1887

Chapter 6 : Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555818036/9781555811792_Chap06-2.gif

Abstract:

This chapter focuses on single-enzyme-catalyzed biodegradation reactions and other physiological processes that microbes use to compete successfully for scarce nutritional resources in soil and water. It is likely that a lot of reactions that fall under the general heading of biodegradation are fortuitous. There are numerous examples of this with insects or fungi that biosynthesize broad-specificity enzymes, such as cytochrome P450 monooxygenases, for detoxifying biological toxins. For example, plant-pathogenic fungi are sometimes warded off with toxic chemicals manufactured in the leaves of the plant being attacked. Fungal cytochrome P450 monooxygenases oxidize an enormous array of compounds, some of which are unlikely to prove toxic, and thus these reactions may well fall into the fortuitous category. Catabolic enzymes are so useful in large part because many have been found. In fact, catabolic enzymes may be the major group of enzymes catalyzing unique reactions found on the Earth. Additionally, there are the known catabolic enzymes which catabolize industrial chemicals. The role of biosurfactants in microbial metabolism has been investigated primarily with petroleum or with purified alkanes. Surfactants are compounds which are amphipathic; that is, they contain hydrophilic and hydrophobic chemical groups linked together in the same molecule. People use surfactants as soaps and detergents and as emulsifying agents in food. The sensing of chemical compounds starts with binding at the cell membrane to a methyl-accepting chemotaxis protein (MCP). The extracellular sensing is transmitted through the MCP, which spans the membrane, to its cytoplasmic domain.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6

Key Concept Ranking

Amide Bond Formation
0.521613
Polycyclic Aromatic Hydrocarbons
0.466008
Cell Wall Components
0.40986508
0.521613
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 6.1
Figure 6.1

Metabolism of alkylbenzenes showing the commonality in processing reactions with release of correspondingly larger organic acids with larger alkyl side chains.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.2
Figure 6.2

Space-filling model of the active site of naphthalene dioxygenase from The redox active groups, the iron-sulfur cluster and the mononuclear- iron center, are shown in green. (Courtesy of R. E. Parales and D. T. Gibson.)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.3
Figure 6.3

Permeation rates across a lipid membrane bilayer by different compounds. Those compounds further to the right transfer across a membrane correspondingly faster.

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.4
Figure 6.4

Stereo view of bacterial cells adhering to an oil droplet. (From reference with permission.)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6.5
Figure 6.5

Bacterial sensing and chemotaxis (top) are comparable to the human sense of smell (bottom)

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555818036.chap6
1. Abraham, W. R.,, H. Meyer,, and M. Yakomov. 1998. Novel glycine containing glucolipids from the alkane using bacterium Alcanivorax borkumensis. Biochim. Biophys. Acta 1393:5762.
2. Arima, K.,, A. Kakinuma,, and G. Tamura. 1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31:488494.
3. Barkay, T.,, S. Navon-Venezia,, E. Z. Ron,, and E. Rosenberg. 1999. Enhancement of solubilization and biodegradation of polyaromatic hydrocarbons by the bioemulsifier alasan. Appl. Environ. Microbiol. 65:26972702.
4. Baumann, A.,, W. Schimmack,, H. Steindl,, and K. Bunzl. 1996. Association of fallout radiocesium with soil constituents: effect of sterilization of forest soils by fumigation with chloroform. Radiat. Environ. Biophys. 35:229233.
5. Biichner, E. 1897. Alcoholische Garung ohne Hefezellen. Ber. Dtsch. Chem. Ges. 30:117124.
6. Burd, G.,, and O. P. Ward. 1996. Physicochemical properties of PM-factor, a surface-active agent produced by Pseudomonas marginalis. Can. J. Microbiol. 42:243251.
7. Cech, T. R. 1993. The efficiency and versatility of catalytic RNA: implications for an RNA world. Gene 135:3336.
8. Cooper, D. G.,, and D. A. Paddock. 1984. Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 47:173176.
9. Cooper, D. G.,, J. E. Zajic,, and D. E Gerson. 1979. Production of surface-active lipids by Corynebacterium lepus. Appl. Environ. Microbiol. 37:410.
10. Dagley, S., 1979. Summary of the conference, p. 534542. In A. W. Bourquin, and P. H. Pritchard (ed.), Proceedings of the Workshop on Microbial Degradation of Pollutants in Marine Environments. United States Environmental Protection Agency, Washington, D.C..
11. D'Argenio, D. A.,, A. Segura,, W. M. Coco,, P. V. Bunz,, and L. N. Ornston. 1999. The physiological contribution of Acinetobacter PcaK, a transport system that acts upon protocatechuate, can be masked by the overlapping specificity of VanK. J. Bacteriol. 181:35053515.
12. Esch, S. W.,, M. D. Morton,, T. D. Williams,, and C. S. Buller. 1999. A novel trisaccharide glycolipid biosurfactant containing trehalose bears ester-linked hexanoate, succinate, and acyloxyacyl moieties: NMR and MS characterization of the underivatized structure. Carbohydr. Res. 319:112123.
13. Finnerty, W. R.,, and M. E. Singer. 1984. A microbial biosurfactant—physiology, biochemistry, and applications. Dev. Ind. Microbiol. 25:3146.
*14.. Georgiou, G.,, S. C. Lin,, and M. M. Sharma. 1992. Surface-active compounds from microorganisms. Bio/Technology 10:6065.
15. Gibson, D. T. 1993. Biodegradation, biotransformation, and the Belmont. J. Ind. Microbiol. 12:112.
16. Grau, A.,, J. C. Gomez Fernandez,, F. Peypoux,, and A. Ortiz. 1999. A study on the interaction of surfactin with phospholipid vesicles. Biochim. Biophys. Acta 141:307319.
17. Gregg, K.,, B. Hamdorf,, K. Henderson,, J. Kopecny,, and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl. Environ. Microbiol. 64:34963498.
18. Grimm, A. C.,, and C. S. Harwood. 1997. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene. Appl. Environ. Microbiol. 63:41114115.
19. Grimm, A. C.,, and C. S. Harwood. 1999. NahY, a catabolic plasmid-encoded receptor required for chemotaxis of Pseudomonas putida to the aromatic hydrocarbon naphthalene. J. Bacteriol. 181:33103316.
20. Guerra-Santos, L. H.,, O. Kappell,, and A. Fiechter. 1986. Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24:443448.
21. Harbourne, J. 1988. Ecological Biochemistry, 3rd ed. Academic Press, New York, N.Y..
22. Harkness, M. R.,, J. B. McDermott,, D. A. Abramowicz,, J. J. Salvo,, W. P. Flanagan,, M. L. Stephens,, F. J. Mondello,, R. J. May,, J. H. Lobos,, K. M. Caroll,, M. J. Brennan,, A. A. Bracco,, K. M. Fish,, G. L. Warner,, P. R. Wilson,, D. K. Dietrich,, D. T. Lin,, C. B. Morgan,, and W. L. Gately. 1993. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259:503507.
23. Harwood, C. S.,, N. N. Nichols,, M. K. Kim,, J. L. Ditty,, and R. E. Parales. 1994. Identification of the pcaRKF gene cluster from Pseudomonas putida: involvement in chemotaxis, biodegradation, and transport of 4-hydroxybenzoate. J. Bacteriol. 176:64796488.
24. Herman, D. C.,, Y. Zhang,, and R. M. Miller. 1997. Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl. Environ. Microbiol. 63:36223627.
25. Hommel, R.,, and C. Ratledge. 1990. Evidence for two fatty alcohol oxidases in the biosurfactant-producing yeast Candida (Torulopsis) bombicola. FEMS Microbiol. Lett. 58:183186.
26. Hommel, R.,, O. Stuwer,, W. Stuber,, D. Haferburg,, and H.-P. Kleber. 1987. Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol. Biotechnol. 26:199205.
27. Horowitz, S.,, J. N. Gilbert,, and W. M. Griffin. 1990. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J. Ind. Microbiol. 6:243248.
28. Hulbert, M. H.,, and S. Krawiec. 1977. Cometabolism: a critique. J. Theor. Biol. 69:287292.
29. Hutchison, M. L.,, and D. C. Gross. 1997. Lipopeptide phytotoxins produced by Pseudomonas syringae pv. syringae: comparison of the biosurfactant and ion channel-forming activities of syringopeptin and syringomycin. Mol. Plant-Microbe Interact. 10:347354.
30. Inoue, A.,, and K. Horikoshi. 1989. A Pseudomonas that thrives in high concentration of toluene. Nature 338:264266.
31. Jenneman, G. E.,, M. J. Mclnerney,, R. M. Knapp,, J. B. Clark,, J. M. Ferro,, D. E. Revus,, and D. E. Menzie. 1983. A halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery. Dev. Ind. Microbiol. 24:485492.
*32.. Kauppi, B.,, K. Lee,, E. Carradano,, R. E. Parales,, D. T. Gibson,, H. Eklund,, and S. Ramaswamy. 1998. Structure of an aromatic-ring-hydroxylating dioxygenase— naphthalene 1,2-dioxygenase. Structure 6:571586.
33. Kelly, D. P. 1968. Fluoroacetate toxicity in Thiobacillus neapolitanus and its relevance to the problem of obligate chemoautotrophy. Arch. Mikrobiol. 6:5976.
34. Kieboom, J.,, J. T. Dennis,, J. A. M. de Bont,, and G. J. Zylstra. 1998. Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J. Biol. Chem. 273:8591.
35. Kieboom, J.,, J. J . Dennis,, G. J. Zylstra,, and J. A. M. de Bont. 1998. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180:67696772.
36. Kim, J. S.,, M. Powalla,, S. Lang,, F. Wagner,, H. Lunsdorf,, and V. Wray. 1990. Microbial glycolipid production under nitrogen limitation and resting cell conditions. J. Biotechnol. 13:257266.
37. Kowall, M.,, J. Vater,, B. Kluge,, T. Stein,, P. Franke,, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 204:18.
38. Kretschmer, A.,, H. Bock,, and F. Wagner. 1982. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 44:864870.
39. Lang, S.,, and J. C. Philp. 1998. Surface-active lipids in rhodococci. Antonie Leeuwenhoek 74:5970.
40. Lee, Y.,, S. Y. Lee,, and J. W. Yang. 1999. Production of rhamnolipid biosurfactant by fed-batch culture of Pseudomonas aeruginosa using glucose as a sole carbon source. Biosci. Biotechnol. Biochem. 63:946947.
*41.. Lengler, J. W.,, and P. W. Postma,. 1999. Global regulatory networks and signal transduction pathways, p. 491523. In J. W. Lengler,, G. Drews,, and H. G. Schlegel (ed.), Biology of the Prokaryotes. Blackwell Science, Stuttgart, Germany.
42. Lindum, P. W.,, U. Anthoni,, C. Christophersen,, L. Eberl,, S. Molin,, and M. Givskov. 1998. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180:63846388.
*43.. Lipscomb, J. D. 1994. Biochemistry of the soluble methane monooxygenase. Annu. Rev. Microbiol. 48:371399.
44. Liu, J. Q.,, T. Kurihara,, S. Ichiyama,, M. Miyagi,, S. Tsunasawa,, H. Kawasaki,, K. Soda,, and N. Esaki. 1998. Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B. J. Biol. Chem. 273:3089730902.
45. Macdonald, C. R.,, D. G. Cooper,, and J. E. Zajic. 1981. Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41:117123.
46. Maloney, A. P.,, and H. D. Van Etten. 1994. A gene from the fungal plant pathogen Nectria haematococca that encodes the phytoalexin-detoxifying enzyme pisatin demethylase defines a new cytochrome P450 family. Mol. Gen. Genet. 243:506514.
47. Matsuyama, T.,, M. Fujita,, and I. Yano. 1985. Wetting agent produced by Serratia marcescens. FEMS Microbiol. Lett. 28:125129.
48. Matsuyama, T.,, K. Kaneda,, I. Ishizuka,, T. Toida,, and I. Yano. 1990. Surfaceactive novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J. Bacteriol. 172:30153022.
49. Morikawa, M.,, H. Daido,, T. Takao,, S. Murata,, Y. Shimonishi,, and T. Imanaka. 1993. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175:64596466.
50. Nakano, M. M.,, N. Corbell,, J. Besson,, and P. Zuber. 1992. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet. 232:313321.
51. Navon-Venezia, S.,, Z. Zosim,, A. Gottlieb,, R. Legmann,, S. Carmell,, E. Z. Ron,, and E. Rosenberg. 1995. Alasan, a new bioemulsifier from Acinetobacter radioresistens. Appl. Environ. Microbiol. 61:32403244.
52. Neu, T. R.,, T. Hartner,, and K. Poralla. 1990. Surface active properties of viscosin: a peptidolipid antibiotic. Appl. Microbiol. Biotechnol. 32:518520.
53. Nielsen, T. H.,, C. Christophersen,, U. Anthoni,, and J. Sorensen. 1999. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J. Appl. Microbiol. 87:8090.
*54.. Pedrotta, V.,, and B. Witholt. 1999. Isolation and characterization of the cisfrans- unsaturated fatty acid isomerase of Pseudomonas oleovorans GPol2. J. Bacteriol. 181:32563261.
55. Persson, A.,, E. Osterberg,, and M. Dostalek. 1988. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl. Microbiol. Biotechnol. 29:14.
56. Ramsay, B.,, J. McCarthy,, L. Guerra-Santos,, O. Kappeli,, A. Felchter,, and A. Margaritis. 1988. Biosurfactant production and diauxic growth oi Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can. J . Microbiol. 34:12091212.
57. Resnick, S. M.,, K. Lee,, and D. T. Gibson. 1996. Diverse reactions caused by naphthalenedioxygenase from Pseudomonas sp. strain NCIB9816. J. Ind. Microbiol. 17:438457.
58. Rokita, S. E.,, P. A. Srere,, and C. T. Walsh. 1982. 3-Fluoro-3-deoxycitrate: a probe for mechanistic study of citrate-utilizing enzymes. Biochemistry 21:37653774.
59. Stryer, L. 1988. Biochemistry, 3rd ed. W. H. Freeman and Company, New York, N.Y..
60. Van Dyke, M. I.,, P. Couture,, M. Brauer,, H. Lee,, and J. T. Trevors. 1993. Pseudomonas aeruginosa UG2 rhamnolipid biosurfactants: structural characterization and their use in removing hydrophobic compounds from soil. Can. J. Microbiol. 39:10711078.
61. Westheimer, F. 1987. Why nature chose phosphates. Science 235:11731178.
62. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95:65786583.
63. Whyte, L. G.,, S. J. Slagman,, F. Pietrantonio,, L. Bourbonnier,, S. F. Koval,, J. R. Lawrence,, W. E. Inniss,, and C. W. Greer. 1999. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol. 65:29612968.
64. Yakimov, M. M.,, H. L. Fredrickson,, and K. N. Timmis. 1996. Effect of heterogeneity of hydrophobic moieties on surface activity of lichenysin A, a lipopeptide biosurfactant from Bacillus licheniformis BAS50. Biotechnol. Appl. Biochem. 23:1318.
65. Yakimov, M. M.,, L. Giuliano,, V. Bruni,, S. Scarfi,, and P. N. Golyshin. 1999. Characterization of antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. New Microbiol. 22:249256.
66. Zajic, J. E.,, H. Guignard,, and D. F. Gerson. 1977. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol. Bioeng. 19:13031320.
67. Zhang, Y.,, and R. M. Miller. 1992. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58:32763282.
68. Zylstra, G. J.,, L. P. Wackett,, and D. T. Gibson. 1989. Degradation of trichloroethylene by Pseudomonas putida Fl toluene dioxygenase cloned in Escherichia coli. Appl. Environ. Microbiol. 55:31623166.

Tables

Generic image for table
Table 6.1

EC major divisions and distribution of enzymes in the UM-BBD as of 1 September 1999

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Generic image for table
Table 6.2

Reactions catalyzed by naphthalene 1,2-dioxygenase

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6
Generic image for table
Table 6.3

Examples of biosurfactant-producing microbes

Citation: Wackett L, Hershberger C. 2001. Physiological Processes: Enzymes, Emulsification, Uptake, and Chemotaxis, p 95-113. In Biocatalysis and Biodegration. ASM Press, Washington, DC. doi: 10.1128/9781555818036.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error