Chapter 26 : Transcription and Translation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Transcription and Translation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap26-2.gif


Regulation of the transcription and translation mechanisms of is presumed to be similar to those of the well-studied , because both are gram-negative bacteria. Complete DNA sequencing of the genomes of two different strains of has allowed the application of powerful sequence homology searches to assign putative functions to various open reading frames (ORFs), leading to hypotheses regarding transcriptional and translational processes in genomes. This chapter focuses on experimental results dealing with transcription and translation obtained in the past few years. DNA-dependent RNA polymerase mediates synthesis of RNA from a DNA template. The discovery that undergoes spontaneous autolysis toward the end of log-phase growth and the conversion of bacteria into coccoid forms is consistent with these explanations. The lack of an identifiable ortholog of has been interpreted as suggesting that may respond to stress differently than other bacteria. promoters are classified by the sigma factors involved (or presumed to be involved) to direct their transcription, i.e., the σ-dependent, σ-dependent, and σ-dependent promoters. The translational apparatus is required for expression of the genetic information encoded in cells. Components include ribosomes, tRNA, mRNA, numerous ligands, ions, nucleotides, and several proteins, including tRNA-modifying enzymes, aminoacyl- tRNA synthetases, and the proteins transiently associated with ribosomes. The genome is unique in the absence of an asparaginyl-tRNA synthetase gene. Complete DNA sequencing of the genome has allowed sequence-similarity comparisons with other gram-negative bacteria.

Citation: Bhattacharyya S, Dunn B, Phadnis S, Go M. 2001. Transcription and Translation, p 285-291. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch26

Key Concept Ranking

Gene Expression and Regulation
RNA Polymerase
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Akada, J. K.,, M. Shirai,, H. Takeuchi,, M. Tsuda,, and T. Nakazawa. 2000. Identification of the urease operon in Helicobacter pylori and its control by mRNA decay in response to pH. Mol. Microbiol 36:10711084.
2. Aim, R. A.,, J. Bina,, B. M. Andrews,, P. Doig,, R. E. Hancock,, and T. J. Trust. 2000. Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families. Infect. Immun. 68:41554168.
3. Aim, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
4. Barrow, P. A.,, M. A. Lovell,, and L. Z. Barber. 1996. Growth suppression in early-stationary-phase nutrient broth cultures of Salmonella typhimurium and Escherichia coli is genus specific and not regulated by sigma S. J. Bacteriol. 178: 30723076.
5. Beier, D.,, G. Spohn,, R. Rappuoli,, and V. Scarlato. 1998. Functional analysis of the Helicobacter pylori principal sigma subunit of RNA polymerase reveals that the spacer region is important for efficient transcription. Mol. Microbiol. 30: 121134.
6. Bijlsma, J. J.,, C. M. Vandenbroucke-Grauls,, S. H. Phadnis,, and J. G. Kusters. 1999. Identification of virulence genes of Helicobacter pylori by random insertion mutagenesis. Infect. Immun. 67:24332440.
7. Bock, A.,, and G. Sawers,. 1996. Fermentation, p. 262282. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
8. Bucca, G.,, G. Ferina,, A. M. Puglia,, and C. P. Smith. 1995. The dnaK operon of Streptomyces coelicolor encodes a novel heat-shock protein which binds to the promoter region of the operon. Mol. Microbiol 17:663674.
9. Burgess, R. R.,, A. A. Travers,, J. J. Dunn,, and E. K. Bautz. 1969. Factor stimulating transcription by RNA polymerase. Nature 221:4346.
10. Cashel, M.,, D. R. Gentry,, V. J. Herdanez,, and D. Vinella,. 1996. The stringent response, p. 14581496. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
11. Cox, J. L.,, B. J. Cox,, V. Fidanza,, and D. H. Calhoun. 1987. The complete nucleotide sequence of the ilvGMEDA cluster of Escherichia coli K-12. Gene 56:185198.
12. Cunning, C.,, and T. Elliott. 1999. RpoS synthesis is growth rate regulated in Salmonella typhimurium, but its turnover is not dependent on acetyl phosphate synthesis or PTS function. J. Bacteriol. 181:48534862.
13. Datta, A. R.,, and M. M. Benjamin. 1999. Cell density dependent acid sensitivity in stationary phase cultures of enterohemorrhagic Escherichia coli 0157:H7. FEMS Microbiol Lett. 181:289295.
14. Doig, P.,, B. L. de Jonge,, R. A. Aim,, E. D. Brown,, M. Uria-Nickelsen,, B. Noonan,, S. D. Mills,, P. Tummino,, G. Carmel,, B. C. Guild,, D. T. Moir,, G. F. Vovis,, and T. J. Trust. 1999. Helicobacter pylori physiology predicted from genomic comparison of two strains. Microbiol Mol. Biol. Rev. 63:675707.
15. Forsyth, M. H.,, and T. L. Cover. 1999. Mutational analysis of the vacA promoter provides insight into gene transcription in Helicobacter pylori. J. Bacteriol. 181:22612266.
16. Gamer, R. M.,, J. Fulkerson, Jr.,, and H. L. Mobley. 1998. Helicobacter pylori glutamine synthetase lacks features associated with transcriptional and posttranslational regulation. Infect. Immun. 66:18391847.
17. Ge, Z.,, and D. E. Taylor. 1996. Helicobacter pylori genes hpcopA and hpcopP constitute a cop operon involved in copper export. FEMS Microbiol. Lett. 145:181188.
18. Hernandez, V. J.,, and H. Bremer. 1991. Escherichia coli ppGpp synthetase II activity requires spoT. J. Biol. Chem. 266: 59915999.
19. Heuermann, D.,, and R. Haas. 1995. Genetic organization of a small cryptic plasmid of Helicobacter pylori. Gene 165:1724.
20. Holak, T. A.,, A. Engstrom,, P. J. Kraulis,, G. Lindeberg,, H. Bennich,, T. A. Jones,, A. M. Gronenborn,, and G. M. Clore. 1988. The solution conformation of the antibacterial peptide cecropin A: a nuclear magnetic resonance and dynamical simulated annealing study. Biochemistry 27:76207629.
21. Ibba, M.,, I. Celic,, A. Curnow,, H. Kim,, J. Pelaschier,, D. Tumbula,, U. Vothknecht,, C. Woese,, and D. Soil. 1997. Aminoacyl-tRNA synthesis in Archaea. Nucleic Acids Symp. Ser. 37: 305306.
22. Jones, A. C.,, R. P. Logan,, S. Foynes,, A. Cockayne,, B. W. Wren,, and C. W. Penn. 1997. A flagellar sheath protein of Helicobacter pylori is identical to HpaA, a putative N-acetylneur-aminyllactose-binding hemagglutinin, but is not an adhesin for AGS cells. J. Bacteriol. 179:56435647.
23. Josenhans, C.,, A. Labigne,, and S. Suerbaum. 1995. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustelae flagellin mutants: both flagellin subunits, FlaA and FlaB, are necessary for full motility in Helicobacter species. J. Bacteriol. 177:30103020.
24. Kinsella, N.,, P. Guerry,, J. Cooney,, and T. J. Trust. 1997. The flgE gene of Campylobacter coli is under the control of the alternative sigma factor sigma54. J. Bacteriol. 179: 46474653.
25. Kuchino, Y.,, F. Mori,, and S. Nishimura. 1985. Structure and transcription of the tRNAPro1 gene from Escherichia coli. Nucleic Acids Res. 13:32133220.
26. Leying, H.,, S. Suerbaum,, G. Geis,, and R. Haas. 1992. Cloning and genetic characterization of a Helicobacter pylori flagellin gene. Mol. Microbiol. 6:28632874.
27. Manos, J.,, T. Kolesnikow,, and S. L. Hazell. 1998. An investigation of the molecular basis of the spontaneous occurrence of a catalase-negative phenotype in Helicobacter pylori. Helicobacter 3:2838.
28. Marais, A.,, G. L. Mendz,, S. L. Hazell,, and F. Megraud. 1999. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol. Mol. Biol. Rev. 63:642674.
29. Marais, A.,, L. Monteiro,, and F. Megraud. 1999. Microbiology of Helicobacter pylori. Curr. Top. Microbiol Immunol. 241: 103122.
30. Odenbreit, S.,, B. Wieland,, and R. Haas. 1996. Cloning and genetic characterization of Helicobacter pylori catalase and construction of a catalase-deficient mutant strain. J. Bacteriol. 178:69606967.
31. Peri, K. G.,, and E. B. Waygood. 1988. Sequence of cloned enzyme IIN-acetylglucosamine of the phosphoenolpyruvate: N-acetylglucosamine phosphotransferase system of Escherichia coli. Biochemistry 27:60546061.
32. Pesci, E. C.,, and C. L. Pickett. 1994. Genetic organization and enzymatic activity of a superoxide dismutase from the microaerophilic human pathogen, Helicobacter pylori. Gene 143: 111116.
33. Phadnis, S. H.,, M. H. Parlow,, M. Levy,, D. liver,, C. M. Caulkins,, J. B. Connors,, and B. E. Dunn. 1996. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64: 905912.
34. Putsep, K.,, C. I. Branden,, H. G. Boman,, and S. Normark. 1999. Antibacterial peptide from H. pylori. Nature 398: 671672.
35. Raudonikiene, A.,, N. Zakharova,, W. W. Su,, J. Y. Jeong,, L. Bryden,, P. S. Hoffman,, D. E. Berg,, and K. Severinov. 1999. Helicobacter pylori with separate beta- and beta'-subunits of RNA polymerase is viable and can colonize conventional mice. Mol. Microbiol. 32:131138.
36. Reitzer, L., 1996. Ammonia assimilation and the biosynthesis of glytamine, glutamate, aspartate, asparagine, L-alanine and D-alanine, p. 391407. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
37. Richardson, J. P.,, and J. Greenblatt,. 1996. Control of RNA chain elongation and termination, p. 822848. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C..
38. Sameshima, J. H.,, R. C. Wek,, and G. W. Hatfield. 1989. Overlapping transcription and termination of the convergent ilvA and ilvY genes of Escherichia coli. J. Biol. Chem. 264: 12241231.
39. Shapiro, B. M.,, and E. R. Stadtman. 1968. 5'-adenylyl-o-tyrosine. The novel phosphodiester residue of adenylylated glutamine synthetase from Escherichia coli. J. Biol. Chem. 243: 37693771.
40. Shirai, M.,, R. Fujinaga,, J. K. Akada,, and T. Nakazawa. 1999. Activation of Helicobacter pylori ureA promoter by a hybrid Escherichia coli-H. pylori rpoD gene in E. coli. Gene 239: 351359.
41. Solnick, J. V.,, L. M. Hansen, andM. Syvanen. 1997. The major sigma factor (RpoD) from Helicobacter pylori and other gram-negative bacteria shows an enhanced rate of divergence. J. Bacteriol. 179:61966200.
42. Spohn, G.,, and V. Scarlate. 1999. Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J. Bacteriol. 181:593599.
43. Spohn, G.,, and V. Scarlato. 1999. The autoregulatory HspR repressor protein governs chaperone gene transcription in Helicobacter pylori. Mol. Microbiol. 34:663674.
44. Strauch, M. A.,, H. Zalkin,, and A. I. Aronson. 1988. Characterization of the glutamyl-tRNA(Gln)-to-glutaminyl-tRNA(Gln) amidotransferase reaction of Bacillus subtilis. J. Bacteriol. 170: 916920.
45. Suerbaum, S.,, C. Josenhans,, and A. Labigne. 1993. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori. J. Bacteriol. 175:32783288.
46. Takeuchi, H.,, M. Shirai,, J. K. Akada,, M. Tsuda,, and T. Nakazawa. 1998. Nucleotide sequence and characterization of cdrA, a cell division-related gene of Helicobacter pylori. J. Bacteriol. 180:52635268.
47. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
48. Uptain, S. M.,, and M. J. Chamberlin. 1997. Escherichia coli RNA polymerase terminates transcription efficiently at rho-independent terminators on single-stranded DNA templates. Proc. Natl. Acad. Sci. USA 94:1354813553.
49. Visick, J. E.,, and S. Clarke. 1997. RpoS- and OxyR-independent induction of HPI catalase at stationary phase in Escherichia coli and identification of rpoS mutations in common laboratory strains. J. Bacteriol. 179:41584163.
50. Washio, T.,, J. Sasayama,, and M. Tomita. 1998. Analysis of complete genomes suggests that many prokaryotes do not rely on hairpin formation in transcription termination. Nucleic Acids Res. 26:54565463.
51. Wek, R. C.,, J. H. Sameshima,, and G. W. Hatfield. 1987. Rho-dependent transcriptional polarity in the ilvGMEDA operon of wild-type Escherichia coli K12. J. Biol. Chem. 262: 1525615261.
52. Wosten, M. M.,, M. Boeve,, W. Gaastra,, and B. A. van der Zeijst. 1998. Cloning and characterization of the gene encoding the primary sigma-factor of Campylobacter jejuni. FEMS Microbiol. Lett. 162:97103.
53. Xiao, H.,, M. Kalman,, K. Ikehara,, S. Zemel,, G. Glaser,, and M. Cashel. 1991. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J. Biol. Chem. 266:59805990.
54. Zakharova, N.,, P. S. Hoffman,, D. E. Berg,, and K. Severinov. 1998. The largest subunits of RNA polymerase from gastric helicobacters are tethered. J. Biol. Chem. 273:1937119374.
55. Zakharova, N.,, B. J. Paster,, I. Wesley,, F. E. Dewhirst,, D. E. Berg,, and K. V. Severinov. 1999. Fused and overlapping rpoB and rpoC genes in helicobacters, campylobacters, and related bacteria. J. Bacteriol. 181:38573859.


Generic image for table
Table 1

Known properties of various promoters

Citation: Bhattacharyya S, Dunn B, Phadnis S, Go M. 2001. Transcription and Translation, p 285-291. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch26
Generic image for table
Table 2

Putative tRNA-modifying enzymes, related genes, and ORFs

Citation: Bhattacharyya S, Dunn B, Phadnis S, Go M. 2001. Transcription and Translation, p 285-291. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error