1887

Chapter 21 : Motility, Chemotaxis, and Flagella

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Motility, Chemotaxis, and Flagella, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap21-2.gif

Abstract:

For many pathogenic bacteria, flagellum-dependent motility and chemotaxis are crucial factors in the process of colonization of the host organism and establishment of a successful infection. Structural components of the flagellum as well as secretory and regulatory proteins involved in the synthesis of the flagellar apparatus and the control of chemotaxis have been analyzed in recent years, and knowledge regarding the mechanisms of motility is rapidly increasing. The chapter summarizes the available experimental and genomic data on flagellar function and provides an overview of the current knowledge of this field. Transcription of s-dependent genes depends on upstream enhancer-like sequences, which are bound by a class of transactivating proteins usually referred to as the NtrC (NR-1) family. Characterized loci include the - operon coding for two flagellar export proteins and a stress-responsive operon containing the gene encoding the chemotaxis regulator CheY. Both of these operons have been shown to be regulated by a σ-dependent transcription, and sequence analysis of the genome suggests that the expression of the other flagellar biosynthetic, basal-body, and chemotaxis genes also is regulated by the same sigma factor. The regulation of chemotaxis has been extensively studied in the model organisms and serovar Typhimurium. In these bacteria, sensing of chemoattractants or -repellents is mediated by methyl-accepting chemotaxis proteins (MCP), which possess a periplasmic ligand interaction domain and a large cytoplasmic signaling and adaptation domain.

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21

Key Concept Ranking

Type III Secretion System
0.4217848
Gene Expression and Regulation
0.40425342
0.4217848
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Flagellar and chemotaxis proteins and their putative locations and interactions. The protein components of the major elements of the flagellum, the external filament, the hook, the basal body, and the motor-switch complex are shown. The external flagellar proteins that form the rod, hook, and filament are secreted by a specific export apparatus forming at the cytoplasmic side of the MS ring. The proton gradient at the cytoplasmic membrane drives a proton flow that energizes flagellar motor rotation. The direction of rotation is determined by the interaction of FliM in the motor-switch complex with the chemotaxis regulator CheY, whose activity is regulated by the other components of the chemotaxis system. Symbols: H, protons; P, phosphate; CH3, methyl group.

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Comparison of flagellar regulatory hierarchies in serovar Typhimurium (A), . (B), and . (C). Dependence of transcription on the specified sigma factors is indicated. Classes of flagellar genes are indicated by roman numbers. genes and operons whose promoters have been deduced on the basis of nucleotide sequence analysis are enclosed by gray boxes. Symbols:↱ promoter, ↓activation, ⊥ repression.

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Bacterial motility assay. The indicated strains were stab-inoculated into semisolid (0.3%) agar plates and incubated at 37°C for 3 days.

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818005.chap21
1. Aizawa, S.-L.,, C. S. Harwood,, and R. J. Kadner. 2000. Signaling components in bacterial locomotion and sensory reception. J. Bacteriol. 182:14591471.
2. Aim, R. A.,, P. Guerry,, and T. J. Trust. 1993. The Campylobacter σ54 flaB flagellin promoter is subject to environmental regulation. J. Bacteriol. 175:44484455.
3. Aim, R. A.,, L.-S. Lee,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
4. Amsler, C. D.,, and P. Matsumura,. 1995. Chemotactic signal transduction in Escherichia coli and Salmonella typhimurium, p. 89103. In A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, D.C.
5. Barinaga, M. 1996. A shared strategy for virulence. Science 272:12611263.
6. Beier, D.,, and R. Frank. 2000. Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. 182:20682076.
7. Beier, D.,, G. Spohn,, R. Rappuoli,, and V. Scarlato. 1997. Identification and characterization of an operon of Helicobacter pylori that is involved in motility and stress adaptation. J. Bacteriol. 179:46764683.
8. Clyne, M.,, T. Ocroinin,, S. Suerbaum,, C. Josenhans,, and B. Drumm. 2000. Adherence of isogenic flagellum-negative mutants of Helicobacter pylori and Helicobacter mustelae to human and ferret gastric epithelial cells. Infect. Immun. 68: 43354339.
9. Covacci, A., 1996. Mobilis in mobile: unexpected flexibility and quantum leaps in the Helicobacter pylori genome, p. 4049. In R. H. Hunt, and G. N. J. Tytgat (ed.), Helicobacter pylori—Basic Mechanisms to Clinical Cure. Kluwer Academic Publishers, Dordrecht, The Netherlands.
10. Dean, G. E.,, R. M. Macnab,, J. Stader,, P. Matsumura,, and C. Burks. 1984. Gene sequence and predicted amino acid sequence of the MotA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli. J. Bacteriol. 159:991999.
11. Eaton, K. A.,, D. R. Morgan,, and S. Krakowka. 1989. Campylobacter pylori virulence factors in gnotobiotic piglets. Infect. Immun. 57:11191125.
12. Eaton, K. A.,, D. R. Morgan,, and S. Krakowka. 1992. Motility as a factor in the colonisation of gnotobiotic piglets by Helicobacter pylori. J. Med. Microbiol. 37:123127.
13. Eaton, K. A.,, S. Suerbaum,, C. Josenhans,, and S. Krakowka. 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64: 24452448.
14. Eisenbach, M. 1996. Control of chemotaxis. Mol. Microbiol. 20:903910.
15. Evans, D. G.,, R. K. Karjalainen,, D. J. J. Evans,, D. Y. Graham,, and C. H. Lee. 1993. Cloning, nucleotide sequence and expression of a gene encoding an adhesin subunit protein of Helicobacter pylori. J. Bacteriol. 175:674683.
16. Foynes, S.,, N. Dorrell,, S. J. Ward,, R. A. Stabler,, A. A. McColm,, A. N. Rycroft,, and B. W. Wren. 2000. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect. Immun. 68:20162023.
17. Foynes, S.,, N. Dorrell,, S. J. Ward,, Z. W. Zhang,, A. A. McColm,, M. J. G. Farthing,, and B. W. Wren. 1999. Functional analysis of the roles of FliQ and FlhB in flagellar expression in Helicobacter pylori. FEMS Microbiol. Lett. 174:3339.
18. Francis, N. R.,, V. M. Irikura,, S. Yamaguchi,, D. J. DeRosier,, and R. M. Macnab. 1992. Localization of the S. typhimurium flagellar switch protein FliG in the cytoplasmic M-ring face of the basal-body. Proc. Natl. Acad. Sci. USA 89:63046308.
19. Francis, N. R.,, G. E. Sosinsky,, D. Thomas,, and D. J. DeRosier. 1994. Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J. Mol. Biol. 235: 12611270.
20. Geis, G.,, S. Suerbaum,, B. Forsthoff,, H. Leying,, and W. Opferkuch. 1993. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J. Med. Microbiol. 38: 371377.
21. Haas, R.,, T. F. Meyer,, and J. P. M. van Putten. 1993. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using shuttle mutagenesis. Mol. Microbiol. 8:753760.
22. Homma, M.,, D. J. DeRosier,, and R. M. Macnab. 1990. Flagellar hook and hook-associated proteins of Salmonella typhimurium and their relationship to other axial components of the flagellum. J. Mol. Biol. 213:819832.
23. Homma, M.,, and T. lino. 1985. Locations of hook-associated proteins in flagellar structure of Salmonella typhimurium. J. Bacteriol. 162:183189.
24. Homma, M.,, K. Kutsukake,, M. Hasebe,, T. lino,, and R. M. Macnab. 1990. FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211:465477.
25. Jenks, P. J.,, S. Foynes,, S. J. Ward,, C. Constantinidou,, C. W. Penn,, and B. W. Wren. 1997. A flagellar-specific ATPase (FliI) is necessary for flagellar export in Helicobacter pylori. FEMS Microbiol. Lett. 152:205211.
26. Jones, C. J.,, M. Homma,, and R. M. Macnab. 1989. L-, P-, and M-ring proteins of the flagellar basal body of Salmonella typhimurium: gene sequences and deduced protein sequences. J. Bacteriol. 171:38903900.
27. Jones, A. C.,, R. P. H. Logan,, S. Foynes,, A. Cockayne,, B. W. Wren,, and C. W. Penn. 1997. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetyl-neuraminidyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J. Bacteriol. 179:56435647.
28. Josenhans, C.,, A. Labigne,, and S. Suerbaum. 1995. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol. 177:30103020.
29. Kim, J. S.,, J. H. Chang,, S. I. Chung,, and J. S. Yum. 1999. Molecular cloning and characterization of the Helicobacter pylori fliD gene, an essential factor in flagellar structure and motility. J. Bacteriol. 181:69696976.
30. Kostrzynska, M.,, J. D. Betts,, J. W. Austin,, and T. J. Trust. 1991. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J. Bacteriol. 173:937946.
31. Kustu, S.,, K. North,, and D. Weiss. 1991. Prokaryotic transcriptional enhancers and enhancer-binding proteins. Trends Biochem. Sci. 16:397402.
32. Leying, H.,, S. Suerbaum,, G. Geis,, and R. Haas. 1992. Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol. Microbiol. 6:28632874.
33. Macnab, R. M., 1995. Flagellar switch, p. 181199. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, D.C.
34. Macnab, R. M., 1996. Flagella and motility, p. 123145. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
35. Mizote, T.,, H. Yoshiyama,, and T. Nakazawa. 1997. Urease-independent chemotactic responses of Helicobacter pylori to urea, urease inhibitors, and sodium bicarbonate. Infect. Immun. 65:15191521.
36. Moens, S.,, and J. Vanderleyden. 1996. Functions of bacterial flagella. Crit. Rev. Microbiol. 22:67100.
37. Nakamura, H.,, H. Yoshiyama,, H. Takeuchi,, T. Mizote,, K. Okita,, and T. Nakazawa. 1998. Urease plays an important role in the chemotactic motility of Helicobacter pylori in a viscous environment. Infect. Immun. 66:48324837.
38. O'Toole, P. W.,, M. Kostrzynska,, and T. J. Trust. 1994. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol. Microbiol. 14:691703.
39. Ottemann, K. M.,, and J. F. Miller. 1997. Roles for motility in bacterial-host interactions. Mol. Microbiol. 24:11091117.
40. Porwollik, S.,, B. Noonan,, and P. W. O'Toole. 1999. Molecular characterization of a flagellar export locus of Helicobacter pylori. Infect. Immun. 67:20602070.
41. Schmitz, A.,, C. Josenhans,, and S. Suerbaum. 1997. Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J. Bacteriol. 179:987997.
42. Spohn, G.,, and V. Scarlato. 1999. Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J. Bacteriol. 181:593599.
43. Spohn, G.,, and V. Scarlato. 1999. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol. 34:663674.
44. Stader, J.,, P. Matsumura,, D. Vacante,, G. E. Dean,, and R. M. Macnab. 1986. Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane. J. Bacteriol. 166:244252.
45. Suerbaum, S. 1995. The complex flagella of gastric Helicobacter species. Trends Microbiol. 3:168170.
46. Suerbaum, S.,, C. Josenbaus,, and A. Labigne. 1993. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flagellin genes and construction of H. pylori flaA- and /ZaB-negative mutants by electroporation-mediated allelic exchange. J. Bacteriol. 175:32783288.
47. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dod-son,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzeger-ald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
48. Turner, G. A.,, R. P. H. Logan,, R. Chinnery,, A. Cockayne,, C. J. Hawkey,, and S. P. Borriello. 1997. Trefoil peptides are unique chemotaxins for Helicobacter pylori. Gastroenterology 112:A1107.
49. Worku, M.,, R. L. Sidebotham,, B. W. Wren,, and Q. N. Karim. 1997. Chemotaxis of H. pylori in presence of human plasma. Gut 41:A25 (abstract).
50. Wu, J.,, and A. Newton. 1997. Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol. Microbiol. 24:233239.
51. Yokoseki, T.,, K. Kutsukake,, K. Ohnishi,, and T. lino. 1995. Functional analysis of the flagellar genes in the fliD operon of Salmonella typhimurium. Microbiology 141:17151722.

Tables

Generic image for table
Table 1

Flagellar genes identified in the two published genome sequences

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21
Generic image for table
Table 2

Putative flagellar genes and operons and associated promoter sequences

Citation: Spohn G, Scarlato V. 2001. Motility, Chemotaxis, and Flagella, p 239-248. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error