terminators in Bacillus subtilis. J. Bacteriol. 182:14481451.
19. Hill, T. M., 1996. Features of the chromosomal terminus region, p. 16021614. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology. ASM Press, Washington, D.C.
20. Hojgaard, A.,, H. Szerlong,, C. Tabor,, and P. Kuempel. 1999. Norfloxacin-induced DNA cleavage occurs at the dif resolvase locus in Escherichia coli and is the result of interaction with topoisomerase IV. Mol. Microbiol. 33:10271036.
21. Huang, W. M.,, J. L. Libbey,, P. van der Hoeven,, and S. X. Yu. 1998. Bipolar localization of Bacillus subtilis topoisomerase IV, an enzyme required for chromosome segregation. Proc. Natl. Acad. Sci. USA 95:46524657.
22. Kaul, S.,, B. K. Mohanty,, T. Sahoo,, I. Patel,, S. A. Khan,, and D. Bastia. 1994. The replication terminator protein of the gram-positive bacterium Bacillus subtilis functions as a polar contrahelicase in gram-negative Escherichia coli. Proc. Natl. Acad. Sci. USA 91:1114311147.
23. Khatri, G. S.,, T. MacAllister,, P. R. Sista,, and D. Bastia. 1989. The replication terminator protein of E. coli is a DNA sequence-specific contra-helicase. Cell 59:667674.
24. Kralicek, A. V.,, N. A. Vesper,, G. B. Ralston,, R. G. Wake,, and G. F. King. 1993. Symmetry and secondary structure of the replication terminator protein of Bacillus subtilis: sedimentation equilibrium and circular dichroic, infrared and NMR spectroscopie studies. Biochemistry 32: 1021610223.
25. Kralicek, A. V.,, P. K. Wilson,, G. B. Ralston,, R. G. Wake,, and G. F. King. 1997. Reorganisation of terminator DNA upon binding replication terminator protein: implications for the functional fork arrest complex. Nucleic Acids Res. 25:590596.
26. Kraulis, P. J. 1991. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24:946950.
27. Kuempel, P.,, A. Hogaard,, M. Neilsen,, O. Nagappan,, and M. Tecklenburg. 1996. Use of a transposon (Tn dif) to obtain suppressing and nonsuppressing insertions of the dif resolvase site of Escherichia coli. Genes Dev. 10:11621171.
28. Kuempel, P. L.,, J. M. Henson,, L. Dircks,, M. Tecklenburg,, and D. F. Lim. 1991. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol. 3:799811.
29. Langley, D. B.,, M. T. Smith,, P. J. Lewis,, and R. G. Wake. 1993. Protein-nucleoside contacts in the interaction between the replication terminator protein of Bacillus subtilis and the DNA terminator. Mol. Microbiol. 10:771779.
30. Lee, E. H.,, and A. Kornberg. 1992. Features of replication fork blockage by the Escherichia coli terminus-binding protein. J. Biol. Chem. 267:87788784.
31. Lee, E. H.,, A. Kornberg,, M. Hidaka,, T. Kobayashi,, and T. Horiuchi. 1989. Escherichia coli replication termination protein impedes the action of helicases. Proc. Natl. Acad. Sci. USA 86:91049108.
32. Lemon, K. P.,, and A. D. Grossman. 1998. Localisation of bacterial DNA polymerase: evidence for a factory model of replication. Science 282:15161519.
33. Levine, A.,, S. Autret,, and S. J. Séror. 1995. A checkpoint involving RTP, the replication terminator protein, arrests replication downstream of the origin during the stringent response in Bacillus subtilis. Mol. Microbiol. 15:287295.
34. Lewis, P. J.,, G. B. Ralston,, R. I. Christopherson,, and R. G. Wake. 1990. Identification of the replication terminator protein binding sites in the terminus region of the Bacillus subtilis chromosome and stoichiometry of the binding. J. Mol. Biol. 214:7384.
35. Lewis, P. J.,, M. T. Smith,, and R. G. Wake. 1989. A protein involved in termination of chromosome replication in Bacillus subtilis binds specifically to the terC site. J. Bacteriol. 171:35643567.
36. Lewis, P. J.,, and R. G. Wake. 1989. DNA and protein sequence conservation at the replication terminus in Bacillus subtilis 168 and W23. J. Bacteriol. 171:14021408.
37. Liu, G.,, G. C. Draper,, and W. D. Donachie. 1998. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29: 893903.
38. Manna, A. C.,, K. S. Pai,, D. E. Bussiere,, C. Davies,, S. W. White,, and D. Bastia. 1996. Helicase-contrahelicase interaction and the mechanism of termination of DNA replication. Cell 87:881891.
39. Manna, A. C.,, K. S. Pai,, D. E. Bussiere,, S. W. White,, and D. Bastia. 1996. The dimer-dimer interaction surface of the replication terminator protein of Bacillus subtilis and termination of DNA replication. Proc. Natl. Acad. Sci. USA 93:32533258.
40. Meijer, W. J. J.,, M. T. Smith,, R. G. Wake,, A. L. de Boer,, G. Venema,, and S. Bron. 1996. Identification and characterisation of a novel type of replication terminator with bidirectional activity on the Bacillus subtilis theta plasmid pLS20. Mol. Microbiol. 19:12951306.
41. Mohanty, B. K.,, T. Sahoo,, and D. Bastia. 1996. The relationship between sequence-specific termination of DNA replication and transcription. EMBO J. 15:25302539.
42. Pai, K. S.,, D. E. Bussiere,, F. Wang,, C. A. Hutchison III,, S. W. White,, and D. Bastia. 1996. The structure and function of the replication terminator protein of Bacillus subtilis: identification of the “winged helix” DNA-binding domain. EMBO J. 15:31643173.
43. Pai, K. S.,, D. E. Bussiere,, F. Wang,, S. W. White,, and D. Bastia. 1996. Structure of the replication terminus-terminator protein complex as probed by affinity cleavage. Proc. Natl. Acad. Sci. USA 93:1064710652.
44. Pérals, K.,, F. Cornet,, Y. Merlet,, I. Delon,, and J.-M. Louarn. 2000. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol. Microbiol. 36:3343.
45. Recchia, G. D.,, M. Aroyo,, D. Wolf,, G. Blakely,, and D. J. Sherratt. 1999. FtsK-dependent and -independent pathways of Xer site-specific recombination. EMBO J. 18: 57245734.
46. Recchia, G. D.,, and D. J. Sherratt. 1999. Conservation of the xer site-specific recombination genes in bacteria. Mol. Microbiol. 34:11461148.
47. Roberts, M. S.,, L. K. Nakumara,, and F. M. Cohan. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California, int. J. Syst. Bacteriol. 46:470475.
48. Salzberg, S. L.,, A. J. Salzberg,, A. R. Kerlavage,, and J.-F. Tomb. 1998. Skewed oligomers and origins of replication. Gene 217:5767.
48a. Sciochetti, S. A.,, P. J. Piggot,, and G. W. Blakely. 2001. Identification and characterization of the dif site from Bacillus subtilis. J. Bacteriol. 183:10581068.
49. Sciochetti, S. A.,, P. J. Piggot,, D. J. Sherratt,, and G. Blakely. 1999. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J. Bacteriol. 181:60536062.
50. Sharpe, M. E.,, and J. Errington. 1995. Postseptational chromosome partitioning in bacteria. Proc. Natl. Acad. Sci. USA 92:86308634.
51. Smith, M. T.,, C. J. de Vries,, D. B. Langley,, G. F. King,, and R. G. Wake. 1996. The Bacillus subtilis DNA replication terminator. J. Mol. Biol. 260:5469.
52. Smith, M. T.,, D. B. Langley,, P. A. Young,, and R. G. Wake. 1994. The minimal sequence needed to define a functional DNA replication terminator in Bacillus subtilis. J. Mol. Biol. 241:335340.
53. Smith, M. T.,, and R. G. Wake. 1992. Definition and polarity of action of DNA replication terminators in Bacillus subtilis. J. Mol. Biol. 227:648657.
56. 54. Steiner, W.,, G. Liu,, W. D. Donachie,, and P. Kuempel. 1999. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Micriobiol. 31: 579583.
55. Swindells, M. B. 1995. Identification of a common fold in the replication terminator protein suggests a possible mode for DNA binding. Trends Biochem. Sci. 20:300302.
56. Wake, R. G. 1997. Replication fork arrest and termination of chromosome replication in Bacillus subtilis. FEMS Microbiol. Lett. 153:247254.
57. Wake, R. G.,, and J. Errington. 1995. Chromosome partitioning in bacteria. Annu. Rev. Genet. 29:4169.
58. Wake, R. G.,, and G. F. King. 1997. A tale of two terminators: crystal structures sharpen the debate on DNA replication fork arrest mechanisms. Structure 5:15.
59. Wang, L.,, and J. Lutkenhaus. 1998. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29:731740.
60. Weiss, A. S.,, and R. G. Wake. 1984. A unique DNA intermediate associated with termination of chromosome replication in Bacillus subtilis. Cell 39:683689.
60a. Wilce, J. A.,, J. P. Vivian,, A. F. Hastings,, G. Otting,, R. H. A. Folmer,, I. G. Duggin,, R. G. Wake,, and M. C. J. Wilce. 2001. Structure of the RTP-DNA complex and the mechanism of polar replication fork arrest. Nature Struct. Biol. 8:206210.
61. Wu, L. J.,, and J. Errington. 1994. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:572575.
62. Wu, L. J.,, and J. Errington. 1997. Septal localisation of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBOJ. 16:21612169.
63. Yu, X. C.,, A. H. Tran,, Q. Sun,, and W. Margolin. 1998. Localization of the cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J. Bacteriol. 180:12961304.
64. Yu, X. C.,, E. K. Weihe,, and W. Margolin. 1998. A role of the C-terminus of FtsK in Escherichia coli chromosome segregation. J. Bacteriol. 180:64246428.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error