1887

Chapter 9 : Cell Division during Growth and Sporulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cell Division during Growth and Sporulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap09-2.gif

Abstract:

Rapid progress has recently been made in understanding the division process in . One factor in this has been the genome sequencing project, which allowed identification of the remaining homologues in of division genes first characterized in . The second factor has been the development of powerful cytological methods based on fluorescence microscopy, partly originating in the need to observe cell-specific events occurring during sporulation. The application of immunofluorescence microscopy and utilization of fusions has enabled the subcellular localization of division proteins to be determined. Most studies of the regulation of cell division have focused on the effects of growth rate on division frequency and on the coordination of division with chromosome replication. Spores contain single, completely replicated chromosomes, and, under appropriate conditions, a population of spores can be induced to outgrow and progress through one or more cell cycles in a relatively synchronous manner. Studies with conditional cell division mutants have shown that all of the genes needed for division in vegetative growth that have been tested are also required for sporulation, with the possible exception of . It is notable that the FtsZ and SpoIIE bands at the two poles of the predivisional cells often differ in intensity, suggesting that they are nonequivalent. There is now overwhelming evidence that the earliest detectable event at the impending division site is the assembly of a ring of FtsZ protein.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9

Key Concept Ranking

Integral Membrane Proteins
0.4604571
0.4604571
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cell division during growth and sporulation of The left side of the figure shows a schematic of the vegetative cycle; the sporulation cycle, induced by starvation, is on the right. Gray shading shows the cell wall layers composed of peptidoglycan and teichoic acids outside the cell membrane, which is represented by the thin black line. Medial division occurs by invagination of membrane and cell wall layers to produce a septum, and division is completed by cell separation. The daughter cells then continue growing until they more or less double in length, at which point division occurs again. Following starvation, the cells switch to sporulation, during which the position of the division septum is switched to a subpolar position. Morphologically, the septum is also much thinner, with less wall material and probably no teichoic acids (see text). Several hours later, spore development is finished. The mother cell lyses to release the mature spore, and the cycle is completed by germination and outgrowth to regenerate the vegetative cell.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Hierarchy of assembly of division proteins. Summary of the results of experiments examining targeting of division proteins to the predivisional ring and their dependence on other division proteins. Results obtained for FtsW and FtsA are tentative, as indicated by the question marks. Earlier assembling proteins are shown to the left

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model for division site selection by the Min-DivIVA system. Various steps in a cell cycle are shown, beginning with a newborn cell (A). The oval shaded structure represents the nucleoid, which segregates into two separate nucleoids following the completion of a round of DNA replication (B). White triangles represent DivIVA protein, and the dark gray stripes represent MinD (probably associated with the MinC division inhibitor). The small open circles represent FtsZ monomers. These tend to be excluded from the vicinity of the nucleoid. Nucleation of FtsZ to produce the Z ring begins in the DNA-free zone between the nucleoids (C). The filled black circles (D) indicate that the division apparatus has matured beyond the point at which its formation can be prevented by MinCD, possibly by recruitment of other division proteins that stabilize the Z ring. This maturation of the Z ring allows recruitment of DivIVA to midcell (E), which in turn allows targeting of MinD (F). Following cell division (G), both new cell poles have active MinD, preventing further polar (minicell) divisions from taking place. Reproduced with permission from reference 79.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Reorganization of the cell division cycle during sporulation and its regulation. The central part of the figure shows several steps in the switch from medial to polar division after the initiation of sporulation. Thin dotted lines show immature predivisional rings containing FtsZ protein and probably SpoIIE. Thick dotted lines show mature division machinery with the other division proteins, through to PBP 2B, just prior to division. The first cell (left) is just reaching the crucial size at which it would commit to central division when the starvation stimulus is sensed. Under vegetative conditions, or in the absence of a functional gene, the cell would assemble the division machinery and divide at midcell, as shown below. In the wild type, the midcell site is not used, for reasons that are not yet understood, and the division machinery instead assembles close to the cell poles. Although both poles can be used, development of the division apparatus is usually more advanced at one pole (upper in this case) than at the other. In mutants, both poles are targeted, but neither predivisional Z ring matures to the point where division can occur. In the wild type, sep-tation now occurs at one pole, and development of the Z ring at the second pole continues until it is blocked by one or more genes expressed in the mother cell as a result of the signal transduction cascade leading to activation of σ. This leads to disassembly and/or degradation of the various division proteins in the mother cell compartment. In the absence of any component of the signal transduction cascade, e.g., in or mutants, the second Z ring goes on to mature, and a second polar septum is formed, generating two presporelike cells.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap9
1. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma-F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93:32383242.
2. Arigoni, F.,, A.-M. Guérout-Fleury,, I. Barák,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31:14071415.
3. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270:637640.
4. Barák, I.,, J. Behari,, G. Olmedo,, P. Guzman,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19:10471060.
5. Barák, I.,, P. Prepiak,, and F. Schmeisser. 1998. MinCD proteins control the septation process during sporulation of Bacillus subtilis. J. Bacteriol. 180:53275333.
6. Barák, L.,, and P. Youngman. 1996. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178:49844989.
7. Beall, B.,, M. Lowe,, and J. Lutkenhaus. 1988. Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J. Bacteriol. 170:48554864.
8. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5:447455.
9. Beall, B.,, and J. Lutkenhaus. 1992. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174:23982403.
10. Beall, B.,, and J. Lutkenhaus. 1989. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J. Bacteriol. 171:68216834.
11. Bi, E.,, and J. Lutkenhaus. 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354:161164.
12. Blackman, S. A.,, T. J. Smith,, and S. J. Foster. 1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:7382.
13. Bork, P., C. Sander, and A. Valencia. 1992. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89:72907294.
14. Boyle, D. S.,, M. M. Khattar,, S. G. Addinall,, J. Lutkenhaus,, and W. D. Donachie. 1997. ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol. 24:12631273.
15. Bramhill, D.,, and C. M. Thompson. 1994. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91:58135817.
16. Callister, H.,, and R. G. Wake. 1977. Completion of the replication and division cycle in temperature-sensitive DNA initiation mutants of Bacillus subtilis at the non-permissive temperature. J. Mol. Biol. 117:7184.
17. Cha, J.-H.,, and G. C. Stewart. 1997. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179:16711683.
18. Cooper, S.,, and C. E. Helmstetter. 1968. Chromosome replication and the division cycle of Escherichia coli. Br. J. Mol. Biol. 31:519540.
19. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle,, and J. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209220.
20. Daniel, R. A.,, and J. Errington. 2000. Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36:278289.
20a.. Daniel, R. A.,, and J. Errington. Unpublished results.
21. Daniel, R. A.,, E. J. Harry,, and J. Errington. 2000. Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol. Microbiol. 35:299311.
22. Daniel, R. A.,, E. J. Harry,, V. L. Katis,, R. G. Wake,, and J. Errington. 1998. Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29:593604.
23. Daniel, R. A.,, A. M. Williams,, and J. Errington. 1996. A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J. Bacteriol. 178:23432350.
24. de Boer, P.,, R. Crossley,, and L. Rothfield. 1992. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254256.
25. de Boer, P. A. J.,, R. E. Crossley,, and L. I. Rothfield. 1990. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc. Natl. Acad. Sci. USA 87:11291133.
26. de Boer, P. A. J.,, R. E. Crossley,, and L. I. Rothfield. 1992. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174:6370.
27. Donachie, W. D. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47:199230.
28. Donachie, W. D. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219:10771079.
29. Donachie, W. D.,, and A. C. Robinson,. 1987. Cell division: parameter values and the process, p. 15781593. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
30. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270:641644.
30a. Dunn, G.,, D. M. Torgerson,, and J. Mandelstam. 1976. Order of expression of genes affecting septum location during sporulation of Bacillus subtilis. J. Bacteriol. 125:776779.
31. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905915.
32. Edwards, D. H.,, H. B. Thomaides,, and J. Errington. 2000. Promiscuous targeting of the Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J. 19:27192727.
33. Erickson, H. P.,, D. W. Taylor,, K. A. Taylor,, and D. Bramhill. 1996. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologues of tubulin polymers. Proc. Natl. Acad. Sci. USA 93:519523.
34. Errington, J. 1993. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57:133.
35. Errington, J. 1996. Determination of cell fate in Bacillus subtilis .Trends Genet. 12:3134.
36. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33:10151026.
37. Feucht, A.,, I. Lucet,, M. D. Yudkin,, and J. Errington. 2001. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40:115125.
38. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10:794803.
38a.. Freese, E. 1972. Sporulation of bacilli, a model of cellular differentiation. Curr. Top. Dev. Biol. 7:85124.
39. Ghigo, J.-M.,, D. S. Weiss,, J. C. Chen,, J. C. Yarrow,, and J. Beckwith. 1999. Localization of FtsL to the Escherichia coli septal ring. Mol. Microbiol. 31:725737.
40. Ghuysen, J.-M. 1991. Serine β -lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:3767.
41. Harry, E. J.,, S. R. Partridge,, A. S. Weiss,, and R. G. Wake. 1994- Conservation of the 168 divlB gene in Bacillus subtilis W23 and B. licheniformis and evidence of homology to ftsQ of Escherichia coli. Gene 147:8589.
42. Harry, E. J.,, J. Rodwell,, and R. G. Wake. 1999. Coordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol. Microbiol. 33:3340.
43. Harry, E. J.,, B. J. Stewart,, and R. G. Wake. 1993. Characterization of mutations in divlB of Bacillus subtilis and cellular localization of the DivlB protein. Mol. Microbiol. 7:611621.
44. Harry, E. J.,, and R. G. Wake. 1989. Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J. Bacteriol. 171:68356839.
45. Harry, E. J.,, and R. G. Wake. 1997. The membrane-bound cell division protein DivlB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25:275283.
46. Hauser, P. M.,, and J. Errington. 1995. Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. J. Bacteriol. 177:39233931.
47. Holmes, M.,, M. Rickert,, and O. Pierucci. 1980. Cell division cycle of Bacillus subtilis: evidence of variability in period D. J. Bacteriol. 142:254261.
48. Hove-Jensen, B. 1992. Identification of tms-26 as an al-lele of the gcaD gene, which encodes N-acetylglu-cosamine 1-phosphate uridyltransferase in Bacillus subtilis. J. Bacteriol. 174:68526856.
49. Hu, Z.,, A. Mukherjee,, S. Pichoff,, and J. Lutkenhaus. 1999. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96:1481914824.
50. Illing, N.,, and J. Errington. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σ E and σ P in prespore engulfment. J. Bacteriol. 173:31593169.
51. Ishikawa, S.,, Y. Hara,, R. Ohnishi,, and J. Sekiguchi. 1998. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J. Bacteriol. 180:25492555.
52. Jacobs, C.,, and L. Shapiro. 1999. Bacterial cell division: a moveable feast. Proc. Natl. Acad. Sci. USA 96:58915893.
52a.. Jones, L. F.,, and J. Errington. Unpublished data.
53. Joris, B.,, G. Dive,, A. Henriques,, P. J. Piggot,, and J. M. Ghuysen. 1990. The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol. Microbiol. 4:513517.
54. Katis, V. L.,, E. J. Harry,, and R. G. Wake. 1997. The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol. Microbiol. 26:10471055.
55. Katis, V. L.,, and R. G. Wake. 1999. Membrane-bound division proteins DivlB and DivIC of Bacillus subtilis function solely through their external domains in both vegetative and sporulation division. J. Bacteriol. 181:27102718.
56. Katis, V. L.,, R. G. Wake,, and E. J. Harry. 2000. Septal localization of the membrane-bound division proteins of Bacillus subtilis DivlB and DivIC is codependent only at high temperatures and requires FtsZ. J. Bacteriol. 182: 36073611.
57. Khattar, M. M.,, S. G. Addinall,, K. H. Stedul,, D. S. Boyle,, J. Lutkenhaus,, and W. D. Donachie. 1997. Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function. J. Bacteriol. 179:784793.
58. Khvorova, A.,, L. Zhang,, M. L. Higgins,, and P. J. Pig-got. 1998. The spoIIE locus is involved in the Spo0A-de-pendent switch in the location of FtsZ rings in Bacillus subtilis. J. Bacteriol. 180:12561260.
59. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of σ F during sporulation in Bacillus subtilis. Genes Dev. 13:11561167.
60. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249256.
61. Kuroda, A.,, and J. Sekiguchi. 1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173:73047312.
62. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis ly-tRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138:19491961.
63. Lee, S.,, and C. W. Price. 1993. The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol. Microbiol. 7:601610.
64. Levin, P. A.,, I. G. Kurtser,, and A. D. Grossman. 1999. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96:96429647.
65. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176:14511459.
66. Levin, P. A.,, and R. Losick. 1996. Transcription factor SpoOA switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10:478488.
67. Levin, P. A.,, R. Losick,, P. Stragier,, and F. Arigoni. 1997. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Microbiol. 25:839846.
68. Levin, P. A.,, P. S. Margolis,, P. Setlow,, R. Losick,, and D. Sun. 1992. Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174: 67176728.
68a.. Levin, P. A.,, J. J. Shim,, and A. D. Grossman. 1998. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J. Bacteriol. 180:60486051.
69. Lewis, P. J.,, S. R. Partridge,, and J. Errington. 1994. σ factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91:38493853.
70. Losick, R.,, and J. Dworkin. 1999. Linking asymmetric division to cell fate: teaching an old microbe new tricks. Genes Dev. 13:377381.
71. Löwe, J.,, and L. A. Amos. 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203206.
72. Lu, C.,, M. Reedy,, and H. P. Erickson. 2000. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182:164170.
73. Lucet, I.,, A. Feucht,, M. D. Yudkin,, and J. Errington. 2000. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19:14671475.
74. Lupas, A. 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21:375382.
75. Lutkenhaus, J.,, and S. G. Addinall. 1997. Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66:93116.
76. Margot, P.,, M. Pagni,, and D. Karamata. 1999. Bacillus subtilis 168 gene lytF encodes a γ -D-glutamate-meso-di-aminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σ D. Microbiology 145:5765.
77. Margot, P.,, M. Whalen,, A. Gholamhoseinian,, P. Piggot,, and D. Karamata. 1998. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J. Bacteriol. 180:749752.
78. Marston, A. L.,, and J. Errington. 1999. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33:8496.
79. Marston, A. L.,, H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe,, and J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12:34193430.
80. Mauël , C., M. Young,, A. Monsutti-Grecescu,, S. A. Marriott,, and D. Karamata. 1994. Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140:22792288.
81. McGinness, T.,, and R. G. Wake. 1979. Division septation in the absence of chromosome termination in Bacillus subtilis. J. Mol. Biol. 134:251264.
82. McGinness, T.,, and R. G. Wake. 1981. A fixed amount of chromosome replication needed for premature division septation in Bacillus subtillus. J. Mol. Biol. 146:173177.
83. Mendelson, N. H. 1975. Cell division suppression in the Bacillus subtilis divlV'Al minicell-producing mutant. J. Bacteriol. 121:11661172.
84. Miyakawa, Y.,, and T. Komano. 1981. Study on the cell cycle of Bacillus subtilis using temperature sensitive mutants. I. Isolation and genetic analysis of mutants defective in septum formation. Mol. Gen. Genet. 181:207214.
85. Moszer, I.,, F. Kunst,, and A. Danchin. 1996. The European Bacillus subtilis genome sequencing project: current status and accessibility from a new World Wide Web site. Microbiology 142:29872991.
86. Mukherjee, A.,, K. Dai,, and J. Lutkenhaus. 1993. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA 90:10531057.
87. Mukherjee, A.,, and J. Lutkenhaus. 1999. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J. Bacteriol. 181:823832.
88. Mukherjee, A.,, and J. Lutkenhaus. 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17: 462469.
89. Mukherjee, A.,, and J. Lutkenhaus. 1994. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176:27542758.
90. Mulder, E.,, and C. L. Woldringh. 1989. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171:43034314.
91. Nogales, E.,, K. H. Downing,, L. A. Amos,, and J. Löwe. 1998. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5:451458.
92. Ohnishi, R.,, S. Ishikawa,, and J. Sekiguchi. 1999. Pepti-doglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181:31783184.
93. Paulton, R. J. L. 1971. Nuclear and cell division in filamentous bacteria. Nat. New Biol. 231:271274.
94. Pedersen, L. B.,, E. R. Angert,, and P. Setlow. 1999. Septal localization of penicillin-binding protein 1 in Bacillus subtilis. J. Bacteriol. 181:32013211.
95. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:908962.
96. Pogliano, J.,, N. Osborne,, M. D. Sharpe,, A. Abanes-De Mello,, A. Perez,, Y.-L. Sun,, and K. Pogliano. 1999. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31:11491159.
97. Raskin, D. M.,, and P. A. J. De Boer. 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96:49714976.
98. RayChaudhuri, D. 1999. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18:23722383.
99. RayChaudhuri, D.,, and J. T. Park. 1992. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359:251254.
100. Reeve, J. N.,, N. H. Mendelson,, S. I. Coyne,, L. L. Hallock,, and R. M. Cole. 1973. Minicells of Bacillus subtilis. J. Bacteriol. 114:860873.
101. Regame, A.,, E. J. Harry,, and R. G. Wake. 2000. Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: coordinating chromosome replication with cell division. Mol. Microbiol. 38:423434.
102. Ryter, A. 1965. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur 108:4060.
103. Sadaie, Y.,, H. Takamatsu,, K. Nakamura, and K. Yamane. 1991. Sequencing reveals similarity of the wild-type div+ gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98:101105.
103a.. Sargent, M. G. 1975. Control of cell length in Bacillus subtilis. J Bacteriol. 123:719.
104. Scheffers, D.-J.,, T. den Blaauwen,, and A. J. M. Driessen. 2000. Non-hydrolysable GTP-γ -S stabilizes the FtsZ polymer in a GDP-bound state. Mol. Microbiol. 35: 12111219.
105. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276:712718.
106. Sharpe, M. E.,, P. M. Hauser,, R. G. Sharpe,, and J. Errington. 1998. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of the cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol. 180:547555.
107. Sievers, J.,, and J. Errington. 2000. The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol. Microbiol. 34:846855.
108. Sievers, J.,, and J. Errington. Unpublished results.
109. Smith, T. j.,, S. A. Blackman,, and S. J. Foster. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249262.
110. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30:297341.
111. Thomaides, H. B.,, M. Freeman,, M. El Karoui,, and J. Errington. Division-site-selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev., in press.
112. Van Alstyne, D.,, and M. I. Simon. 1971. Division mutants of Bacillus subtilis: isolation and PBS1 transduction of division-specific markers. J. Bacteriol. 108:13661379.
113. Varley, A. W.,, and G. C. Stewart. 1992. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape (MreBCD) determinants. J. Bacteriol. 174:67296742.
114. Wang, L.,, M. K. Khattar,, W. D. Donachie,, and J. Lutkenhaus. 1998. Ftsl and FtsW are localized to the septum in Escherichia coli. J. Bacteriol. 180:28102816.
115. Wang, X.,, J. Huang,, A. Mukherjee,, C. Cao,, and J. Lutkenhaus. 1997. Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179:55515559.
116. Wang, X.,, and J. Lutkenhaus. 1993. The FtsZ protein of Bacillus subtilis is localized at the division site and has GT-Pase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9:435442.
117. Woldringh, C. L.,, and N. Nanninga,. 1985. Structure of the nucleoid and cytoplasm in the intact cell, p. 161197. In N. Naninga (éd.), Molecular Cytology of Escherichia coli. Academic Press, London, England.
118. Wu, L. J.,, R. A. Daniel,, H. Scowcroft,, and J. Errington. Unpublished results.>
119. Wu, L. J.,, A. Feucht,, and J. Errington. 1998. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev. 12:13711380.
120. Wu, L. J.,, A. H. Franks,, and R. G. Wake. 1995. Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. J. Bacteriol. 177: 57115715.
121. Wu, L. J.,, P. J. Lewis,, R. Allmansberger,, P. M. Hauser,, and J. Errington. 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9:13161326.
122. Yanouri, A.,, R. A. Daniel,, J. Errington, and C. E. Buchanan. 1993. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J. Bacteriol. 175:76047616.

Tables

Generic image for table
TABLE 1

Cell division

Position in kilobase pairs based on data in the SubtiList database ( ) (http://genolist.pasteur.fr/SubtiList). Where the gene has not been identified, an estimated position is given, with the published genetic map location in parentheses.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error