1887

Chapter 28 : Genetic Exchange

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Genetic Exchange, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap28-1.gif /docserver/preview/fulltext/10.1128/9781555818005/9781555812133_Chap28-2.gif

Abstract:

has a recombinational, or panmictic, population structure, which is indicative of frequent genetic exchange among strains. Horizontal gene exchange may occur via three classical mechanisms: natural transformation, conjugation, and transduction. The aim of this chapter is to review what is known about each of these mechanisms of exchange in the context of . Transformation is defined as the mechanism by which exogenous DNA is taken up by bacteria and the DNA becomes heritable. In a study, a chromosomal antibiotic resistance marker was transferred from one strain to another. Conjugation may provide an important method for performing genetic manipulations in strains resistant to transformation. The use of conjugation as a mechanism for DNA delivery may have the advantage of bypassing restriction barriers that could inhibit genetic exchange by natural transformation. Several potential barriers exist to genetic exchange for . Although the information regarding genetic exchange in continues to expand, there remain many unanswered questions. Finally, although there is one study that indicates gene transfer can occur in vivo based on strains isolated from a human subject, in vivo animal studies need to be performed to shed light on the significance of all three methods for genetic exchange in an environment that recapitulates human gastric mucosa. Ultimately, elucidating the mechanisms of genetic exchange in will lead to a better understanding of the immense diversity that exists, as well as further development of genetic tools for the study of .

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28

Key Concept Ranking

Chromosomal DNA
0.5567887
Horizontal Gene Transfer
0.43945095
0.5567887
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555818005.chap28
1. Achtman, M.,, T. Azuma,, D. E. Berg,, Y. Ito,, G. Morelli,, Z. J. Pan,, S. Suerbaum,, S. A. Thompson,, A. van der Ende,, and L. J. van Doom. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32:459470.
2. Akopyanz, N.,, N. O. Bukanov,, T. U. Westblom,, S. Kresovich,, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20:51375142.
3. Aim, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. dejonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176180.
4. Ando, T.,, D. A. Israel,, K. Kusugami,, and M. J. Blaser. 1999. HP0333, a member of the dprA family, is involved in natural transformation in Helicobacter pylori. J. Bacteriol. 181: 55725580.
5. Ando, T.,, Q. Xu,, M. Torres,, K. Kusugami,, D. A. Israel,, and M.J. Blaser. 2000. Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37:10521065.
6. Atherton, J. C.,, P. Cao,, R. M. Peek, Jr.,, M. K. Tummuru,, M. J. Blaser,, and T. L. Cover. 1995. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J. Biol. Chem. 270:1777117777.
7. Avery, O. T.,, C. M. McLeod,, and M. McCarthy. 1944. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. Exp. Med. 79:137158.
8. Correia, F. F.,, S. Inouye,, and M. Inouye. 1986. A 26-base-pair repetitive sequence specific for Neisseria gonorrhoeae and Neisseria meningitidis genomic DNA. J. Bacteriol. 167: 10091015.
9. Danner, D. B.,, R. A. Deich,, K. L. Sisco,, and H. O. Smith. 1980. An 11-base pair sequence determines the specificity of DNA uptake in Haemophilus influenzae. Gene 11:311318.
10. Donahue, J. P.,, D. A. Israel,, R. M. Peek, Jr.,, M. J. Blaser,, and G. G. Miller. 2000. Overcoming the restriction barrier to plasmid transformation of Helicobacter pylori. Mol. Microbiol. 37:10661074.
11. Elkins, C.,, C. E. Thomas,, H. S. Seifert,, and P. F. Sparling. 1991. Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J. Bacteriol. 173: 39113913.
12. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. FitzHugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L.I. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496512.
13. Go, M. F.,, V. Kapur,, D. Y. Graham,, and J. M. Musser. 1996. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacteriol. 178: 39343938.
14. Goodgal, S. H. 1982. DNA uptake in Haemophilus transformation. Annu. Rev. Genet. 16:169192.
15. Goodman, S. D.,, and J. J. Scocca. 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA 85:69826986.
16. Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27:113159.
17. Haas, R.,, T. F. Meyer,, and J. P. van Putten. 1993. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol. Microbiol. 8:753760.
18. Heintschel von Heinegg, E.,, H. P. Nalik,, and E. N. Schmid. 1993. Characterisation of a Helicobacter pylori phage (HP1). J. Med. Microbiol. 38:245249.
19. Heuermann, D.,, and R. Haas. 1998. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257:519528.
20. Hofreuter, D.,, S. Odenbreit,, G. Henke,, and R. Haas. 1998. Natural competence for DNA transformation in Helicobacter pylori: identification and genetic characterization of the comB locus. Mol. Microbiol. 28:10271038.
21. Israel, D. A. Personal observation.
22. Israel, D. A.,, A. S. Lou,, and M. J. Blaser. 2000. Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol. Lett. 186:275280.
23. Ivic, A.,, K. J. Jakeman,, C. W. Penn,, and N. L. Brown. 1999. Type II restriction endonucleases from Helicobacter pylori include an enzyme with a novel recognition sequence. FEMS Microbiol. Lett. 179:175180.
24. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96:38013806.
25. Jiang, Q.,, K. Hiratsuka,, and D. E. Taylor. 1996. Variability of gene order in different Helicobacter pylori strains contributes to genome diversity. Mol. Microbiol. 20:833842.
26. Kersulyte, D.,, H. Chalkauskas,, and D. E. Berg. 1999. Emergence of recombinant strains of Helicobacter pylori during human infection. Mol. Microbiol. 31:3143.
27. Kuipers, E. J.,, D. A. Israel,, J. G. Kusters,, and M. J. Blaser. 1998. Evidence for a conjugation-like mechanism of DNA transfer in Helicobacter pylori. J. Bacteriol. 180:29012905.
28. Lederberg, J.,, and E. L. Tatum. 1953. Sex in bacteria; genetic studies 1945-1952. Science 118:169175.
29. Lopez, C. R.,, R.J. Owen,, and M. Desal. 1993. Differentiation between isolates of Helicobacter pylori by PCR-RFLP analysis of urease A and B genes and comparison with ribosomal RNA gene patterns. FEMS Microbiol. Lett. 110:3743.
30. Lorenz, M. G.,, K. Reipschlager,, and W. Wackernagel. 1992. Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Arch. Microbiol. 157:355360.
31. Maiden, M. C. 1998. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin. Infect. Dis. 27(Suppl. 1):S12S20.
32. Majewski, J.,, and F. M. Cohan. 1999. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:15251533.
33. Majewski, J.,, and F. M. Cohan. 1998. The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148:1318.
34. Majewski, J.,, P. Zawadzki,, P. Pickerill,, F. M. Cohan,, and C. G. Dowson. 2000. Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182:10161023.
35. Marshall, B. J.,, J. A. Armstrong,, G. J. Francis,, N. T. Nokes,, and S. H. Wee. 1987. Antibacterial action of bismuth in relation to Campylobacter pyloridis colonization and gastritis. Digestion 37(Suppl. 2):1630.
36. Nedenskov-Sorensen, P.,, G. Bukholm,, and K. Bovre. 1990. Natural competence for genetic transformation of Campylobacter pylori. J. Infect. Dis. 161:365366.
37. Palmen, R.,, B. Vosman,, P. Buijsman,, C. K. Breek,, and K. J. Hellingwerf. 1993. Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Ger. Microbiol. 139(Pt. 2):295305.
38. Parkhill, J.,, M. Achtman,, K. D. James,, S. D. Bentley,, C. Churcher,, S. R. Klee,, G. Morelli,, D. Basham,, D. Brown,, T. Chillingworth,, R. M. Davies,, P. Davis,, K. Devlin,, T. Feltwell,, N. Hamlin,, S. Holroyd,, K. Jagels,, S. Leather,, S. Moule,, K. Mungall,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, M. Simmonds,, J. Skelton,, S. Whitehead,, B. G. Spratt,, and B. G. Barrell. 2000. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404:502506.
39. Roberts, R. J.,, and D. Macelis. 2000. REBASE—restriction enzymes and methylases. Nucleic Acids Res. 28:306307.
40. Salaun, L.,, C. Audibert,, G. Le Lay,, C. Burucoa,, J. L. Fauchere,, and B. Picard. 1998. Panmictic structure of Helicobacter pylori demonstrated by the comparative study of six genetic markers. FEMS Microbiol. Lett. 161:231239.
41. Salyers, A. A.,, and C. F. Amabile-Cuevas. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41:23212325.
42. Saunders, N. J.,, J. F. Peden,, and E. R. Moxon. 1999. Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145(Pt. 12):35233528.
43. Schmid, E. N.,, G. von Recklinghausen,, and R. Ansorg. 1990. Bacteriophages in Helicobacter (Campylobacter) pylori. J. Med. Microbiol. 32:101104.
44. Scocca, J. J.,, R. L. Poland,, and K. C. Zoon. 1974. Specificity in deoxyribonucleic acid uptake by transformable Haemophilus influenzae. J. Bacteriol. 118:369373.
45. Segal, E. D.,, and L. S. Tompkins. 1993. Transformation of Helicobacter pylori by electroporation. Biotechniques 14: 225226.
46. Smeets, L. C.,, J. J. Bijlsma,, E. J. Kuipers,, C. M. Vandenbroucke-Grauls,, and J. G. Kusters. 2000. The dprA gene is required for natural transformation of Helicobacter pylori. FEMS Immunol. Med. Microbiol. 27:99102.
47. Smith, J. M.,, C. G. Dowson,, and B. G. Spratt. 1991. Localized sex in bacteria. Nature 349:2931.
48. Solnick, J. V.,, L. M. Hansen,, and M. Syvanen. 1997. The major sigma factor (RpoD) from Helicobacter pylori and other gram-negative bacteria shows an enhanced rate of divergence. J. Bacteriol. 179:61966200.
49. Stein, D. C.,, S. Gregoire,, and A. Piekarowicz. 1988. Restriction of plasmid DNA during transformation but not conjugation in Neisseria gonorrhoeae. Infect. Immun. 56:112116.
50. Suerbaum, S.,, J. M. Smith,, K. Bapumia,, G. Morelli,, N. H. Smith,, E. Kunstmann,, I. Dyrek,, and M. Achtman. 1998. Free recombination within Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95:1261912624.
51. Taylor, D. E.,, M. Eaton,, N. Chang,, and S. M. Salama. 1992. Construction of a Helicobacter pylori genome map and demonstration of diversity at the genome level. J. Bacteriol. 174: 68006806.
52. Tettelin, H.,, N. J. Saunders,, J. Heidelberg,, A. C. Jeffries,, K. E. Nelson,, J. A. Eisen,, K. A. Ketchum,, D. W. Hood,, J. F. Peden,, R. J. Dodson,, W. C. Nelson,, M. L. Gwinn,, R. DeBoy,, J. D. Peterson,, E. K. Hickey,, D. H. Haft,, S. L. Salzberg,, O. White,, R. D. Fleischmann,, B. A. Dougherty,, T. Mason,, A. Ciecko,, D. S. Parksey,, E. Blair,, H. Cittone,, E. B. Clark,, M. D. Cotton,, T. R. Utterback,, H. Khouri,, H. Qin,, J. Vamathevan,, J. Gill,, V. Scarlato,, V. Masignani,, M. Pizza,, G. Grandi,, L. Sun,, H. O. Smith,, C. M. Eraser,, E. R. Moxon,, R. Rappuoli,, and J. C. Venter. 2000. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287:18091815.
53. Tomb, J.-F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, E. K. Hickey,, D. E. Berg,, J. D. Gocayne,, T. R. Utterback,, J. D. Peterson,, J. M. Kelley,, M. D. Cotton,, J. M. Weidman,, C. Fujii,, C. Bowman,, L. Watthey,, E. Wallin,, W. S. Hayes,, M. Borodovsky,, P. D. Karp,, H. O. Smith,, C. M. Fraser,, and J. C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
54. Tsuda, M.,, M. Karita,, and T. Nakazawa. 1993. Genetic transformation in Helicobacter pylori. Microbiol. Immunol. 37: 8589.
55. van Doom, L. J.,, C. Figueiredo,, R. Sanna,, S. Pena,, P. Midolo,, E. K. Ng,, J. C. Atherton,, M. J. Blaser,, and W. G. Quint. 1998. Expanding allelic diversity of Helicobacter pylori vacA. J. Clin. Microbiol. 36:25972603.
56. Vulic, M.,, F. Dionisio,, F. Taddei,, and M. Radman. 1997. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94:97639767.
57. Wang, Y.,, K. P. Roos,, and D. E. Taylor. 1993. Transformation of Helicobacter pylori by chromosomal metronidazole resistance and by a plasmid with a selectable chloramphenicol resistance marker. J. Gen. Microbiol. 139:24852493.
58. Xu, Q.,, R. M. Peek, Jr.,, G. G. Miller,, and M. J. Blaser. 1997. The Helicobacter pylori genome is modified at CATG by the product of hypylM. J. Bacteriol. 179:68076815.
59. Zinder, N. D.,, and J. Lederberg. 1952. Genetic exchange in Salmonella. J. Bacteriol. 64:679699.

Tables

Generic image for table
Table 1

Characteristics of mechanisms for genetic exchange

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28
Generic image for table
Table 2

predicted proteins with putative roles in transformation or conjugation

Citation: Israel D. 2001. Genetic Exchange, p 313-319. In Mobley H, Mendz G, Hazell S (ed), . ASM Press, Washington, DC. doi: 10.1128/9781555818005.ch28

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error