1887

Chapter 10 : Microaerobic Physiology: Aerobic Respiration, Anaerobic Respiration, and Carbon Dioxide Metabolism

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microaerobic Physiology: Aerobic Respiration, Anaerobic Respiration, and Carbon Dioxide Metabolism, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap10-2.gif

Abstract:

In aerobic respiration, electron transfer is to oxygen (more correctly, the dioxygen molecule), which is reduced to water with concomitant, coupled ion translocation and generation of an electrochemical gradient. In anaerobic respiration, electron transfer is to a molecule other than oxygen or to an ionic species, again coupled to generation of an electrochemical gradient. This chapter is concerned primarily with substrate oxidations and the use of oxygen as electron acceptor. It examines the evidence for facultative respiration in and considers the extent to which the respiratory pathways of this bacterium can be gleaned from the somewhat limited biochemical evidence presently available, and from comparisons with mitochondrial and bacterial paradigms. Oxidative stress responses are coordinated by a number of global regulatory proteins. In , alkylhydroperoxide reductase, catalase, and superoxide dismutase have been particularly implicated in the enzymatic destruction of toxic oxidants and are discussed in the chapter. is generally regarded as a microaerophile, but the bacterium also requires an elevated level of atmospheric CO for optimal growth.

Citation: Kelly D, Poole R, Hughes N. 2001. Microaerobic Physiology: Aerobic Respiration, Anaerobic Respiration, and Carbon Dioxide Metabolism, p 113-124. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch10

Key Concept Ranking

Fatty Acid Biosynthesis
0.43724063
Sodium Dodecyl Sulfate
0.43724063
Reactive Oxygen Species
0.42674312
0.43724063
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Hypothetical arrangement of the major components of the respiratory chains of Reduced substrates (DH) are oxidized (to D) via membrane-bound or membrane-associated dehydrogenases. Integral membrane oxidoreductases include an NDH-1 complex (Nuo), the electron donor to which is unknown, and hydrogenase (Hya, also termed Hyd). Peripherally associated oxidoreductases include (among several others) malate:quinone oxidoreductase (Mqo). Reducing equivalents from all these substrates reduce the sole quinone, menaquinone-6, in the lipid bilayer of the inner membrane. Menaquinol reduces the trimeric cytochrome complex (Pet), which in turn reduces periplasmic cytochrome (). Cytochrome is reoxidized by the sole terminal oxidase of the Cco (or Fix) type, cytochrome (or ) Cytochrome may also be reoxidized by hydrogen peroxide in the periplasm through the activity of cytochrome peroxidase (CCP). Fumarate reductase (Frd) catalyzes electron transfer from menaquinol to fumarate as terminal acceptor. The reactions catalyzed by CcO, CCP, FrdA, Mqo, and Nuo show substrate/product conversions. The other arrows indicate directions of electron transfer.

Citation: Kelly D, Poole R, Hughes N. 2001. Microaerobic Physiology: Aerobic Respiration, Anaerobic Respiration, and Carbon Dioxide Metabolism, p 113-124. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818005.chap10
1. Alderson, J.,, C. L. Clayton,, and D. J. Kelly. 1997. Investigations into the aerobic respiratory chain of Helicobacter pylori. Gut 41(S1):A7.
2. Alderson, J.,, and D. J. Kelly. Unpublished data.
3. Aim, R. A.,, L.-S. Lee,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. de Jonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelson,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
4. Baer, W.,, H. Koopman,, and S. Wagner. 1993. Effects of substances inhibiting or uncoupling respiratory chain phosphorylation of Helicobacter pylori. Zentralbl. Bakteriol. 280: 253258.
5. Baillon, M. L.,, A. H. van Vliet,, J. M. Ketley,, C. Constaninidou,, and C. W. Penn. 1999. An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J. Bacteriol. 181:47984804.
6. Beckman, D. L.,, D. R. Trawick,, and R. G. Kranz. 1992. Bacterial cytochromes c biogenesis. Genes Dev. 6:268283.
7. Bereswill, S.,, O. Neuner,, S. Strobel,, and M. Kist. 2000. Identification and molecular analysis of superoxide dismutase isoforms in Helicobacter pylori. FEMS Microbiol. Lett. 183: 241245.
8. Burns, B. P.,, S. L. Hazell,, and G. L. Mendz. 1995. Acetyl-CoA carboxylase activity in Helicobacter pylori and the requirement of increased C02 for growth. Microbiology 141: 31133118.
9. Carlone, G. M.,, and F. A. L. Anet. 1983. Detection of menaqui-none-6 and a novel methyl-substituted menaquinone-6 in Campylobacter jejuni and Campylobacter fetus subsp. fetus. J. Gen. Microbiol. 129:33853393.
10. Chalk, P. A.,, A. D. Roberts,, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of H. pylori studied by I3C-NMR spectroscopy. Microbiology 140:20852902.
11. Chalk, P. A.,, A. D. Roberts,, A. A. Davison,, D. J. Kelly,, and P. J. White,. 1997. The use of NMR to study the metabolism of Helicobacter pylori, p. 6980. In C. L. Clayton, and H. L. T. Mobley (ed.), Methods in Molecular Medicine—Helicobacter pylori Protocols. Humana Press Inc., New York, N.Y..
12. Chang, H. T.,, S. W. Marcelli,, A. A. Davison,, P. A. Chalk,, R. K. Poole,, and R. J. Miles. 1995. Kinetics of substrate oxidation by whole cells and cell membranes of Helicobacter pylori. FEMS Microbiol. Lett. 129:3338.
13. Chen, M.,, L. P. Andersen,, L. Zhai,, and A. Kharazmi. 1999. Characterization of the respiratory chain of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 24:169174.
14. Collins, M. D.,, M. Costas,, and R. J. Owens. 1984. Isoprenoid quinone composition of representatives of the genus Campylobacter. Arch. Microbiol. 137:168170.
15. D'mello, R.,, S. Hill,, and R. K. Poole. 1996. The cytochrome bd quinol oxidase in Escherichia coli has an extremely high oxygen affinity and two oxygen-binding haems: implications for regulation of activity in vivo by oxygen inhibition. Microbiology 142:755763.
16.. Deshpande, M.,, E. Calenoff,, and L. Daniels. 1995. Rapid large-scale growth of Helicobacter pylori in flasks and fermentors. Appl. Environ. Microbiol. 61:24312435.
17. Doig, P.,, B. L. de Jonge,, R. A. Aim,, E. D. Brown,, M. Uria-Nickelsen,, B. Noonan,, S. D. Mills,, P. Tummino,, G. Carmel,, B. C. Guild,, D. T. Moir,, G. F. Vovis,, and T. J. Trust. 1999. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol. Mol. Biol. Rev. 63:675707.
18. Evans, D. J., Jr.,, and D. G. Evans. 1997. Identification of a formate dehydrogenase associated cytochrome C553 in Helicobacter pylori. Gut 41(Suppl.):A6.
19. Finel, M. 1998. Does NADH play a central role in energy metabolism in Helicobacter pylori? Trends Biochem. Sci. 23: 412414.
20. Fischer, H.-M. 1994. Genetic regulation of nitrogen fixation in Rhizobia. Microbiol. Rev. 58:352386.
21. Ge, Z.,, Q. Jiang,, M. S. Kalisiak,, and D. E. Taylor. 1997. Cloning and functional characterization of Helicobacter pylori fumarate reductase operon comprising three structural genes coding for subunits C, A and B. Gene 204:227234.
22. Gilbert, J. V.,, J. Ramakrishna,, F. W. Sunderman, Jr.,, A. Wright,, and A. G. Plaut. 1995. Protein Hpn: cloning and characterisation of a histidine-rich metal binding polypeptide in Helicobacter pylori and Helicobacter mustelae. Infect, lmmun. 62:26822688.
23. Goldman, B. S.,, and R. G. Kranz. 1998. Evolution and horizontal transfer of an entire biosynthetic pathway for cytochrome c biogenesis: Helicobacter, Deinococcus, Archae, and more. Mol. Microbiol. 27:871874.
24. Goodhew, C. F.,, I. B. H. Wilson,, D. J. B. Hunter,, and G. W. Pettigrew. 1990. The cellular location and specificity of bacterial cytochrome c peroxidases. Biochem. J. 271:707712.
25. Goodhew, C. F.,, A. B. EIKurdi,, and G. Pettigrew. 1988. The microaerophilic respiration of Campylobacter mucosalis. Bio-chim. Biophys. Acta 933:114123.
26. Hazell, S. L.,, D. J. Evans,, and D. Y. Graham. 1991. Helicobacter pylori catalase. J. Gen. Microbiol. 137:5761.
27. Hoffman, P. S.,, A. Goodwin,, J. Johnsen,, K. Magee,, and S. Veldhuyzen van Zanten. 1996. Metabolic activities of metroni-dazole-sensitive and resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 178:48224829.
28. Hughes, N. J.,, P. A. Chalk,, C. L. Clayton,, and D. J. Kelly. 1995. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate: flavodoxin oxidoreductase from Helicobacter pylori. J. Bacteriol. 177: 39533959.
29. Hughes, N. J.,, C. L. Clayton,, P. A. Chalk,, and D. J. Kelly. 1998. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J. Bacteriol. 180:11191128.
30. Jonassen, T.,, and C. F. Clarke,. 2000. Genetic analysis of coenzyme Q biosynthesis, p. 185208. In P. J. Quinn, and V. E. Kagan (ed.), Coenzyme Q: from Molecular Mechanisms to Nutrition and Health. CRC Press, Boca Raton, Fla..
31. Kather, B.,, K. Stingl,, M. E. vanderRest,, K. Altendorf,, and D. Molenaar. 2000. Another unusual type of citric-acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase. J. Bacteriol. 182:32043209.
32. Kelly, D. J. 1998. The physiology and metabolism of the human gastric pathogen Helicobacter pylori. Adv. Microb. Physiol. 40:137189.
33. Kröger, A.,, V. Geisler,, E. Lemma,, F. Theis,, and R. Lenger. 1992. Bacterial fumarate respiration. Arch. Microbiol. 158: 311314.
34. Maier, R. J.,, C. Fu,, J. Gilbert,, F. Moshiri,, J. Olson,, and A. G. Plaut. 1996. Hydrogen uptake hydrogenase in Helicobacter pylori. FEMS Microbiol. Lett. 141:7176.
35. Marcelli, S. W.,, H.-T., Chang,, T. Chapman,, P. A. Chalk,, R. J. Miles,, and R. K. Poole. 1996. The respiratory chain of Helicobacter pylori: identification of cytochromes and the effects of oxygen on cytochrome and menaquinone levels. FEMS Microbiol. Lett. 138:5964.
36. Matin, A.,, E. Zychlinsky,, M. Keyhan,, and G. Sachs. 1996. Capacity of Helicobacter pylori to generate ionic gradients at low pH is similar to that of bacteria which grow under strongly acidic conditions. Infect. Immun. 64:14341436.
37. Mendz, G. L.,, and S. L. Hazell. 1993. Fumarate catabolism in Helicobacter pylori. Biochem. Mol. Biol. Int. 31:325332.
38. Mendz, G. L.,, D. J. Meek,, and S. L. Hazell. 1998. Characterisation of fumarate transport in Helicobacter pylori. J. Membrane Biol. 165:6576.
39. Meyer-Rosberg, K.,, D. R. Scott,, D. Rex,, K. Melchers,, and G. Sachs. 1996. The effect of environmental pH on the proton-motive force of Helicobacter pylori. Gastroenterology 111: 886900.
40. Moore, G. R.,, and G. W. Pettigrew. 1990. Cytochromes c. Evolutionary, Structural and Physiochemical Aspects. Springer-Verlag, Berlin, Germany.
41. Moss, C. W.,, M. A. Lambert-Fair,, M. A. Nicholson,, and G. O. Guerrant. 1990. Isoprenoid quinones of Campylobacter cryaerophila, C. cinaedi, C. fennelliae, C. hyointestinalis, C. pylori, and "C. upsaliensis." J. Clin. Microbiol. 28:395397.
42. Nagata, K.,, S. Tsukita,, T. Tamura,, and N. Sone. 1996. A cb-type cytochrome-c oxidase terminates the respiratory chain in Helicobacter pylori. Microbiology (U.K.) 142:17571763.
43. Nagata, K.,, H. Yu,, M. Nishikawa,, M. Kashiba,, A. Nakamura,, E. F. Sato,, T. Tamura,, and M. Inouye. 1998. Helicobacter pylori generates superoxide radicals and modulates nitric oxide metabolism. J. Biol. Chem. 273:1407114073.
44. Nicholls, D. G.,, and S. J. Ferguson. 1992. Bioenergetics 2. Academic Press Limited, London, United Kingdom.
45. Odenbreit, S.,, B. Wieland,, and R. Haas. 1996. Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain, ]. Bacteriol. 178:69606967.
46. 0dum, L.,, and L. P. Andersen. 1995. Investigation of Helicobacter pylori ascorbic acid oxidising activity. FEMS Immunol. Med. Microbiol. 10:289294.
47. O'Toole, P. W.,, S. M. Logan,, M. Kostrzynska,, T. Wadström,, and T.J. Trust. 1991. Isolation and biochemical and molecular analyses of a species-specific protein antigen from the gastric pathogen Helicobacter pylori. J. Bacteriol. 173:505513.
48. Page, M. D.,, E. Tomlinson,, and S. J. Ferguson. 1997. Unexpected implications from the Helicobacter pylori genome for understanding periplasmic c-type cytochrome assembly in gram-negative bacteria in coexistence with disulphide bond formation. Mol. Microbiol. 26:413415.
49. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Felt-well,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M.-A. Rajandream,, K. M. Rutherford,, A. H. M. van Vliet,, S. Whitehead,, and B. G. Bar-rell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
50. Pesci, E. C.,, and C. L. Pickett. 1994. Genetic organisation and enzymatic activity of a superoxoide dismutase from the micro-aerophilic human pathogen, H. pylori. Gene 143:111116.
51. Poole, L. B.,, and H. Ellis. 1996. Flavin dependent alkyl hydroperoxide reductase of Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins. Biochemistry 35:5664.
52. Poole, R. K.,, and G. M. Cook,. 2000. Redundancy of aerobic respiratory chains in bacteria: routes, reasons and regulation, p. 165224. In R. K. Poole (ed.), Advances in Microbial Physiology. Academic Press, London, United Kingdom.
53. Poole, R. K.,, and M. N. Hughes. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775783.
54. Smith, M. A.,, and D. L. Edwards. 1997. Oxygen scavenging, NADH oxidase and metronidazole resistance in Helicobacter pylori. J. Antimicrob. Chemother. 39:347353.
55. Soballe, B.,, and R. K. Poole. 1999. Microbial ubiquinones: multiple roles in respiration, gene regulation and oxidative stress management. Microbiology 145:18171830.
56. Seballe, B.,, and R. K. Poole. 2000. Ubiquinone limits oxidative stress in Escherichia coli. Microbiology 146:787796.
57. Spiegelhalder, C.,, B. Gerstenecker,, A. Kersten,, E. Schiltz,, and M. Kist. 1993. Purification of H. pylori superoxide dismutase and cloning and sequencing of the gene. Infect. Immun. 61: 53155325.
58. Storz, G.,, and J. A. Imlay. 1999. Oxidative stress. Curr. Opin. Microbiol. 2:188194.
59. Storz, G.,, F. S. Jacobson,, L. A. Tartaglia,, R. W. Morgan,, L. A. Silveira,, and B. N. Ames. 1989. An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J. Bacteriol. 171:20492055.
60. Thony-Meyer, L. 1997. Biogenesis of respiratory cytochromes in bacteria. Microbiol. Mol. Biol. Rev. 61:337376.
61. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleishmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539547.
62. Tsukita, S.,, S. Koyanagi,, K. Nagata,, H. Koizuka,, H. Akashi,, T. Shimoyama,, T. Tamura,, and N. Sone. 1999. Characterisation of a cb-type cytochrome c oxidase from Helicobacter pylori. ]. Biochem. 125:194201.
63. Tuckwell, A.,, and P. A. Chalk. 1993. Factors affecting the survival of liquid cultures of Helicobacter pylori in air. Acta Gastro-Enterol. Belg. 56S:101.
64. van Vliet, A. H. M.,, M. L. A. Baillon,, C. Penn,, and J. M. Ketley. 1999. Campylobacter jejuni contains two Fur homologues: characterisation of iron-responsive regulation of peroxide stress defense genes by the PerR repressor, J. Bacteriol. 181:63716376.
65. Wan, X.,, Y. Zhou,, Z. Yan,, H. Wang,, Y. Hou,, and D. Jin. 1997. Scavengase p20: a novel family of bacterial antioxidant enzymes. FEBS Lett. 407:3236.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error