1887

Chapter 23 : Chromosomal Replication, Plasmid Replication, and Cell Division

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Chromosomal Replication, Plasmid Replication, and Cell Division, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap23-2.gif

Abstract:

The study of chromosomal replication and cell division of bacteria has extended beyond , and important insights have emerged recently from studies in other species, especially and . Cell division is coordinated with other cell cycle events such as genomic DNA synthesis that leads to chromosomal replication and partition, increase of cell mass, and cell expansion by cell wall synthesis. This chapter reviews the information about predicted genes related to chromosomal replication, plasmid replication, and cell division in , and a plausible replication machinery of the bacterium is discussed in light of the current understanding of bacterial organization and function of replication and cell division. The DnaA protein is essential for the initiation of chromosomal replication and is highly conserved among different bacteria. Clinical isolates of have been reported to carry plasmids ranging in size from 1.5 to 40 kb. Three cryptic plasmids, pHPK225 (1.5 kb), pHPM180 (3.5 kb), and pHell (2.9 kb), have been completely sequenced. Cell division of gram-negative bacteria proceeds through nucleoid segregation, partitioning of the cytoplasm into two compartments each containing a copy of the cell's genetic information, and invagination of the three layers of the cell envelope between the chromosome. Chromosomal replication and cell division of bacteria are well-organized and coordinately regulated processes operated by a complex genetic machinery. seems to possess almost all the components known to be involved in chromosomal replication and cell division in .

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23

Key Concept Ranking

Flagellar Basal-Body Rod Protein
0.47534186
0.47534186
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Regions including the putative origin of replication () of 26695 and J99. Numbers at each end of the scale represent the position in nucleotides in the genome. Open boxes without gene names represent hypothetical genes with unknown functions. Genes in this region are (dihydroneopterin), (iron-regulated outer membrane protein aldolase), (selenocysteine synthase), (transcription termination factor), (type II restriction enzyme R and M protein), (type III restriction enzyme R protein), (adenine-specific DNA methyltransferase), (ATP-dependent DNA helicase), and (chromosomal replication initiator protein). JHP1409 is for type II DNA modification enzyme (methyltransferase) ( ). Numbers under the boxes represent HP and JHP numbers of strains 26695 and J99, respectively. Horizontal arrows above the boxes represent the direction of transcription. The DnaA-box sequences with exact matches (•) and a single mismatch (O) are indicated.

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Localization of cell division-related genes on the 26695 genome. Boxes with numbers below represent ORF of strain 26695. Horizontal arrows above the boxes represent the direction of transcription. Boxes are not drawn to scale and are separated when the genes are more than 20 bp apart. Closed boxes represent putative genes involved in cell division listed in Table 2 . Other genes in these regions are (acetohydroxy acid isomeroreductase), (DNA processing chain A), (ribosomal protein L11 methyltransferase), (phosphatidylserine synthase), (pyrroline-5-carboxylate reductase), (translation elongation factor EF-Ts), (flagellar basal-body protein), (flagellar basal-body rod protein), (flagellar basal-body rod protein), and (ferric iron ABC transporter, periplasmic iron-binding protein). Vertical-striped and open boxes represent conserved hypothetical and hypothetical genes, respectively.

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

HPK5 (wild type, left) and HPKT510 (-disrupted mutant, right) micrographs. 4′, 6′-diamidino-2-phenylindole (DAP)-stained micrographs (A) and shadowed electron micrographs (B) of HPK5 (wild type) and HPKT510 (-disrupted mutant) from exponential-phase cultures. Cells were grown in brucella broth supplemented with 5% horse serum under a microaerobic condition ( ). Bars indicate 10 μm in A and 1 μm in B.

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818005.chap23
1. Addinall, S. G.,, C. Cao,, and J. Lutkenhaus. 1997. FtsN, a late recruit to the septum in Escherichia coli. Mol. Microbiol. 25: 303 309.
2. Aim, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176 180.
3. Ando, T.,, D. A. Israel,, K. Kusugami,, and M. J. Blaser. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J. Bacteriol. 181: 5572 5580.
4. Baker, T. A. 1995. Replication arrest. Cell 80: 521 524.
5. Baker, T. A.,, and S. P. Bell. 1998. Polymerases and the replisome: machines within machines. Cell 92: 295 305.
6. Begg, K.,, Y. Nikolaicbilk,, N. Crossland,, and W. D. Donachie. 1998. Roles of FtsA and FtsZ in activation of division sites. J. Bacteriol. 180: 881 884.
7. Beier, D.,, and R. Frank. 2000. Molecular characterization of two-component systems of Helicobacter pylori. J. Bacteriol. 182: 2068 2076.
8. Boyle, D. S.,, M. M. Khattar,, S. G. Addinall,, J. Lutkenhaus,, and W. D. Donachie. 1997. ftsW is an essential cell-division gene in Escherichia coli. Mol. Microbiol. 24: 1263 1273.
9. Carballes, F.,, C. Bertrand,, J. P. Bouche,, and K. Cam. 1999. Regulation of Escherichia coli cell division genes ftsA and ftsZ by the two-component system rcsC- rcsB. Mol. Microbiol. 34: 442 450.
10. Dai, K.,, and J. Lutkenhaus. 1992. The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J. Bacteriol. 174: 6145 6151.
11. Daniel, R. A.,, E. J. Harry,, and J. Errington. 2000. Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol. Microbiol. 35: 299 311.
12. de Boer, P. A.J.,, R. E. Crossley,, R. E. Hand,, and L. I. Rothfield. 1991. The MinD protein is a membrane ATPase required for correct placement of the Escherichia coli division site. EMBO J. 10: 4371 4380.
13. de Boer, P. A.,, R. E. Crossley,, and L. I. Rothfield. 1992. Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli. J. Bacteriol. 174: 63 70.
14. de Leeuw, E.,, B. Graham,, G. J. Phillips,, C. M. ten Hagen-Jongman,, B. Oudega,, and J. Luirink. 1999. Molecular characterization of Escherichia coli FtsE and FtsX. Mol. Microbiol. 31: 983 993.
15. de Leeuw, E.,, K. te Kaat,, E. C., Moser,, G. Menestrina,, R. Demel,, B. de Kruijff,, B. Oudega,, J. Luirink,, and I. Sinning. 2000. Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J. 19: 531 541.
16. Dewar, S. J.,, K. J. Begg,, and W. D. Donachie. 1992. Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ. J. Bacteriol. 174: 6314 6316.
17. Doig, P.,, B. de Jonge,, R. A. Aim,, E. D. Brown,, M. Uria-Nickelsen,, B. Noonan,, S. D. Mills,, P. Tummino,, G. Carmel,, B. C. Guild,, D. T. Moir,, G. F. Vovis,, and T. J. Trust. 1999. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol. Mol. Biol. Rev. 63: 675 707.
18. Draper, G. C.,, N. McLennan,, K. Begg,, M. Masters,, and W. D. Donachie. 1998. Only the N-terminal domain of FtsK functions in cell division. J. Bacteriol. 180: 4621 4627.
19. Garner, J.,, and E. Crooke. 1996. Membrane regulation for the chromosomal replication activity of E. coli DnaA requires a discrete site on the protein. EMBO J. 15: 3477 3485.
20. Ge, Z.,, and T. E. Taylor. 1996. Sequencing, expression, and genetic characterization of the Helicobacter pylori ftsH gene encoding a protein homologous to members of a novel putative ATPase family. J. Bacteriol. 178: 6151 6157.
21. Guenther, B.,, R. Onrust,, A. Sali,, M. O'Donnell,, and J. Kuriyan. 1997. Crystal structure of the 8 subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91: 335 345.
22. Heuermann, D.,, and R. Haas. 1995. Genetic organization of a small cryptic plasmid of Helicobacter pylori. Gene 165: 17 24.
23. Heuermann, D.,, and R. Hass. 1998. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257: 519 528.
24. Hill, T. M., 1996. I nitiation of chromosome replication, p. 1602 1614. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
25. Hiratsu, K.,, H. Shinagawa,, and K. Makino. 1995. Mode of promoter recognition by the Escherichia coli RNA polymerase holoenzyme containing the sigma S subunit: identification of recognition sequence of the fic promoter. Mol. Microbiol. 18: 841 850.
26. Hu, Z.,, and J. Lutkenhaus. 1999. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34: 82 90.
27. Huang, J.,, C. Cao,, and J. Lutkenhaus. 1996. Interaction between FtsZ and inhibitor of cell division. J. Bacteriol. 178: 5080 5085.
28. Katayama, T.,, and E. Crooke. 1995. DnaA protein is sensitive to a soluble factor and is specifically inactivated for initiation of in vitro replication of the Escherichia coli minichromosome. J. Biol. Chem. 270: 9265 9271.
29. Katayama, T.,, T. Kubota,, K. Kurokawa,, E. Crooke,, and K. Sekimizu. 1998. The initiator function of DnaA protein is negatively regulated by the sliding clamp of the E. coli chromosomal replicase. Cell 94: 61 71.
30. Kelman, Z.,, and M. O'Donnell. 1995. DNA polymerase III holoenzyme: Structure and function of a chromosomal replicating machine. Annu. Rev. Biochem. 64: 171 200.
31. Khattar, M. M.,, S. G. Addinall,, K. H. Stedul,, D. S. Boyle,, J. Lutkenhaus,, and W. D. Donachie. 1997. Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function. J. Bacteriol. 179: 784 793.
32. Kleanthous, H.,, C. L. Clayton,, and S. Tabaqchali. 1991. Characterization of a plasmid from Helicobacter pylori encoding a replication protein common to plasmids in gram-positive bacteria. Mol. Microbiol. 5: 2377 2389.
33. Komano, T.,, R. Utsumi,, and M. Kawamukai. 1991. Functional analysis of the fic gene involved in regulation of cell division. Res. Microbiol. 142: 269 277.
34. Kong, X. P.,, R. Onrust,, M. O'Donnell,, and J. Kuriyan. 1992. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69: 425 437.
35. Langer, T. 2000. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem. Sci. 25: 247 251.
36. Leying, H.,, S. Suerbaum,, G. Geis,, and R. Haas. 1992. Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol. Microbiol. 6: 2863 2874.
37. Lowe, J.,, and L. A. Amos. 1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391: 203 206.
38. Luirink, J.,, C. M. ten Hagen-Jongman,, C. C. van der Weijden,, B. Oudega,, S. High,, B. Dobberstein,, and R. Kusters. 1994. An alternative protein targeting pathway in Escherichia coli: studies on the role of ftsY. EMBO J. 13: 2289 2296.
39. Lutkenhaus, J.,, and A. Mukherjee,. 1996. Cell division, p. 1615 1626. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
40. Ma, X.,, and W. Margolin. 1999. Genetic and functional analyses of conserved C-terminal core domain of Escherichia coli FtsZ. J. Bacteriol. 181: 7531 7544.
41. Marczynski, G.,, and L. Shapiro. 1993. Bacterial chromosome origins of replication. Curr. Opin. Genet. Dev. 3: 775 782.
42. McGlynn, P.,, A. A. Mahdi,, and R. G. Lloyd. 2000. Characterization of the catalytically active form of RecG helicase. Nucleic Acids Res. 28: 2324 2332.
43. Messer, W.,, and C. Weigel,. 1996. Initiation of chromosome replication, p. 1579 1601. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. American Society for Microbiology, Washington, D.C..
44. Minnis, J. A.,, T. E. Taylor,, J. E. Knesek,, W. L. Peterson,, and S. A. Mclntire. 1995. Characterization of a 3.5-kbp plasmid from Helicobacter pylori. Plasmid 34: 22 36.
45. Naktinis, V.,, J. Turner,, and M. O'Donnell. 1996. A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 84: 137 145.
46. Newman, G.,, and E. Crooke. 2000. DnaA, the initiator of Escherichia coli chromosomal replication, is located at the cell membrane. J. Bacteriol. 182: 2604 2610.
47. Niki, H.,, R. Imamura,, M. Kitaoka,, K. Yamanaka,, T. Ogura,, and S. Hiraga. 1992. E. coli MukB protein involved in chromosome partition forms a homodimer with a rod-and-hinge structure having DNA binding and ATP/GTP binding activities. EMBO J. 11: 5101 5109.
48. Ogura, T.,, K. Inoue,, T. Tatsuta,, T. Suzaki,, K. Karata,, K. Young,, L. H. Su,, C. A. Fierke,, J. E. Jackman,, C. R. Raetz,, J. Coleman,, T. Tomoyasu,, and H. Matsuzawa. 1999. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol. Microbiol. 31: 833 844.
49. Penfold, S. S.,, A. J. Lastovica,, and B. G. Elisha. 1988. Demonstration of plasmids in Campylobacter pylori. J. Infect. Dis. 157: 850 851.
50. Perals, K.,, F. Cornet,, Y. Merlet,, I. Delon,, and J. M. Louarn. 2000. Functional polarization of the Escherichia coli chromosome terminus: the dif site acts in chromosome dimer resolution only when located between long stretches of opposite polarity. Mol. Microbiol. 36: 33 43.
51. Raskin, D. M.,, and P. A. de Boer. 1997. The MinE ring: an FtsZ-independent cell structure required for selection of the correct division site in E. coli. Cell 91: 685 694.
52. Raskin, D. M.,, and P. A. de Boer. 1999. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181: 6419 6424.
53. Roth, A.,, and W. Messer. 1995. The DNA binding domain of the initiator protein DnaA. EMBO J. 14: 2106 2111.
54. Rothfield, L. I.,, P. A. de Boer,, and W. R. Cook. 1990. Localization of septation sites. Res. Microbiol. 141: 57 63.
55. Rothfield, L.,, S. Justice,, and J. Garcia-Lara. 1999. Bacterial cell division. Annu. Rev. Genet. 33: 423 448.
56. Salzberg, S. L.,, A. J. Salzberg,, A. R. Kerlavage,, and J. F. Tomb. 1998. Skewed oligomers and origins of replication. Gene 217: 57 67.
57. Simor, A. E.,, B. Shames,, B. Drumm,, P. Sherman,, D. E. Low,, and J. L. Penner. 1990. Typing of Campylobacter pylori by bacterial DNA restriction endonuclease analysis and determination of plasmid profil. J. Clin. Microbiol. 28: 83 86.
58. Skarstad, K.,, and E. Boye. 1994. The initiator protein DnaA: evolution, properties and function. Biochim. Biophys. Acta 1217: 111 120.
59. Spohn, G.,, and V. Scarlato. 1999. Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J. Bacteriol. 181: 593 599.
60. Suerbaum, S.,, C. Josenhans,, and A. Labigne. 1993. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB- negative mutants by electroporation-mediated allelic exchange. J. Bacteriol. 175: 3278 3288.
61. Sun, Q.,, and W. Margolin. 1998. FtsZ dynamics during the division cycle of live Escherichia coli cells. J. Bacteriol. 180: 2050 2056.
62. Takeuchi, H.,, M. Shirai,, J. K. Akada,, M. Tsuda,, and T. Nakazawa. 1998. Nucleotide sequence and characterization of cdrA, a cell division-related gene of Helicobacter pylori. J. Bacteriol. 180: 5263 5268.
63. Tijia, T. N.,, W. E. S. Harper,, C. S. Goodwin,, and W. B. Grubb. 1987. Plasmids in Campylobacter pylori. Microbiol. Lett. 36: 7 11.
64. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539 547.
65. Valent, Q. A.,, D. A. Kendall,, S. High,, R. Kusters,, B. Oudega,, and J. Luirink. 1995. Early events in preprotein recognition in E. coli: interaction of SRP and trigger factor with nascent polypeptides. EMBO J. 14: 5494 5505.
66. Valent, Q. A.,, P. A. Scotti,, S. High,, J. W. de Gier,, G. von Heijne,, G. Lentzen,, W. Wintermeyer,, B. Oudega,, and J. Luirink. 1998. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J. 17: 2504 2512.
67. William, D. D. 1993. The cell cycle of Escherichia coli. Annu. Rev. Microbiol. 47: 199 230.
68. Yoshikawa, H.,, and N. Ogasawara. 1991. Structure and function of DnaA and DnaA-box in eubacteria: evolutionary relationships of bacterial replication origins. Mol. Microbiol. 5: 2589 2597.
69. Yu, X.-C.,, E. K. Weihe,, and W. Margolin. 1998. Role of the C terminus of ftsK in Escherichia coli chromosome segregation. J. Bacteriol. 180: 6424 6428.
70. Yung, B. Y. M.,, E. Crooke,, and A. Rornberg. 1990. Fate of the DnaA initiator protein in replication at the origin of Escherichia coli chromosome in vitro. J. Biol. Chem. 265: 1282 1285.
71. Zakharova, N.,, P. S. Hoffman,, D. E. Berg,, and K. Severinov. 1998. The largest subunits of RNA polymerase from gastric helicobacters are tethered. J. Biol. Chem. 273: 19371 19374.

Tables

Generic image for table
Table 1

Proteins involved in chromosomal replication of and their homologs recognized in

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23
Generic image for table
Table 2

Proteins involved in cell division of and their homologs identified in strains 26695 and J99

Citation: Takeuchi H, Nakazawa T. 2001. Chromosomal Replication, Plasmid Replication, and Cell Division, p 259-267. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch23

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error