1887

Chapter 9 : Cell Division during Growth and Sporulation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Cell Division during Growth and Sporulation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817992/9781555812058_Chap09-2.gif

Abstract:

Rapid progress has recently been made in understanding the division process in . One factor in this has been the genome sequencing project, which allowed identification of the remaining homologues in of division genes first characterized in . The second factor has been the development of powerful cytological methods based on fluorescence microscopy, partly originating in the need to observe cell-specific events occurring during sporulation. The application of immunofluorescence microscopy and utilization of fusions has enabled the subcellular localization of division proteins to be determined. Most studies of the regulation of cell division have focused on the effects of growth rate on division frequency and on the coordination of division with chromosome replication. Spores contain single, completely replicated chromosomes, and, under appropriate conditions, a population of spores can be induced to outgrow and progress through one or more cell cycles in a relatively synchronous manner. Studies with conditional cell division mutants have shown that all of the genes needed for division in vegetative growth that have been tested are also required for sporulation, with the possible exception of . It is notable that the FtsZ and SpoIIE bands at the two poles of the predivisional cells often differ in intensity, suggesting that they are nonequivalent. There is now overwhelming evidence that the earliest detectable event at the impending division site is the assembly of a ring of FtsZ protein.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9

Key Concept Ranking

Integral Membrane Proteins
0.4604571
0.4604571
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Cell division during growth and sporulation of The left side of the figure shows a schematic of the vegetative cycle; the sporulation cycle, induced by starvation, is on the right. Gray shading shows the cell wall layers composed of peptidoglycan and teichoic acids outside the cell membrane, which is represented by the thin black line. Medial division occurs by invagination of membrane and cell wall layers to produce a septum, and division is completed by cell separation. The daughter cells then continue growing until they more or less double in length, at which point division occurs again. Following starvation, the cells switch to sporulation, during which the position of the division septum is switched to a subpolar position. Morphologically, the septum is also much thinner, with less wall material and probably no teichoic acids (see text). Several hours later, spore development is finished. The mother cell lyses to release the mature spore, and the cycle is completed by germination and outgrowth to regenerate the vegetative cell.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Hierarchy of assembly of division proteins. Summary of the results of experiments examining targeting of division proteins to the predivisional ring and their dependence on other division proteins. Results obtained for FtsW and FtsA are tentative, as indicated by the question marks. Earlier assembling proteins are shown to the left

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Model for division site selection by the Min-DivIVA system. Various steps in a cell cycle are shown, beginning with a newborn cell (A). The oval shaded structure represents the nucleoid, which segregates into two separate nucleoids following the completion of a round of DNA replication (B). White triangles represent DivIVA protein, and the dark gray stripes represent MinD (probably associated with the MinC division inhibitor). The small open circles represent FtsZ monomers. These tend to be excluded from the vicinity of the nucleoid. Nucleation of FtsZ to produce the Z ring begins in the DNA-free zone between the nucleoids (C). The filled black circles (D) indicate that the division apparatus has matured beyond the point at which its formation can be prevented by MinCD, possibly by recruitment of other division proteins that stabilize the Z ring. This maturation of the Z ring allows recruitment of DivIVA to midcell (E), which in turn allows targeting of MinD (F). Following cell division (G), both new cell poles have active MinD, preventing further polar (minicell) divisions from taking place. Reproduced with permission from reference 79.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Reorganization of the cell division cycle during sporulation and its regulation. The central part of the figure shows several steps in the switch from medial to polar division after the initiation of sporulation. Thin dotted lines show immature predivisional rings containing FtsZ protein and probably SpoIIE. Thick dotted lines show mature division machinery with the other division proteins, through to PBP 2B, just prior to division. The first cell (left) is just reaching the crucial size at which it would commit to central division when the starvation stimulus is sensed. Under vegetative conditions, or in the absence of a functional gene, the cell would assemble the division machinery and divide at midcell, as shown below. In the wild type, the midcell site is not used, for reasons that are not yet understood, and the division machinery instead assembles close to the cell poles. Although both poles can be used, development of the division apparatus is usually more advanced at one pole (upper in this case) than at the other. In mutants, both poles are targeted, but neither predivisional Z ring matures to the point where division can occur. In the wild type, sep-tation now occurs at one pole, and development of the Z ring at the second pole continues until it is blocked by one or more genes expressed in the mother cell as a result of the signal transduction cascade leading to activation of σ. This leads to disassembly and/or degradation of the various division proteins in the mother cell compartment. In the absence of any component of the signal transduction cascade, e.g., in or mutants, the second Z ring goes on to mature, and a second polar septum is formed, generating two presporelike cells.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817992.chap9
1. Arigoni, F.,, L. Duncan,, S. Alper,, R. Losick,, and P. Stragier. 1996. SpoIIE governs the phosphorylation state of a protein regulating transcription factor sigma-F during sporulation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 93: 3238 3242.
2. Arigoni, F.,, A.-M. Guérout-Fleury,, I. Barák,, and P. Stragier. 1999. The SpoIIE phosphatase, the sporulation septum and the establishment of forespore-specific transcription in Bacillus subtilis: a reassessment. Mol. Microbiol. 31: 1407 1415.
3. Arigoni, F.,, K. Pogliano,, C. D. Webb,, P. Stragier,, and R. Losick. 1995. Localization of protein implicated in establishment of cell type to sites of asymmetric division. Science 270: 637 640.
4. Barák, I.,, J. Behari,, G. Olmedo,, P. Guzman,, D. P. Brown,, E. Castro,, D. Walker,, J. Westpheling,, and P. Youngman. 1996. Structure and function of the Bacillus SpoIIE protein and its localization to sites of sporulation septum assembly. Mol. Microbiol. 19: 1047 1060.
5. Barák, I.,, P. Prepiak,, and F. Schmeisser. 1998. MinCD proteins control the septation process during sporulation of Bacillus subtilis. J. Bacteriol. 180: 5327 5333.
6. Barák, L.,, and P. Youngman. 1996. SpoIIE mutants of Bacillus subtilis comprise two distinct phenotypic classes consistent with a dual functional role for the SpoIIE protein. J. Bacteriol. 178: 4984 4989.
7. Beall, B.,, M. Lowe,, and J. Lutkenhaus. 1988. Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA. J. Bacteriol. 170: 4855 4864.
8. Beall, B.,, and J. Lutkenhaus. 1991. FtsZ in Bacillus subtilis is required for vegetative septation and for asymmetric septation during sporulation. Genes Dev. 5: 447 455.
9. Beall, B.,, and J. Lutkenhaus. 1992. Impaired cell division and sporulation of a Bacillus subtilis strain with the ftsA gene deleted. J. Bacteriol. 174: 2398 2403.
10. Beall, B.,, and J. Lutkenhaus. 1989. Nucleotide sequence and insertional inactivation of a Bacillus subtilis gene that affects cell division, sporulation, and temperature sensitivity. J. Bacteriol. 171: 6821 6834.
11. Bi, E.,, and J. Lutkenhaus. 1991. FtsZ ring structure associated with division in Escherichia coli. Nature 354: 161 164.
12. Blackman, S. A.,, T. J. Smith,, and S. J. Foster. 1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144: 73 82.
13. Bork, P., C. Sander, and A. Valencia. 1992. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89: 7290 7294.
14. Boyle, D. S.,, M. M. Khattar,, S. G. Addinall,, J. Lutkenhaus,, and W. D. Donachie. 1997. ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol. 24: 1263 1273.
15. Bramhill, D.,, and C. M. Thompson. 1994. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91: 5813 5817.
16. Callister, H.,, and R. G. Wake. 1977. Completion of the replication and division cycle in temperature-sensitive DNA initiation mutants of Bacillus subtilis at the non-permissive temperature. J. Mol. Biol. 117: 71 84.
17. Cha, J.-H.,, and G. C. Stewart. 1997. The divIVA minicell locus of Bacillus subtilis. J. Bacteriol. 179: 1671 1683.
18. Cooper, S.,, and C. E. Helmstetter. 1968. Chromosome replication and the division cycle of Escherichia coli. Br. J. Mol. Biol. 31: 519 540.
19. Daniel, R. A.,, S. Drake,, C. E. Buchanan,, R. Scholle,, and J. Errington. 1994. The Bacillus subtilis spoVD gene encodes a mother-cell-specific penicillin-binding protein required for spore morphogenesis. J. Mol. Biol. 235: 209 220.
20. Daniel, R. A.,, and J. Errington. 2000. Intrinsic instability of the essential cell division protein FtsL of Bacillus subtilis and a role for DivIB protein in FtsL turnover. Mol. Microbiol. 36: 278 289.
20a.. Daniel, R. A.,, and J. Errington. Unpublished results.
21. Daniel, R. A.,, E. J. Harry,, and J. Errington. 2000. Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol. Microbiol. 35: 299 311.
22. Daniel, R. A.,, E. J. Harry,, V. L. Katis,, R. G. Wake,, and J. Errington. 1998. Characterization of the essential cell division gene ftsL (yllD) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol. Microbiol. 29: 593 604.
23. Daniel, R. A.,, A. M. Williams,, and J. Errington. 1996. A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. J. Bacteriol. 178: 2343 2350.
24. de Boer, P.,, R. Crossley,, and L. Rothfield. 1992. The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359: 254 256.
25. de Boer, P. A. J.,, R. E. Crossley,, and L. I. Rothfield. 1990. Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. Proc. Natl. Acad. Sci. USA 87: 1129 1133.
26. de Boer, P. A. J.,, R. E. Crossley,, and L. I. Rothfield. 1992. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174: 63 70.
27. Donachie, W. D. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47: 199 230.
28. Donachie, W. D. 1968. Relationship between cell size and time of initiation of DNA replication. Nature 219: 1077 1079.
29. Donachie, W. D.,, and A. C. Robinson,. 1987. Cell division: parameter values and the process, p. 1578 1593. In F. C. Neidhardt,, J. L. Ingraham,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (éd.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. American Society for Microbiology, Washington, D.C..
30. Duncan, L.,, S. Alper,, F. Arigoni,, R. Losick,, and P. Stragier. 1995. Activation of cell-specific transcription by a serine phosphatase at the site of asymmetric division. Science 270: 641 644.
30a. Dunn, G.,, D. M. Torgerson,, and J. Mandelstam. 1976. Order of expression of genes affecting septum location during sporulation of Bacillus subtilis. J. Bacteriol. 125: 776 779.
31. Edwards, D. H.,, and J. Errington. 1997. The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol. Microbiol. 24: 905 915.
32. Edwards, D. H.,, H. B. Thomaides,, and J. Errington. 2000. Promiscuous targeting of the Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. EMBO J. 19: 2719 2727.
33. Erickson, H. P.,, D. W. Taylor,, K. A. Taylor,, and D. Bramhill. 1996. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologues of tubulin polymers. Proc. Natl. Acad. Sci. USA 93: 519 523.
34. Errington, J. 1993. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57: 1 33.
35. Errington, J. 1996. Determination of cell fate in Bacillus subtilis . Trends Genet. 12: 31 34.
36. Feucht, A.,, R. A. Daniel,, and J. Errington. 1999. Characterization of a morphological checkpoint coupling cell-specific transcription to septation in Bacillus subtilis. Mol. Microbiol. 33: 1015 1026.
37. Feucht, A.,, I. Lucet,, M. D. Yudkin,, and J. Errington. 2001. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol. Microbiol. 40: 115 125.
38. Feucht, A.,, T. Magnin,, M. D. Yudkin,, and J. Errington. 1996. Bifunctional protein required for asymmetric cell division and cell-specific transcription in Bacillus subtilis. Genes Dev. 10: 794 803.
38a.. Freese, E. 1972. Sporulation of bacilli, a model of cellular differentiation. Curr. Top. Dev. Biol. 7: 85 124.
39. Ghigo, J.-M.,, D. S. Weiss,, J. C. Chen,, J. C. Yarrow,, and J. Beckwith. 1999. Localization of FtsL to the Escherichia coli septal ring. Mol. Microbiol. 31: 725 737.
40. Ghuysen, J.-M. 1991. Serine β -lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37 67.
41. Harry, E. J.,, S. R. Partridge,, A. S. Weiss,, and R. G. Wake. 1994 - Conservation of the 168 divlB gene in Bacillus subtilis W23 and B. licheniformis and evidence of homology to ftsQ of Escherichia coli. Gene 147: 85 89.
42. Harry, E. J.,, J. Rodwell,, and R. G. Wake. 1999. Coordinating DNA replication with cell division in bacteria: a link between the early stages of a round of replication and mid-cell Z ring assembly. Mol. Microbiol. 33: 33 40.
43. Harry, E. J.,, B. J. Stewart,, and R. G. Wake. 1993. Characterization of mutations in divlB of Bacillus subtilis and cellular localization of the DivlB protein. Mol. Microbiol. 7: 611 621.
44. Harry, E. J.,, and R. G. Wake. 1989. Cloning and expression of a Bacillus subtilis division initiation gene for which a homolog has not been identified in another organism. J. Bacteriol. 171: 6835 6839.
45. Harry, E. J.,, and R. G. Wake. 1997. The membrane-bound cell division protein DivlB is localized to the division site in Bacillus subtilis. Mol. Microbiol. 25: 275 283.
46. Hauser, P. M.,, and J. Errington. 1995. Characterization of cell cycle events during the onset of sporulation in Bacillus subtilis. J. Bacteriol. 177: 3923 3931.
47. Holmes, M.,, M. Rickert,, and O. Pierucci. 1980. Cell division cycle of Bacillus subtilis: evidence of variability in period D. J. Bacteriol. 142: 254 261.
48. Hove-Jensen, B. 1992. Identification of tms-26 as an al-lele of the gcaD gene, which encodes N-acetylglu-cosamine 1-phosphate uridyltransferase in Bacillus subtilis. J. Bacteriol. 174: 6852 6856.
49. Hu, Z.,, A. Mukherjee,, S. Pichoff,, and J. Lutkenhaus. 1999. The MinC component of the division site selection system in Escherichia coli interacts with FtsZ to prevent polymerization. Proc. Natl. Acad. Sci. USA 96: 14819 14824.
50. Illing, N.,, and J. Errington. 1991. Genetic regulation of morphogenesis in Bacillus subtilis: roles of σ E and σ P in prespore engulfment. J. Bacteriol. 173: 3159 3169.
51. Ishikawa, S.,, Y. Hara,, R. Ohnishi,, and J. Sekiguchi. 1998. Regulation of a new cell wall hydrolase gene, cwlF, which affects cell separation in Bacillus subtilis. J. Bacteriol. 180: 2549 2555.
52. Jacobs, C.,, and L. Shapiro. 1999. Bacterial cell division: a moveable feast. Proc. Natl. Acad. Sci. USA 96: 5891 5893.
52a.. Jones, L. F.,, and J. Errington. Unpublished data.
53. Joris, B.,, G. Dive,, A. Henriques,, P. J. Piggot,, and J. M. Ghuysen. 1990. The life-cycle proteins RodA of Escherichia coli and SpoVE of Bacillus subtilis have very similar primary structures. Mol. Microbiol. 4: 513 517.
54. Katis, V. L.,, E. J. Harry,, and R. G. Wake. 1997. The Bacillus subtilis division protein DivIC is a highly abundant membrane-bound protein that localizes to the division site. Mol. Microbiol. 26: 1047 1055.
55. Katis, V. L.,, and R. G. Wake. 1999. Membrane-bound division proteins DivlB and DivIC of Bacillus subtilis function solely through their external domains in both vegetative and sporulation division. J. Bacteriol. 181: 2710 2718.
56. Katis, V. L.,, R. G. Wake,, and E. J. Harry. 2000. Septal localization of the membrane-bound division proteins of Bacillus subtilis DivlB and DivIC is codependent only at high temperatures and requires FtsZ. J. Bacteriol. 182: 3607 3611.
57. Khattar, M. M.,, S. G. Addinall,, K. H. Stedul,, D. S. Boyle,, J. Lutkenhaus,, and W. D. Donachie. 1997. Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function. J. Bacteriol. 179: 784 793.
58. Khvorova, A.,, L. Zhang,, M. L. Higgins,, and P. J. Pig-got. 1998. The spoIIE locus is involved in the Spo0A-de-pendent switch in the location of FtsZ rings in Bacillus subtilis. J. Bacteriol. 180: 1256 1260.
59. King, N.,, O. Dreesen,, P. Stragier,, K. Pogliano,, and R. Losick. 1999. Septation, dephosphorylation, and the activation of σ F during sporulation in Bacillus subtilis. Genes Dev. 13: 1156 1167.
60. Kunst, F., et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390: 249 256.
61. Kuroda, A.,, and J. Sekiguchi. 1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173: 7304 7312.
62. Lazarevic, V.,, P. Margot,, B. Soldo,, and D. Karamata. 1992. Sequencing and analysis of the Bacillus subtilis ly-tRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138: 1949 1961.
63. Lee, S.,, and C. W. Price. 1993. The minCD locus of Bacillus subtilis lacks the minE determinant that provides topological specificity to cell division. Mol. Microbiol. 7: 601 610.
64. Levin, P. A.,, I. G. Kurtser,, and A. D. Grossman. 1999. Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 96: 9642 9647.
65. Levin, P. A.,, and R. Losick. 1994. Characterization of a cell division gene from Bacillus subtilis that is required for vegetative and sporulation septum formation. J. Bacteriol. 176: 1451 1459.
66. Levin, P. A.,, and R. Losick. 1996. Transcription factor SpoOA switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev. 10: 478 488.
67. Levin, P. A.,, R. Losick,, P. Stragier,, and F. Arigoni. 1997. Localization of the sporulation protein SpoIIE in Bacillus subtilis is dependent upon the cell division protein FtsZ. Mol. Microbiol. 25: 839 846.
68. Levin, P. A.,, P. S. Margolis,, P. Setlow,, R. Losick,, and D. Sun. 1992. Identification of Bacillus subtilis genes for septum placement and shape determination. J. Bacteriol. 174: 6717 6728.
68a.. Levin, P. A.,, J. J. Shim,, and A. D. Grossman. 1998. Effect of minCD on FtsZ ring position and polar septation in Bacillus subtilis. J. Bacteriol. 180: 6048 6051.
69. Lewis, P. J.,, S. R. Partridge,, and J. Errington. 1994. σ factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 91: 3849 3853.
70. Losick, R.,, and J. Dworkin. 1999. Linking asymmetric division to cell fate: teaching an old microbe new tricks. Genes Dev. 13: 377 381.
71. Löwe, J.,, and L. A. Amos. 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203 206.
72. Lu, C.,, M. Reedy,, and H. P. Erickson. 2000. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182: 164 170.
73. Lucet, I.,, A. Feucht,, M. D. Yudkin,, and J. Errington. 2000. Direct interaction between the cell division protein FtsZ and the cell differentiation protein SpoIIE. EMBO J. 19: 1467 1475.
74. Lupas, A. 1996. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21: 375 382.
75. Lutkenhaus, J.,, and S. G. Addinall. 1997. Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66: 93 116.
76. Margot, P.,, M. Pagni,, and D. Karamata. 1999. Bacillus subtilis 168 gene lytF encodes a γ -D-glutamate-meso-di-aminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σ D. Microbiology 145: 57 65.
77. Margot, P.,, M. Whalen,, A. Gholamhoseinian,, P. Piggot,, and D. Karamata. 1998. The lytE gene of Bacillus subtilis 168 encodes a cell wall hydrolase. J. Bacteriol. 180: 749 752.
78. Marston, A. L.,, and J. Errington. 1999. Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol. Microbiol. 33: 84 96.
79. Marston, A. L.,, H. B. Thomaides,, D. H. Edwards,, M. E. Sharpe,, and J. Errington. 1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12: 3419 3430.
80. Mauël , C., M. Young,, A. Monsutti-Grecescu,, S. A. Marriott,, and D. Karamata. 1994. Analysis of Bacillus subtilis tag gene expression using transcriptional fusions. Microbiology 140: 2279 2288.
81. McGinness, T.,, and R. G. Wake. 1979. Division septation in the absence of chromosome termination in Bacillus subtilis. J. Mol. Biol. 134: 251 264.
82. McGinness, T.,, and R. G. Wake. 1981. A fixed amount of chromosome replication needed for premature division septation in Bacillus subtillus. J. Mol. Biol. 146: 173 177.
83. Mendelson, N. H. 1975. Cell division suppression in the Bacillus subtilis divlV'Al minicell-producing mutant. J. Bacteriol. 121: 1166 1172.
84. Miyakawa, Y.,, and T. Komano. 1981. Study on the cell cycle of Bacillus subtilis using temperature sensitive mutants. I. Isolation and genetic analysis of mutants defective in septum formation. Mol. Gen. Genet. 181: 207 214.
85. Moszer, I.,, F. Kunst,, and A. Danchin. 1996. The European Bacillus subtilis genome sequencing project: current status and accessibility from a new World Wide Web site. Microbiology 142: 2987 2991.
86. Mukherjee, A.,, K. Dai,, and J. Lutkenhaus. 1993. Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc. Natl. Acad. Sci. USA 90: 1053 1057.
87. Mukherjee, A.,, and J. Lutkenhaus. 1999. Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J. Bacteriol. 181: 823 832.
88. Mukherjee, A.,, and J. Lutkenhaus. 1998. Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J. 17: 462 469.
89. Mukherjee, A.,, and J. Lutkenhaus. 1994. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176: 2754 2758.
90. Mulder, E.,, and C. L. Woldringh. 1989. Actively replicating nucleoids influence positioning of division sites in Escherichia coli filaments forming cells lacking DNA. J. Bacteriol. 171: 4303 4314.
91. Nogales, E.,, K. H. Downing,, L. A. Amos,, and J. Löwe. 1998. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5: 451 458.
92. Ohnishi, R.,, S. Ishikawa,, and J. Sekiguchi. 1999. Pepti-doglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J. Bacteriol. 181: 3178 3184.
93. Paulton, R. J. L. 1971. Nuclear and cell division in filamentous bacteria. Nat. New Biol. 231: 271 274.
94. Pedersen, L. B.,, E. R. Angert,, and P. Setlow. 1999. Septal localization of penicillin-binding protein 1 in Bacillus subtilis. J. Bacteriol. 181: 3201 3211.
95. Piggot, P. J.,, and J. G. Coote. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40: 908 962.
96. Pogliano, J.,, N. Osborne,, M. D. Sharpe,, A. Abanes-De Mello,, A. Perez,, Y.-L. Sun,, and K. Pogliano. 1999. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31: 1149 1159.
97. Raskin, D. M.,, and P. A. J. De Boer. 1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 4971 4976.
98. RayChaudhuri, D. 1999. ZipA is a MAP-Tau homolog and is essential for structural integrity of the cytokinetic FtsZ ring during bacterial cell division. EMBO J. 18: 2372 2383.
99. RayChaudhuri, D.,, and J. T. Park. 1992. Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359: 251 254.
100. Reeve, J. N.,, N. H. Mendelson,, S. I. Coyne,, L. L. Hallock,, and R. M. Cole. 1973. Minicells of Bacillus subtilis. J. Bacteriol. 114: 860 873.
101. Regame, A.,, E. J. Harry,, and R. G. Wake. 2000. Mid-cell Z ring assembly in the absence of entry into the elongation phase of the round of replication in bacteria: coordinating chromosome replication with cell division. Mol. Microbiol. 38: 423 434.
102. Ryter, A. 1965. Etude morphologique de la sporulation de Bacillus subtilis. Ann. Inst. Pasteur 108: 40 60.
103. Sadaie, Y.,, H. Takamatsu,, K. Nakamura, and K. Yamane. 1991. Sequencing reveals similarity of the wild-type div + gene of Bacillus subtilis to the Escherichia coli secA gene. Gene 98: 101 105.
103a.. Sargent, M. G. 1975. Control of cell length in Bacillus subtilis. J Bacteriol. 123: 7 19.
104. Scheffers, D.-J.,, T. den Blaauwen,, and A. J. M. Driessen. 2000. Non-hydrolysable GTP-γ -S stabilizes the FtsZ polymer in a GDP-bound state. Mol. Microbiol. 35: 1211 1219.
105. Shapiro, L.,, and R. Losick. 1997. Protein localization and cell fate in bacteria. Science 276: 712 718.
106. Sharpe, M. E.,, P. M. Hauser,, R. G. Sharpe,, and J. Errington. 1998. Bacillus subtilis cell cycle as studied by fluorescence microscopy: constancy of the cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J. Bacteriol. 180: 547 555.
107. Sievers, J.,, and J. Errington. 2000. The Bacillus subtilis cell division protein FtsL localizes to sites of septation and interacts with DivIC. Mol. Microbiol. 34: 846 855.
108. Sievers, J.,, and J. Errington. Unpublished results.
109. Smith, T. j.,, S. A. Blackman,, and S. J. Foster. 2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146: 249 262.
110. Stragier, P.,, and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30: 297 341.
111. Thomaides, H. B.,, M. Freeman,, M. El Karoui,, and J. Errington. Division-site-selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev., in press.
112. Van Alstyne, D.,, and M. I. Simon. 1971. Division mutants of Bacillus subtilis: isolation and PBS1 transduction of division-specific markers. J. Bacteriol. 108: 1366 1379.
113. Varley, A. W.,, and G. C. Stewart. 1992. The divIVB region of the Bacillus subtilis chromosome encodes homologs of Escherichia coli septum placement (MinCD) and cell shape (MreBCD) determinants. J. Bacteriol. 174: 6729 6742.
114. Wang, L.,, M. K. Khattar,, W. D. Donachie,, and J. Lutkenhaus. 1998. Ftsl and FtsW are localized to the septum in Escherichia coli. J. Bacteriol. 180: 2810 2816.
115. Wang, X.,, J. Huang,, A. Mukherjee,, C. Cao,, and J. Lutkenhaus. 1997. Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J. Bacteriol. 179: 5551 5559.
116. Wang, X.,, and J. Lutkenhaus. 1993. The FtsZ protein of Bacillus subtilis is localized at the division site and has GT-Pase activity that is dependent upon FtsZ concentration. Mol. Microbiol. 9: 435 442.
117. Woldringh, C. L.,, and N. Nanninga,. 1985. Structure of the nucleoid and cytoplasm in the intact cell, p. 161 197. In N. Naninga (éd.), Molecular Cytology of Escherichia coli. Academic Press, London, England.
118. Wu, L. J.,, R. A. Daniel,, H. Scowcroft,, and J. Errington. Unpublished results.>
119. Wu, L. J.,, A. Feucht,, and J. Errington. 1998. Prespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum. Genes Dev. 12: 1371 1380.
120. Wu, L. J.,, A. H. Franks,, and R. G. Wake. 1995. Replication through the terminus region of the Bacillus subtilis chromosome is not essential for the formation of a division septum that partitions the DNA. J. Bacteriol. 177: 5711 5715.
121. Wu, L. J.,, P. J. Lewis,, R. Allmansberger,, P. M. Hauser,, and J. Errington. 1995. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9: 1316 1326.
122. Yanouri, A.,, R. A. Daniel,, J. Errington, and C. E. Buchanan. 1993. Cloning and sequencing of the cell division gene pbpB, which encodes penicillin-binding protein 2B in Bacillus subtilis. J. Bacteriol. 175: 7604 7616.

Tables

Generic image for table
TABLE 1

Cell division

Position in kilobase pairs based on data in the SubtiList database ( ) (http://genolist.pasteur.fr/SubtiList). Where the gene has not been identified, an estimated position is given, with the published genetic map location in parentheses.

Citation: Errington J, Daniel R. 2002. Cell Division during Growth and Sporulation, p 97-109. In Sonenshein A, Losick R, Hoch J (ed), and Its Closest Relatives. ASM Press, Washington, DC. doi: 10.1128/9781555817992.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error