1887

Chapter 12 : The Citric Acid Cycle and Fatty Acid Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Citric Acid Cycle and Fatty Acid Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap12-2.gif

Abstract:

This chapter talks about fatty acid biosynthesis, linked to the citric acid cycle (CAC) through the utilization of acetyl-coenzyme A (CoA) as its starting point. The oxidative decarboxylation of pyruvate is an important reaction in archaea, bacteria, and eukaryotes alike, generating acetyl-CoA necessary for CAC reactions, fatty acid biosynthesis, and many other reactions requiring acyl-CoA. Citrate synthase catalyzes the first step in the oxidative branch of the CAC in which acetyl-CoA and oxaloacetate are condensed to generate citrate and CoA. Aconitase activity has been detected in the cytosolic fraction of cells both by nuclear magnetic resonance (NMR) and spectrophotometric assays. In isocitrate dehydrogenase acts as a critical branch point between the CAC reactions and the glyoxylate bypass during growth on C2 compounds like acetate. The study of the lipid and fatty acid profiles of eight species has revealed some characteristic features of the genus. Malonyl-acylcarrier protein (ACP) is required not only for initiation of fatty acid biosynthesis, but also for each subsequent round of elongation of the fatty acid chain. To function in fatty acid biosynthesis, the apo-ACP protein must first be activated by transfer of the 4'-phospho-pantotheine from CoA, and this reaction is predicted to be catalyzed by holo-ACP synthase, encoded by in .

Citation: Kelly D, Hughes N. 2001. The Citric Acid Cycle and Fatty Acid Biosynthesis, p 135-146. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch12

Key Concept Ranking

Fatty Acid Biosynthesis
0.5378284
Fatty Acid Degradation
0.45771816
0.5378284
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Citric acid cycle and related reactions in Enzymes are denoted by numbers. 1, pyruvate:flavodoxin oxidoreductase; 2, phosphotransacetylase; 3, acetate kinase; 4, citrate synthase; 5, aconitase; 6, isocitrate dehydrogenase; 7, 2-oxoglutarate:acceptor oxidoreductase; 8, succinyl-CoA:acetoacetate CoA transferase; 9, NAD-linked malate dehydrogenase; 10, fumarase; 11, fumarate reductase; 12, malateiquinone oxidoreductase; 13, aspartase; 14, malate synthase. The mechanisms for anaplerotic oxaloacetate synthesis are unknown (thin dashed line). Fld, flavodoxin; Fd, ferredoxin. Solid lines indicate core CAC reactions, which have been demonstrated by enzyme assay. The thick dashed line for enzyme 8 indicates uncertainty about its physiological role.

Citation: Kelly D, Hughes N. 2001. The Citric Acid Cycle and Fatty Acid Biosynthesis, p 135-146. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Predicted pathways for fatty acid and phospholipid biosynthesis in During the initiation phase of fatty acid biosynthesis, acetyl-CoA is carboxylated to generate malonyl-CoA, which is then converted to malonyl-ACP. Malonyl-ACP is also required for each subsequent round of elongation. Several potential pathways for the formation of acetoacetyl-ACP are described in the text; for simplicity, only the condensation of acetyl-CoA and malonyl-ACP by FabH is illustrated. Acetoacetyl-ACP is then used as a substrate for the elongation reactions encoded by and It is noteworthy that no homolog has been identified in which in acts as the branch point for unsaturated fatty acid synthesis. The acyl-ACP generated by FabI may enter another round of elongation through condensation with malonyl-ACP or act as a substrate for phospholipid biosynthesis. A homolog of the glycerol-3-phosphate acyltransferase enzyme, encoded by which catalyzes the first acylation of glycerol-3-phosphate, has not been identified. The function and ORF numbers of the H. genes shown in this diagram are summarized in Table 2. Genes that have not been identified in the genome sequence are identified with an asterisk.

Citation: Kelly D, Hughes N. 2001. The Citric Acid Cycle and Fatty Acid Biosynthesis, p 135-146. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818005.chap12
1. Aim, R. A.,, L.-S. Lee,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. de Jonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelson,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176 180.
2. Beil, W.,, C. Birkholz,, S. Wagner,, and K. F. Sewing. 1994. Interaction of Helicobacter pylori and its fatty acids with parietal cells and gastric H+/K( + )-ATPase. Gut 35: 1176 1180.
3. Birkholz, S.,, U. Knipp,, E. Lemma,, A. Kroger,, and W. Opferkuch. 1994. Fumarate reductase of Helicobacter pylori—an immunogenic protein. J. Med. Microbiol. 41: 56 62.
4. Blarney, J. M.,, and M.W. Adams. 1993. Purification and characterization of pyruvate:ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. B iochim. Biophys. Acta 1161: 19 27.
5. Blarney, J. M.,, and M. W. Adams. 1994. Characterization of an ancestral type of pyruvate:ferredoxin oxidoreductase from the hyperthermophilic bacterium. Thermotoga maritima. Biochemistry 33: 1000 1007.
6. Burns, B. P.,, S. L. Hazell,, and G. L. Mendz. 1995. Acetyl-CoA carboxylase in Helicobacter pylori and the requirement for increased CO2 for growth. Microbiology 141: 3113 3118.
7. Chalk, P. A.,, A. D. Roberts,, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of H. pylori studied by 13C-NMR spectroscopy. Microbiology 140: 2085 2092.
8. Chang, H. T.,, S. W. Marcelli,, A. A. Davison,, P. A. Chalk,, R. K. Poole,, and R.J. Miles. 1995. Kinetics of substrate oxidation by whole cells and cell membranes of Helicobacter pylori. FEMS Microbiol. Lett. 129: 33 38.
9. Charbriere, E.,, M. Charon,, A. Volbeda,, L. Pieulle,, E. Hatchikian,, and J. Fontecilla-Camps. 1999. Crystal structure of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat. Struct. Biol. 6: 182 190.
10. Cordwell, S. J. 1999. Microbial genomes and "missing" enzymes: redefining biochemical pathways. Arch. Microbiol. 172: 269 279.
11. Corthesy-Theulaz, I. E.,, G. E. Bergonzelli,, H. Hemry,, D. Bach-mann,, D. F. Schorderet,, A. L. Blum,, and L. N. Ornston. 1997. Cloning and characterization of Helicobacter pylori succinyl CoA: acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family . J. Biol. Chem. 272: 25659 25667.
12. Cunningham, L.,, M. J. Gruer,, and J. R. Guest. 1997. Transcriptional regulation of the aconitase genes (acnA and acnB) of Escherichia coli. Microbiology 143: 3795 3805.
13. Davison, A. A.,, D. J. Kelly,, P. J. White,, and P. A. Chalk. 1993. Citric-acid cycle enzymes and respiratory metabolism in H. pylori. Acta Gastro-Enterol. Belg. 56S: 96.
14. Docampo, R.,, S. N. J. Moreno,, and R. P. Mason. 1987. Free radical intermediates in the reaction of pyruvate:ferredoxin oxidoreductase in Tritrichomonas foetus hydrogenosomes . J. Biol. Chem. 262: 12417 12420.
15. Dunkley, M. L.,, S. J. Harris,, R. J. McCoy,, M. J. Musicka,, F. M. Eyers,, L. G. Beagley,, P. J. Lumley,, K. W. Beagley,, and R. L. Clancy. 1999. Protection against Helicobacter pylori infection by intestinal immunization with a 50/52-kDa subunit protein. FEMS Immunol. Med. Microbiol. 24: 221 225.
16. Ge, Z. Q.,, and D. E. Taylor. 1997. The Helicobacter pylori gene encoding phosphatidylserine synthase: sequence, expression, and insertional mutagenesis. J. Bacteriol. 179: 4970 4976.
17. Ge, Z.,, Q. Jiang,, M. S. Kalisiak,, and D. E. Taylor. 1997. Cloning and functional characterization of Helicobacter pylori fumarate reductase operon comprising three structural genes coding for subunits C, A and B. Gene 204: 227 234.
18. Haque, M.,, Y. Hirai,, K. Yokota,, N. Mori,, I. Jahan,, H. Ito,, H. Hotta,, I. Yano,, Y. Kanemasa,, and K. Oguma. 1996. Lipid profile of Helicobacter spp.: presence of cholesteryl glucoside as a characteristic feature. J. Bacteriol. 178: 2065 2070.
19. Heath, R. J.,, and C. O. Rock. 1999. A missense mutation accounts for the defect in the glycerol-3-phosphate acyltransferase expressed in the plsB26 mutant. J. Bacteriol. 181: 1944 1946.
20. Hirai, Y.,, M. Haque,, T. Yoshida,, K. Yokota,, T. Yasuda,, and K. Oguma. 1995. Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J. Bacteriol. 177: 5327 5333.
21. Hoffman, P. S.,, A. Goodwin,, J. Johnsen,, K. Magee,, and S. J. O. Veldhuzyen van Zanten. 1996. Metabolic activities of metronidazole-sensitive and resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J. Bacteriol. 178: 4822 4829.
22. Hughes, N. J.,, P. A. Chalk,, C. L. Clayton, and D. J. Kelly. 1995. Identification of carboxylation enzymes and characterization of a novel four subunit pyruvate:flavodoxin oxidoreductase from Helicobacter pylori. J. Bacteriol. 177: 3953 3959.
23. Hughes, N. J.,, C. L. Clayton,, P. A. Chalk,, and D. J. Kelly. 1998. Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J. Bacteriol. 180: 1119 1128.
24. Huynen, M. A.,, T. Dandekar,, and P. Bork. 1999. Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol. 7: 281 291.
25. Ingeldew, W. J.,, and R. K. Poole. 1984. The respiratory chains of Escherichia coli. Microbiol. Rev. 48: 222 271.
26. Kaihovaara, P.,, J. Hook-Nikanne,, M. Uusi-Oukari,, T. U. Kosunen,, and M. Salaspuro. 1998. Flavodoxin-dependent pyruvate oxidation, acetate production and metronidazole reduction by Helicobacter pylori. J. Antimicrob. Chemother. 41: 171 177.
27. Kather, B.,, K. Stingl,, M. E. van der Rest,, K. Altendorf,, and D. Molenaar. 2000. Another unusual type of citric-acid cycle enzyme in Helicobacter pylori: the malate:quinone oxidoreductase . J. Bacteriol. 182: 3204 3209.
28. Kelly, D. J. 1998. The physiology and metabolism of the human gastric pathogen Helicobacter pylori. Adv. Microb. Physiol. 40: 137 189.
29. Kerscher, L.,, and D. Oesterhelt. 1981. Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium Eur.. J. Biochem. 116: 587 594.
30. Kerscher, L.,, and D. Oesterhelt. 1981. The catalytic mechanism of 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. Eur. J. Biochem. 116: 595 600.
31. Knappe, J.,, and G. Sawers. 1990. A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol. Rev. 6: 383 398.
32. Kroger, A.,, V. Geisler,, E. Lemma,, F. Theis,, and R. Lenger. 1992. Bacterial fumarate respiration. Arch. Microbiol. 158: 311 314.
33. LaPorte, D. C.,, and T. Chung. 1985. A single gene codes for the kinase and phosphatase which regulates isocitrate dehydrogenase. J. Biol. Chem. 260: 15291 15297.
34. Larson, T. J.,, D. N. Ludtke,, and R. M. Bell. 1984. sra-Glycerol-3-phosphate auxotrophy of plsB strains of E. coli: evidence that a second mutation, plsX, is required. J. Bacteriol. 160: 711 717.
35. Lichtenberger, L. M.,, S. L. Hazell,, J. J. Ramero,, and D. Y. Graham. 1990. Helicobacter pylori hydrolysis of artificial lipid monolayers: insight into a potential mechanism of mucosal injury. Gastroenterology 98: A78.
36. McAtee, C. P.,, K. E. Fry,, and D. E. Berg. 1998. Identification of potential diagnostic and vaccine candidates of Helicobacter pylori by "proteome" technologies. Helicobacter 3: 163 169.
37. Meinecke, B.,, J. Bertram,, and G. Gottschalk. 1989. Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch. Microbiol. 152: 244 250.
38. Mendz, G. L.,, and S. L. Hazell. 1993. Fumarate catabolism in Helicobacter pylori. Biochem. Mol. Biol. Int. 31: 325 332.
39. Mendz, G. L.,, and S. L. Hazell. 1995. Aminoacid utilization by Helicobacter pylori. Int. J. Biochem. Cell. Biol. 27: 1085 1093.
40. Mendz, G. L.,, S. L. Hazell,, and S. Srinivasan. 1995. Fumarate reductase: a target for therapeutic intervention against Helicobacter pylori. Arch. Biochem. Biophys. 321: 153 159.
41. Narindrasorasak, S.,, A. H. Goldie,, and B. D. Sanwal. 1979. Characteristics and regulation of a phospholipid-activated malate oxidase from Escherichia coli . J. Biol. Chem. 254: 1540 1545.
42. Ottlecz, A.,, J. J. Romero,, S. L. Hazell,, D. Y. Graham,, and L. M. Lichtenberger. 1993. Phospholipase activity of Helicobacter pylori and its inhibition by bismuth salts. Biochem. Biophys. Res. Commun. 38: 2071 2080.
43. Patel, M. S.,, and T. E. Roche. 1990. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J. 4: 3224 3233.
44. Pieulle, L.,, M. H. Charon,, P. Bianco,, J. Bonicel,, Y. Petillot,, and E. C. Hatchikian. 1999. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur. J. Biocbem. 264: 500 508.
45. Pieulle, L.,, B. Guigliarelli,, M. Asso,, F. Dole,, A. Bernadec,, and E. C. Hatchikian. 1995. Isolation and characterization of the pyruvate-ferredoxin oxidoreductase from the sulfate reducing bacteria Desulfovibrio africanus. Biochim. Biophys. Acta 1250: 49 59.
46. Pitson, S. M.,, G. L. Mendz,, S. Srinivasan,, and S. L. Hazell. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biocbem. 260: 258 267.
47. Rock, C. O.,, and J. E. Cronan. 1996. Escherichia coli as a model for the regulation of dissociable (type II) fatty acid biosynthesis. Biochim. Biophys. Acta 1302: 1 16.
48. Rosenthal, B.,, Z. Mai,, D. Caplivski,, S. Ghosh,, H. de la Vega,, T. Graf,, and J. Samuelson. 1997. Evidence for the bacterial origin of genes encoding fermentation enzymes of the amito-chondriate protozoan parasite Entamoeba histolytica. J. Bacteriol. 179: 3736 3745.
49. Shah, V. K.,, G. Stacey,, and W.J. Brill. 1983. Electron transport to nitrogenase: purification and characterization of pyruvate: flavodoxin oxidoreductase, the nifj gene product. J. Biol. Cbem. 258: 12064 12068.
50. Smith, E. T.,, J. M. Blarney,, and M. W. Adams. 1994. Pyruvate ferredoxin oxidoreductases of the hyperthermophilic archaeon, Pyrococcus furiosus and the hyperthermophilic bacterium Thermatoga maritima have different catalytic mechanisms. Biochemistry 33: 1008 1016.
51. Spiro, S.,, and J. R. Guest. 1991. Adaptive responses to oxygen limitation in Escherichia coli. Trends Biochem. Sci. 61: 310 314.
52. Tersteegen, A.,, D. Linder,, R. K. Thauer,, and R. Hedderich. 1997. Structures and functions of four anabolic 2-oxoacid oxidoreductases in Methanobacterium thermoautotrophicum. Eur. J. Biochem. 244: 862 868.
53. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleishmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539 547.
54. Weitkamp, H. J. H.,, G. I. Perez-Perez,, G. Bode,, P. Malfertheiner,, and M. J. Blaser. 1993. Identification and characterization of Helicobacter pylori phospholipase C activity. Int. J. Med. Microbiol. Virol. Parisitol. Infect. Dis. 280: 11 27.
55. Williams, K.,, P. N. Lowe,, and P. F. Leadlay. 1987. Purification and characterization of pyruvate ferredoxin oxidoreductase from the anaerobic protozoan Trichomonas vaginalis. Biochem. J. 246: 529 536.

Tables

Generic image for table
Table 1

Genomic and biochemical evidence for CAC enzymes in

Citation: Kelly D, Hughes N. 2001. The Citric Acid Cycle and Fatty Acid Biosynthesis, p 135-146. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch12
Generic image for table
Table 2

Summary of genes associated with fatty acid synthesis in

Citation: Kelly D, Hughes N. 2001. The Citric Acid Cycle and Fatty Acid Biosynthesis, p 135-146. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error