1887

Chapter 24 : Restriction and Modification Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Restriction and Modification Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap24-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap24-2.gif

Abstract:

Prokaryotic restriction-modification (R-M) systems were first recognized in nearly 50 years ago and are now known to be ubiquitous among bacterial species. This chapter summarizes the current state of knowledge regarding the structure and function of the large number of putative restriction-modification (R-M) genes and systems that are now recognized to be present in . Restriction enzyme activity is catalyzed by a complex containing both Mod and Res subunits; however, the gene product can function independently as a modification methylase. The genetic organization of type I R-M systems is similar to that found in and other enteric bacteria, in which each subunit is encoded by contiguous , , and genes. The HsdS subunit of type I R-M systems determines the DNA sequence specificity for both restriction and modification reactions. The HsdS proteins (S1, S2, S3) in either strain share no significant amino acid homology to each other. Type II and IIS R-M systems are generally encoded by contiguous genes and, unlike type I and III R-M systems, are composed of independent restriction endonuclease and methyltransferase enzymes. Expression of functional type III R-M systems has not yet been demonstrated in . The apparent requirement for slipped-strand repair of frameshift mutations in and suggests that these two putative type III systems may not be expressed.

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24

Key Concept Ranking

Horizontal Gene Transfer
0.40528437
0.40528437
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818005.chap24
1. Akopyants, N. S.,, A. Fradkov,, L. Diatchenko,, J. E. Hill,, P. D. Siebert,, S. A. Lukyanov,, E. D. Sverdlov,, and D. E. Berg. 1998. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95: 13108 13113.
2. Akopyants, N. S.,, Q. Jiang,, D. E. Taylor,, and D. E. Berg. 1997. Corrected identity of isolates of Helicobacter pylori reference strain NCTC11637. Helicobacter 2: 48 52.
3. Aim, R. A.,, L. S. L. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trost. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397: 176 180.
4. Aim, R. A.,, and T. J. Trust. 1999. Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J. Mol. Med. 77: 834 846.
5. Ando, T.,, Q. Xu,, M. Torres,, K. Kusugami,, D. A. Israel,, and M. J. Blaser. 2000. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37: 1052 1065.
6. Appelmelk, B. J.,, S. L. Martin,, M. A. Monteiro,, C. A. Clayton,, A. A. McColm,, P. Zheng,, T. Verboom,, J. J. Maaskant,, D. H. van den Eijnden,, C. H. Hokke,, M. B. Perry,, C. M. Vanden-broucke-Grauls,, and J. G. Kusters. 1999. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in alpha3-fucosyltransferase genes. Infect. Immun. 67: 5361 5366. ( Erratum, 67:6715.)
7. Aras, R.,, and M. J. Blaser. 2000. Conservation of a type IIS restriction-modification system in Helicobacter pylori with homology to the MboII R-M system in Moraxella bovis, abstr. D-279, p. 290. In Abstr. 100th Gen. Meet. Am. Soc. Microbiol. 2000. American Society for Microbiology, Washington, D.C.
8. Bertani, G.,, and J. J. Weigle. 1953. Host controlled variation in bacterial viruses. J. Bacterial. 65: 113 121.
9. Bickle, T. A.,, and D. H. Kruger. 1993. Biology of DNA restriction. Microbiol. Rev. 57: 434 450.
10. Cover, T. L.,, M. K. Tummuru,, P. Cao,, S. A. Thompson,, and M. J. Blaser. 1994. Divergence of genetic sequences for the vacuolating cytotoxin among Helicobacter pylori strains. J. Biol. Chem. 269: 10566 10573.
11. de Vries, N.,, D. Duinsbergen,, E. J. Kuipers,, P. Wiesenekker,, C. M. Vandenbroucke-Grauls,, and J. G. Kusters. 2000. Phase variation in a type III restriction-modification system of Helicobacter pylori. Gastroenterology 118: A736.
12. Donahue, J. P.,, D. A. Israel,, R. M. Peek, Jr.,, M. J. Blaser,, and G. G. Miller. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37: 1066 1074.
13. Donahue, J. P.,, R. M. Peek, Jr.,, L.-J. van Doorn,, S. A. Thompson,, Q. Xu,, M. J. Blaser,, and G. G. Miller. 2000. Analysis of iceA1 transcription in Helicobacter pylori. Helicobacter 5: 1 12.
14. Figueiredo, C.,, W. G. Quint,, R. Sanna,, E. Sablon,, J. P. Donahue,, Q. Xu,, G. G. Miller,, R. M. Peek,, M. J. Blaser,, and L.-J. van Doorn. 2000. Genetic organization and heterogeneity of the iceA locus of Helicobacter pylori. Gene 246: 59 68.
15. Foster, P. L.,, and J. M. Trimarchi. 1994. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. Science 265: 407 409.
16. Heintschel von Heinegg, E.,, H. P. Nalik,, and E. N. Schmid. 1993. Characterization of a Helicobacter pylori phage (HP1). J. Med. Microbiol. 38: 245 249.
17. Ivic, A.,, K. J. Jakeman,, C. W. Penn,, and N. L. Brown. 1999. Type II restriction endonucleases from Helicobacter pylori include an enzyme with a novel recognition sequence. FEMS Microbiol. Lett. 179: 175 180.
18. Janulaitis, A.,, M. Petrusyte,, Z. Maneliene,, S. Klimasauskas,, and V. Butkus. 1992. Purification and properties of the Eco57I restriction endonuclease and methylase-prototypes of a new class (type IV). Nucleic Acids Res. 20: 6043 6049.
19. Kobayashi, I.,, A. Nobusato,, N. Kobayashi-Takahashi,, and I. Uchiyama. 1999. Shaping the genome-restriction-modification systems as mobile genetic elements. Curr. Opin. Genet. Dev. 9: 649 656.
19a. Kong, H.,, L.-F. Lin,, N. Porter,, S. Stickel,, D. Byrd,, J. Posfai,, and R. J. Roberts. 2000. Functional analysis of putative restriction-modification system genes in the Helicobacter pylori J99 genome. Nucleic Acids Res. 28: 3216 3223.
20. Luria, S. E.,, and M. L. Human. 1952. A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol. 64: 557 569.
21. McKane, M.,, and R. Milkman. 1995. Transduction, restriction and recombination patterns in Escherichia coli. Genetics 139: 35 43.
22. Murray, N. E. 2000. Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol. Mol. Biol. Rev. 64: 412 434.
23. Peek, R. M., Jr.,, S. A. Thompson,, J. P. Donahue,, K. T. Tham,, J. C. Atherton,, M. J. Blaser,, and G. G. Miller. 1998. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc. Assoc. Am. Phys. 110: 531 544.
24. Redaschi, N.,, and T. A. Bickle,. 1996. DNA restriction and modification systems, p. 773 781. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
25. Roberts, R. J.,, and D. Macelis. 2000. REBASE—restriction enzymes and methylases. Nucleic Acids Res. 28: 306 307.
26. Rosenberg, S. M.,, S. Longerich,, P. Gee,, and R. S. Harris. 1994. Adaptive mutation by deletions in small mononucleotide repeats. Science 265: 405 407.
27. Schmid, E. N.,, G. von Recklinghausen,, and R. Ansorg. 1990. Bacteriophages in Helicobacter (Campylobacter) pylori. J. Med. Microbiol. 32: 101 104.
28. Smith, G. R. 1987. Mechanism and control of homologous recombination in Escherichia coli. Annu. Rev. Genet. 21: 179 201.
29.The Institute for Genomic Research. 2000. http://www. tigr.org..
30. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. X. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dod-son,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzeger-ald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539 547.
31. Tsuda, M.,, M. Karita,, and T. Nakazawa. 1993. Genetic transformation in Helicobacter pylori. Microbiol. Immunol. 37: 85 89.
31a.. Vitkute, J.,, K. Stankevicius,, G. Tamulaitiene,, Z. Maneliene,, A. Timinskas,, D. E. Berg,, and A. Janulaitis. 2001. Specificities of eleven different DNA methyltransferases of Helicobacter pylori strain 26695. J. Bacteriol. 183: 443 450.
32. Wilson, G. G.,, and N. E. Murray. 1991. Restriction and modification systems. Annu. Rev. Genet. 25: 585 627.
33. Xu, Q.,, R. D. Morgan,, R. J. Roberts,, and M. J. Blaser. 2000. Identification of type II restriction and modification systems in Helicobacter pylori reveals their substantial diversity among strains. Proc. Natl. Acad. Sci. USA 97: 9671 9676.
34. Xu, Q.,, R. M. Peek,, G. G. Miller,, and M. J. Blaser. 1997. The Helicobacter pylori genome is modified at CATG by the product of hpyIM. J. Bacteriol. 179: 6807 6815.
35. Xu, Q.,, S. Stickel,, R. J. Roberts,, M. J. Blaser,, and R. D. Morgan. 2000. Purification of the novel endonuclease, Hpyl881, and cloning of its restriction-modification genes reveal evidence of its horizontal transfer to the Helicobacter pylori genome. J. Biol. Chem. 275: 17086 17093.

Tables

Generic image for table
Table 1

Type I R-M genes predicted from genome sequences

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24
Generic image for table
Table 2

Type II R-M genes predicted from genome sequences

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24
Generic image for table
Table 3

Type III R-M genes predicted from genome sequences

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24
Generic image for table
Table 4

Type II and IIS restriction enzymes isolated from various strains

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24
Generic image for table
Table 5

Type II DNA methyltransferase activity in 19 strains

Citation: Donahue J, Peek, Jr. R. 2001. Restriction and Modification Systems, p 269-276. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch24

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error