1887

Chapter 18 : Metabolite Transport

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Metabolite Transport, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap18-2.gif

Abstract:

This chapter describes the specific transport studies carried out in and the information about transporters in the bacterium that has been obtained from analyses of the genome. A summary of the current understanding of metabolite transport in is presented by combining the results of physiological and genomic studies. The identification and characterization of the transport capabilities of a bacterium employing genome analysis should indicate significant features of its physiology, including its preferred niche and sources of nutrition and its most common metabolic pathways. An interesting feature is that lacks the phosphoenolpyruvyte:sugar phosphotransferase system (PTS). The characterization of a glucose transport system is described, and a glucose/galactose transporter system is evident in the genomes. It will be interesting to ascertain whether new transport families emerge that diverge extensively with respect to substrate specificity or the number of molecular species they transport, which should further one’s understanding of the evolutionary processes that allow some families but not others to diversify in function. The combination of specific transport studies and total genome analysis has provided with information not only enhancing the understanding of physiology, but also serving to identify novel membrane targets for therapy.

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18

Key Concept Ranking

Primary Active Transporters
0.521613
Pyrimidine Nucleotide Biosynthesis
0.45406315
0.521613
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Kinetics of glucose transport. Rates of transport of 2-deoxyglucose into strain NCTC 11639 cells as a function of permeant concentration. Initial rates were determined at a fixed timepoint of 20 s using the centrifugation through oil method. The values represent the average of three measurements.

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Effects of monovalent cations on the rates of glucose transport. Rates of 2-deoxyglucose transport into strain NCTC 11639 cells suspended in phosphate buffers constituted with the chloride salts (150 mM) of different monovalent cations.

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Effects of inhibitors on fumarate transport. Rates of fumarate transport into NCTC 11639 cells suspended in phosphate-buffered saline, pH 7, determined at a fumarate concentration of 100 (µM, 20°C, and a timepoint of 30 s.

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Effects of temperature on arginine transport. Arrhenius plots of arginine transport into strain NCTC 11639 cells. Initial rates were determined at a permeant concentration of 0.5 mM, 20°C, and a fixed timepoint of 30 s using the centrifugation through oil method. The values represent the average of three measurements.

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818005.chap18
1. Alm, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
2. Baldwin, S. A., 1992. Mechanisms of active and passive transport in a family of homologous sugar transporters found in both prokaryotes and eukaryotes, p. 169217. In J. J. H. H. M. de Pont (ed.), Molecular Aspects of Transport Proteins. Elsevier, Amsterdam, The Netherlands.
3. Blaser, M. J. 1997. The versatility of Helicobacter pylori in the adaptation to the human stomach. J. Physiol. Pharmacol. 48:307314.
4. Burns, B. P.,, S. L. Hazell,, and G. L. Mendz. 1997. In situ properties of aspartate carbamoyltransferase activity in Helicobacter pylori. Arch. Biochem. Biophys. 347:119125.
5. Burns, B. P.,, S. L. Hazell,, and G. L. Mendz. 1998. A novel mechanism for resistance to the antimetabolite N-phoshonoacetyl-L-aspartate by Helicobacter pylori. J. Bacteriol. 180: 55745579.
6. Burns, B. P.,, S. L. Hazell,, G. L. Mendz,, T. Kolesnikow,, D. Tillett,, and B. A. Neilan. 2000. The Helicobacter pylori pyrB gene encoding aspartate carbamoyltransferase is essential for survival. Arch. Biochem. Biophys. 380:7884.
7. Catrenich, C. E.,, and K. M. Makin. 1991. Characterization of the morphologic conversion of Helicobacter pylori from bacillary to coccoid forms. Scand. J. Gastroenterol. 26:5864.
8. Chalk, P. A.,, A. D. Roberts,, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 140:20852092.
9. Chen, C.,, Q. Ye,, Z. Zhu,, B. L. Wanner,, and C. T. Walsh. 1990. Molecular biology of carbon-phosphorus cleavage. J. Biol. Chem. 265:44614471.
10. Collins, K. D.,, and G. R. Stark. 1971. Aspartate transcarbamylase. Interaction with the steady state analogue N-(phosphonacety)-L-aspartate. J. Biol. Chem. 246:65996605.
11. Cussac, V.,, R. L. Ferrero,, and A. Labigne. 1992. Nucleotide expression of Helicobacter pylori urease genes in Escherichia coli grown under nitrogen-limiting conditions. J. Bacteriol. 174:24662473.
12. Dawes, I. W.,, and I. W. Sutherland. 1992. Microbial Physiology. Blackwell Scientific, Oxford, United Kingdom.
13. Deguchi Y.,, I. Yamato,, and Y. Anraku. 1990. Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J. Biol. Chem. 265:2170421708.
14. Eisenthal, R.,, S. Game,, and G. D. Holman. 1989. Specificity and kinetics of hexose transport in Trypanosoma brucei. Biochim. Biophys. Acta 985:8189.
15. Engel, P.,, R. Kramer,, and G. Unden. 1992. Anaerobic fumarate transport in Escherichia coli by an fnr-dependent dicarboxylate uptake system which is different from the aerobic dicarboxylate uptake system. J. Bacteriol. 174:55335539.
16. Fulkerson, J. F., Jr.,, and H. L. T. Mobley. 2000. Membrane topology of the NixA nickel transporter of Helicobacter pylori: two nickel transport-specific motifs within transmembrane helices II and III. J. Bacteriol. 182:17221730.
17. Ge, Z.,, K. Hiratsuka,, and D. E. Taylor. 1995. Nucleotide sequence and mutational analysis indicate that two Helicobacter pylori genes encode a P-type ATPase and a cation-binding protein associated with copper transport. Mol. Microbiol. 15: 97106.
18. Ge, Z.,, and D. E. Taylor. 1996. Helicobacter pylori genes hpcopA and hpcopP constitute a cop operon involved in copper export. FEMS Microbiol. Lett. 145:181188.
19. Hawtin, P. R.,, H. T. Delves,, and D. G. Newell. 1991. The demonstration of nickel in the urease of Helicobacter pylori by atomic absorption spectroscopy. FEMS Microbiol. Lett. 77: 5154.
20. Hazell, S. L.,, A. Lee,, L. Brady,, and W. Hennessy. 1986. Campylobacter pyloridis and gastritis: association with intercellular spaces and adaptation to an environment of mucus as important factors in colonization of the gastric epithelium. J. Infect. Dis. 153:658663.
21. Hazell, S. L.,, and G. L. Mendz. 1997. How Helicobacter pylori works: an overview of the metabolism of Helicobacter pylori. Helicobacter 2:112.
22. Lopilato, J.,, T. Tsucbiya,, and T. H. Wilson. 1978. Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli. J. Bacteriol. 134: 147156.
23. Maloney, P. C. 1994. Bacterial transporters. Curr. Opin. Cell Biol. 6:571582.
24. Mendz, G. L. 1996. Elucidation of metabolic pathways employing one- and two-dimensional NMR spectroscopy. Bull. Magn. Reson. 17:138.
25. Mendz, G. L.,, B. P. Burns,, and S. L. Hazell. 1995. Characterisation of glucose transport in Helicobacter pylori. Biochim. Biophys. Acta 1244:269276.
26. Mendz, G. L.,, B. P. Burns,, E. M. Holmes,, S. L. Hazell,, S. Skouloubris,, and H. de Reuse. 2000. Characterization of urea transport in Helicobacter pylori. In Abstr. 100th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, D.C..
27. Mendz, G. L.,, and S. L. Hazell. 1993. Fumarate catabolism by Helicobacter pylori. Biochem. Mol. Biol. Int. 31:325332.
28. Mendz, G. L.,, and S. L. Hazell. 1995. Amino acid utilization by Helicobacter pylori. Int. J. Biochem. Cell Biol. 27:10851093.
29. Mendz, G. L.,, and S. L. Hazell. 1996. The urea cycle of Helicobacter pylori. Microbiology 142:2959.
30. Mendz, G. L.,, S. L. Hazell,, and B. P. Burns. 1992. Glucose utilisation and lactate production by Helicobacter pylori. J. Gen. Microbiol. 139:30233028.
31. Mendz, G. L.,, S. L. Hazell,, and B. P. Burns. 1994. The Entner-Doudoroff pathway in Helicobacter pylori. Arch. Biochem. Biophys. 312:349356.
32. Mendz, G. L.,, S. L. Hazel,, and S. Srinivasan. 1995. Fumarate reductase: a target for therapeutic intervention against Helicobacter pylori. Arch. Biochem. Biophys. 321:153159.
33. Mendz, G. L.,, S. L. Hazell,, and L. van Gorkom. 1994. Pyruvate metabolism in Helicobacter pylori. Arch. Microbiol. 162: 187192.
34. Mendz, G. L.,, E. M. Holmes,, and R. L. Ferrero. 1998. In situ characterization of Helicobacter pylori arginase. Biochim. Biophys. Acta 13882:465477.
35. Mendz, G. L.,, B. M. Jimenez,, S. L. Hazell,, A. M. Gero,, and W. J. O'Sullivan. 1994. De novo synthesis of pyrimidine nucleotides by Helicobacter pylori. J. Appl. Bacteriol. 77:18.
36. Mendz, G. L.,, B. M. Jimenez,, S. L. Hazell,, A. M. Gero,, and W. J. O'Sullivan. 1994. Salvage synthesis of purine nucleotides by Helicobacter pylori. J. Appl. Bacteriol. 77:674681.
37. Mendz, G. L.,, D. J. Meek, andS. L. Hazell. 1998. Characterization of fumarate transport in Helicobacter pylori. J. Membr. Biol. 165:6576.
38. Metcalf, W. W.,, and B. L. Wanner. 1993. Evidence for a fourteen-gene, phnC to phnP locus for phosphonate metabolism in Escherichia coli. Gene 129:2732.
39. Mobley, H. L.,, R. M. Garner,, and P. Bauerfeind. 1995. Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol. Microbiol. 16:97109.
40. Nakao, T.,, I. Yamato,, and Y. Anraku. 1987. Nucleotide sequence of putP, the proline carrier gene of Escherichia coli K12. Mol. Gen. Genet. 208:7075.
41. Nedenskov, P. 1994. Nutritional requirements for growth of Helicobacter pylori. Appl. Environ. Microbiol. 64: 34503453.
42. Paulsen, I. T.,, M. K. Sliwinski,, and M. H. Saier, Jr. 1998. Microbial genome analyses: global comparisons of transport capabilities based on phytogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277:573592.
43. Pitson, S. M.,, G. L. Mendz,, S. Srinivasan,, and S. L. Hazell. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260:258267.
44. Poolman, B.,, and W. N. Konings. 1993. Secondary solute transport in bacteria. Biochim. Biophys. Acta 1183:539.
45. Reynolds, D. J.,, and C. W. Perm. 1994. Characteristics of Helicobacter pylori growth in a defined medium and determination of its amino acid requirements. Microbiology 140:26492656.
46. Scott, D. R.,, E. A. Marcus,, D. L. Weeks,, A. Lee,, K. Melchers,, and G. Sachs. 2000. Expression of the Helicobacter pylori urel gene is required for acidic pH activation of cytoplasmic urease. Infect. Immun. 68:470477.
47. Shinitzky, M., 1984. Membrane fluidity and cellular functions, p. 151. In M. Shinitzky (ed.), Physiology of Membrane Fluidity, vol. I. CRC Press, Boca Raton, Fla..
48. Sipponen, P.,, M. Siurala,, and C. S. Goodwin,. 1993. Histology and ultrastructure of Helicobacter pylori infections: gastritis, duodenitis and peptic ulceration, and their relevance as precancerous conditions, p. 3762. In C. S. Goodwin, and B. J. Worsley (ed.), Helicobacter pylori Biology and Clinical Practice. CRC Press, Boca Raton, Fla..
49. Skulachev, V. P. 1988. The sodium world, p. 293326. In Membrane Bioenergetics. Springer-Verlag, Berlin, Germany.
50. Sorberg, M.,, M. Nilsson,, H. Hanberger,, and L. E. Nilsson. 1996. Morphologic conversion of Helicobacter pylori from bacillary to coccoid form. Eur. J. Clin. Microbiol. Infect. Dis. 15:216219.
51. Stein, W. D. 1990. Coupling of flows of substrates: antiporters and symporters, p. 173219. In Channels, Carriers and Pumps. Academic Press, San Diego, Calif.
52. Stock, J. W.,, and S. A. Roseman. 1971. Sodium-dependent sugar co-transport system in bacteria. Biochem. Biophys. Res. Commun. 44:132138.
53. Strauss, P. R.,, J. M. Sheehan,, and E. R. Kashket. 1976. Membrane transport by murine lympocytes. J. Exp. Med. 144: 10091018.
54. Sundermann, F. W. 1993. Biological monitoring of nickel in humans. Scand. J. Work Environ. Health. 19(Suppl. l):3438.
55. Taha, A. S.,, I. M. Huxman,, R. H. Park,, and A. D. Beattie. 1995. Assessment of gastric mucosal and mucus layer elemental trace metals in H. pylori gastritis using the novel techniques of electron energy loss spectroscopy (EELS). Gut 36:7521.
56. Tolner, B.,, M. E. van der Rest,, G. Speelmans,, and W. N. Konings,. 1992. Sodium coupled transport in bacteria, p. 4350. In E. Quagliariello, and F. Palmieri (ed.), Molecular Mechanisms of Transport. Elsevier, Amsterdam, The Netherlands.
57. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
58. Velayudhan, J.,, N. J. Hughes,, A. A. McColm,, J. Bagshaw,, C. L. Clayton,, S. C. Andrews,, and D. J. Kelly. 2000. Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol. Microbiol. 372:274286.
59. Weeks, D. L.,, S. Eskandari,, D. R. Scott,, and G. Sachs. 2000. A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287:482485.
60. Weinberg, E. D. 1984. Iron withholding: a defense against infection and neoplasia. Physiol. Rev. 64:65102.
61. Welch, S., 1992. Iron metabolism in man, p. 2540. In S. Welch (ed.), Transferrin: The Iron Carrier. CRC Press, Boca Raton, Fla..
62. Worst, D. J.,, J. Maaskant,, C. M. Vandenbroucke-Grauls,, and J. G. Kusters. 1999. Multiple heme-utilization loci in Helicobacter pylori. Microbiology 145:681688.
63. Wyatt, S. T.,, and S. F. Gray,. 1989. Detection of Campylobacter pylori by histology, p. 6368. In B. J. Rathbone, and R. V. Heatley (ed.), Campylobacter pylori and Gastroduodenal Disease. Blackwell Scientific, Oxford, United Kingdom.

Tables

Generic image for table
Table 1

Type of transport protein families in as identified by genome analysis

Citation: Burns B, Mendz G. 2001. Metabolite Transport, p 207-217. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error