Chapter 2 : Molecular Basis of Adherence of to Biomaterials

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Molecular Basis of Adherence of to Biomaterials, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555818067/9781555811778_Chap02-2.gif


This chapter focuses on the fibronectin-binding proteins (FnBPs) and fibrinogen-binding proteins (clumping factors, Clf) of . The role of the proteins in promoting bacterial adherence to immobilized ligand has been defined using site-specific adhesin-defective mutants that are compared with the parental strains in in vitro and in vivo models of foreign-body infection. The and genes of the laboratory strain 8325-4 have been inactivated by allelic replacement. This double mutant and the mutant carrying a multicopy plasmid that causes overexpression of FnBPA have allowed the role of FnBPs in promoting bacterial interactions with fibronectin to be defined. The mutant of strain 8325-4 was also defective in adherence to coverslips removed from subcutaneous chambers implanted in guinea pigs. The growth conditions used to prepare the bacterial cells for the adherence and virulence experiments would have prevented expression of the second clumping factor ClfB. The ClfA mutant was defective in adherence to immobilized fibrinogen, while the complemented mutant adhered as well as the wild-type. The increasing incidence of multiple-antibiotic-resistant strains causing nosocomial infections has increased the urgency for alternative approaches to prevention and therapy. The problem is compounded by the recent emergence of methicillin-resistant (MRSA) with intermediate sensitivity to vancomycin. In conclusion, there are several experimental vaccines that provide clear protection against infections in animals. The challenge is to determine if any of these will protect human patients against nosocomial disease and, in particular, biomaterial-related infection.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2

Key Concept Ranking

Major Histocompatibility Complex Class II
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Organization of surface proteins of . The domain organization of the fibronectin-binding protein A (FnbA), the collagen-binding protein (Cna), fibrinogen-binding protein (ClfA), and protein A (Spa). The signal sequences (S) are removed during secretion across the cytoplasmic membrane. Each protein has common features at the C terminus indicated by the cross-hatched box (LPXTG motif, hydrophobic region, and positively charged residues). Regions W and R are peptidoglycan spanning regions.* indicates position of ligand-binding domains.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Organization of the Clf family of surface proteins. The domain organization of the fibrinogen-binding proteins Clf A and ClfB. The proteins have a repeated region R composed mainly of Ser-Asp dipeptides. S, signal sequence; M, membrane anchor domain including LPXTG motif, hydrophobic residues, and positively charged residues at the C terminus. Within the ligand-binding A regions is the TYTFTDYVD motif (thick broken line) and the DXSXS (MIDAS) motif (thin broken line). The thick continuous line represents an EF-hand loop that is present in region A of ClfA.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Interaction of the ligand-binding region of fibronectin-binding proteins with fibronectin. The wavy line represents the ligand-binding D1-D2-D3 repeats of FnBPs, which do not have secondary structure. The protein interacts with the type I modules of fibronectin and takes on discernable secondary structure with the formation of neoepitopes (ligand-induced binding-site epitopes).

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Structure of fibrinogen. Schematic diagram showing the structural organization of fibrinogen. The globular D domains comprise the C-terminal residues of the α-, β-, and γ-chains. The C terminus of the γ-chain protrudes from the globular γ-module. Binding sites for ClfA and integrins are shown. The E domain contains the N-terminal residues of the α-, β-, and γ-chains cross-linked by disulfide bonds.

Citation: Foster T, Höök M. 2000. Molecular Basis of Adherence of to Biomaterials, p 27-39. In Waldvogel F, Bisno A (ed), Infections Associated with Indwelling Medical Devices, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555818067.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bairoch, A. 1989. PROSITE: a Dictionary of Protein Sites and Patterns, 4th ed. University of Geneva, Geneva, Switzerland.
2. Brennan, F. R.,, T. Beliaby,, S. M. Helliwell,, T. D. Jones,, S. Kamstrup,, K. Dalsgaard,, J. J. Flock,, and W. D. O. Hamilton. 1999. Chimeric plant virus particles administered nasally or orally induce systemic and mucosal immune responses in mice. J. Virol. 73:930938.
3. Brown, E. M.,, P. M. Vassiley,, and S. C. Hebert 1995. Calcium ions as extracellular messengers. Cell 83:679682.
4. Casolini, F.,, L. Visai,, D. Joh,, G. G. Conaldi,, A. Toniolo,, M. Hook,, and P. Speziale. 1998. Antibody response to fibronectin-binding MSCRAMM in patients diagnosed with Staphylococcus aureus infections. Infect. Immunl. 66:54335442.
5. Doolittle, R. F.,, G. Spraggon,, and S. J. Everse. 1998. Three-dimensional structural studies on fragments of fibrinogen and fibrin. Curr. Opin. Struct. Biol. 8:792798.
6. Fischer, B.,, P. Vaudaux,, M. Magnin,, Y. El Mestikawy,, R. A. Proctor,, D. P. Lew,, and H. Vasey. 1996. Novel animal model for studying the molecular mechanisms of bacterial adhesion to bone-implanted metallic devices: role of fibronectin in Staphylococcus aureus adhesion. J. Orthopaed. Res. 14:914920.
7. Flock, J. I.,, S. A. Hienz,, A. Heimdahl,, and T. Schennings. 1996. Reconsideration of the role of fibronectin binding in endocarditis caused by Staphylococcus aureus. Infect. Immunl. 64:18761878.
8. Foster, T. J.,, and M. Höök. 1998. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol. 6:484488.
9. Gemmell, C. G.,, R. Tree,, A. Patel,, M. O'Reilly,, and T. J. Foster. 1990. Susceptibility to opsonophagocytosis of protein A, alpha-haemolysin and beta-toxin deficient mutants of Staphylococcus aureus isolated by allele-replacement. Zentralbl. Bakteriol. 21(Suppl.):273277.
10. Greene, C.,, D. McDevitt,, P. Francois,, P. E. Vaudaux,, D. Lew,, and T. J. Foster. 1995. Adhesion properties of mutants of Staphylococcus aureus defective in fibronectin-binding proteins and studies on the expression of the fnp genes. Mol. Microbiol. 17:11431152.
11. Hartford, O.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1997. The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the staphylococcal surface. Mol. Microbiol. 25:10651076.
12. Hawiger, J. 1995. Adhesive ends of fibrinogen and its anti-adhesive peptides: the end of a saga? Semin. Haematol. 32:99109.
13. House-Pompeo, J.,, Y. Xu,, D. Joh,, P. Speziale,, and M. Hook. 1996. Conformational changes in the fibronectin binding MSCRAMM are induced by ligand binding. J. Biol. Chem. 271:13791384.
14. Hynes, R., 1993. Fibronectins, p. 5658. In T. Kreis, and R. Vale (ed.), Guidebook to the Extracellular Matrix and Adhesion Proteins. Oxford University Press, Oxford, United Kingdom.
15. Joh, H. J.,, K. House-Pompeo,, J. M. Patti,, S. Gurusiddappa,, and M. Hook. 1994. Fibronectin receptors from Gram-positive bacteria: comparison of active sites. Biochemistry 33:60866092.
16. Joh, D.,, P. Speziale,, S. Gurusiddappa,, J. Manor,, and M. Hook. 1998. Multiple specificities of the staphylococcal and streptococcal fibronectin-binding microbial surface components recognizing adhesive matrix molecules. Eur. J. Biochem. 258:897905.
17. Jönsson, K.,, C. Signás,, H. P. Müller,, and M. Lindberg. 1991. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. Eur. J. Biochem. 202:10411048.
18. Jonsson, K.,, D. McDevitt,, M. H. McGavin,, J. M. Patti,, and M. Hook. 1995. Staphylococcus aureus expresses a major histocompatibility complex class II analog. J. Biol. Chem. 270:2145721460.
19. Josefsson, E.,, K. W. McCrea,, D. Ni Eidhin,, D. O'Connell,, J. Cox,, M. H58k,, and T. J. Foster. 1998. Three new members of the serine-aspartate repeat protein multigene family of Staphylococcus aureus. Microbiology 144:33873395.
20. Kojima, K.,, M. Tojo,, D. A. Goldman,, T. D. Tosteson,, and G. B. Pier. 1990. Antibody to the capsular polysaccharide/adhesin protects rabbits against catheter-related bacteremia due to coagulase-negative staphylococci. J. Infect. Dis. 162:435441.
21. Kuypers, J. M.,, and R. A. Proctor. 1989. Reduced adherence to traumatized rat heart valves by a low-fibronectin-binding mutant of Staphylococcus aureus. Infect. Immunl. 57:23062312.
22. Langone, J. J. 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32:157252.
23. Languino, L. R.,, J. Plescia,, A. Dupperray,, A. A. Brian,, E. F. Plow,, J. E. Geltosky,, and D. C. Altieri. 1993. Fibrinogen mediates leukocyte adhesion to vascular endothelium through an ICAM-1-dependent pathway. Cell 73:14231434.
24. Languino, L. R.,, A. Dupperray,, K. J. Joganic,, M. Fornaro,, G. B. Thornton,, and D. C. Altieri. 1995. Regulation of leukocyte-endothelium interaction and leukocyte transendothelial migration by intercellular adhesion molecule 1-fibrinogen recognition. Proc. Natl. Acad. Sci. USA 92:15051509.
25. Lee, J. C. 1996. The prospects for developing a vaccine against Staphylococcus aureus. Trends Microbiol. 4:162166.
26. Lee, J. C.,, J. S. Park,, S. E. Shepherd,, V. Carey,, and A. Fattom. 1997. Protective efficacy of antibodies to the Staphylococcus aureus type 5 capsular polysaccharide in a modified model of endocarditis in rats. Infect. Immunl. 65:41464151.
27. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1994. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 11:237248.
28. McDevitt, D.,, P. Francois,, P. Vaudaux,, and T. J. Foster. 1995. Identification of the ligand binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus. Mol. Microbiol. 16: 895907.
29. McDevitt, D.,, T. Nanavaty,, K. House-Pompeo,, E. Bell,, N. Turner,, L. McIntire,, T. J. Foster,, and M. Höök. 1997. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur. J. Biochem. 247:416424.
30. McGavin, M. H.,, D. Krajawska-Pietrasik,, C. Ryden,, and M. Höök. 1993. Identification of a Staphylococcus aureus extracellular matrix-binding protein with broad specificity. Infect. Immunl. 61:24792485.
31. McGavin, M. J.,, S. Gurasiddappa,, P. E. Lindgren,, M. Lindberg,, G. Raucci,, and M. Höök. 1993. Fibronectin receptors from Streptococcus dysgalactiae and Staphylococcus aureus. Involvement of conserved residues in ligand binding. J. Biol. Chem. 268:2394623953.
32. McGavin, M. J.,, G. Raucci,, S. Gurusiddappa,, and M. Höök. 1991. Fibronectin binding determinants of the Staphylococcus aureus fibronectin receptor. J. Biol. Chem. 266:83438347.
33. McKenney, D.,, K. L. Pouliot,, Y. Wang,, V. Murthy,, M. Ulrich,, G. Doring,, J. C. Lee,, D. A. Goldman,, and G. B. Pier. 1999. Broadly protective vaccine for Staphylococcus aureus based on an in vivo-expressed antigen. Science 284:15231527.
34. Moreillon, P.,, J. M. Entenza,, P. Francioli,, D. McDevitt,, T. J. Foster, P Francois, and P. Vaudaux. 1995. Role of Staphylococcus aureus coagulase and clumping factor in the pathogenesis of experimental endocarditis. Infect. Immunl. 63:47384743.
35. Navarre, W. W.,, and O. Schneewind. 1994. Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram-positive bacteria. Mol. Microbiol. 14:115121.
36. Navarre, W. W.,, and O. Schneewind. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 63:174229.
37. Ni Eidhin, D.,, S. Perkins,, P. Francois,, P. Vaudaux,, M. Höök,, and T. J. Foster. 1998. Clumping factor B (ClfB) a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol. Microbiol. 30: 245257.
38. Nilsson, I. M.,, J. M. Patti,, T. Bremell,, M. Hook,, and A. Tarkowski. 1998. Vaccination with a recombinant fragment of the collagen adhesin provides protection against Staphylococcus aureus-mediated septic death. J. Clin. Invest. 101:26402649.
39. O'Connell, D. P.,, T. Nanavaty,, D. McDevitt,, S. Gurusiddappa,, M. Höök,, and T. J. Foster. 1998. The fibronectin-binding MSCRAMM (clumping factor) of Staphylococcus aureus has an integrin-like Ca2+-dependent inhibitory site. J. Biol. Chem. 273:68216829.
40. Palma, M.,, A. Haggar,, and J.-I. Flock. 1999. Adherence of Staphylococcus aureus is enhanced by an endogenous secreted protein with broad binding activity. J. Bacteriol. 181:28402845.
41. Park, P. W.,, T. J. Broekelmann,, B. R. Mecham,, and R. P. Mecham. 1999. Characterization of the elastin binding domain in the cell-surface 25 kDa elastin-binding protein of Staphylococcus aureus (BbpS). J. Biol. Chem. 274:28452850.
42. Park, P. W.,, D. D. Roberts,, L. E. Grosso,, W. C. Parks,, J. Rosenbloom,, W. R. Abrams,, and R. P. Mecham. 1991. Binding of elastin to Staphylococcus aureus. J. Biol. Chem. 266:2339923406.
43. Park, P. W.,, J. Rosenbloom,, W. R. Abrams,, J. Rosenbloom,, and R. P. Mecham. 1996. Molecular cloning and expression of the gene for elastin binding protein (EbpS) in Staphylococcus aureus. J. Biol. Chem. 271:1580315809.
44. Patti, J. M.,, B. L. Allen,, M. J. McGavin,, and M. Höök. 1994. MSCRAMMs mediate adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48:585617.
44a. Peacock, S. J.,, N. P. J. Day,, M. G. Thomas,, A. R. Berendt,, and T. J. Foster. Clinical isolates of Staphylococcus aureus exhibit diversity in fnb genes and adhesion to human fibronectin. J. Hosp. Infect., in press.
45. Potts, J. R.,, and I. D. Campbell. 1994. Fibronectin structure and assembly. Curr. Opin. Cell Biol. 6: 648655.
46. Raja, R. H.,, G. Raucci,, and M. Höök. 1990. Peptide analogs to a fibronectin receptor inhibit attachment of Staphylococcus aureus to fibronectin-coated substrates. Infect. Immunl. 58:25932598.
47. Ruggeri, Z. M., 1993. Fibrinogen/fibrin, p. 5253. In T. Kreis, and R. Vale (ed.), Guidebook to the Extracellular Matrix and Adhesions Proteins. Oxford University Press, Oxford, United Kingdom.
48. Savage, B.,, E. Bottini,, and Z. M. Ruggeri. 1995. Interaction of integrin αIIb βIII with multiple fibrinogen domains during platelet activation. J. Biol. Chem. 270:2881228817.
49. Schennings, T.,, A. Heimdahi,, K. Coster,, and J. I. Flock. 1993. Immunization with fibronectin binding protein from Staphylococcus aureus protects against experimental endocarditis in rats. Microb. Pathog. 15: 227236.
50. Schneewind, O.,, A. Fowler,, and K. F. Faull. 1995. Structure of the cell wall anchor of surface proteins of Staphylococcus aureus. Science 268:103106.
51. Schneewind, O.,, P. Model,, and V. A. Fischetti. 1992. Sorting of protein A to the staphylococcal cell wall. Cell 70:267281.
52. Schneewind, O.,, D. Mihaylova-Petkov,, and P. Model. 1993. Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J. 12:48034811.
53. Sieradski, K.,, R. B. Roberts,, S. W. Haber,, and A. Tomasz. 1999. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med. 340: 517523.
54. Signas, C.,, G. Raucci,, K. Jonsson,, P. E. Lindgren,, G. M. Anatharamaiah,, M. Höök, and M. Lindberg. 1989. Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus and its use in the synthesis of biologically active peptides. Proc. Natl. Acad. Sci. USA 86:697703.
55. Smith, T. L.,, M. L. Pearson,, K. R. Wilcox,, C. Cruz,, M. V. Lancaster,, B. Robinson-Dunn,, F. C. Tenover,, M. J. Zervos,, J. D. Band,, E. White,, and W. R. Jarvis. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. N. Engl. J. Med. 340:493501.
56. Sottile, J.,, J. Schwarzbauer,, J. Selegue,, and D. F. Mosher. 1991. Five type I modules of fibronectin form a functional unit that binds to fibroblasts and to Staphylococcus aureus. J. Biol. Chem. 266:1284012843.
57. Speziale, P.,, D. Joh,, L. Visai,, S. Bozzini,, K. House-Pompeo,, M. Lindberg,, and M. Höök. 1996. A monoclinal antibody enhances ligand binding of a fibronectin MSCRAMM (adhesin) from Staphylococcus dysgalactiae. J. Biol. Chem. 271:13711378.
58. Spraggon, G.,, S. J. Everse,, and R. F. Doolittle. 1997. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 389:455462.
59. Sriraamaroa, P.,, L. R. Languino,, and D. C. Altieri. 1996. Fibrinogen mediates leukocyte-endothelium bridging in vivo at low shear forces. Blood 88:34163423.
60. Sun, Q.,, G. M. Smith,, C. Zahradka,, and M. J. McGavin. 1997. Identification of D motif epitopes in Staphylococcus aureus fibronectin-binding protein for the production of antibody inhibitors of fibronectin binding. Infect. Immunl. 65:537543.
61. Switalski, L. M.,, J. M. Patti,, W. Butcher,, A. G. Gristina,, P. Speziale,, and M. Höök. 1993. A collagen receptor on Staphylococcus aureus strains isolated from patients with septic arthritis mediates adhesion to cartilage. Mol. Microbiol. 7:99107.
62. Ton-That, H.,, H. Tabischinski,, B. Berger-Bachi,, and O. Schneewind. 1998. Anchor structure of staphylococcal surface proteins III role of the FemA, FemB and FemX factors in anchoring surface proteins to the bacterial cell wall. J. Biol. Chem. 273:2914329149.
63. Ugarova, T. P.,, D. A. Solovjov,, L. Zhang,, D. I. Loukinov,, V. C. Yee,, L. V. Medved,, and E. F. Plow. 1998. Identification of a novel recognition sequence for integrin αMβ2 within the γ-chain of fibrinogen. J. Biol. Chem. 273:2251922527.
64. Uhlen, M.,, B. Guss,, B. Nilsson,, S. Gatenbeck,, L. Philipson,, and M. Lindberg. 1984. Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J. Biol. Chem. 259:16951702.
65. Vaudaux, P. E.,, P. Francois,, R. A. Proctor,, D. McDevitt,, T. J. Foster,, R. M. Albrecht,, D. P. Lew,, H. Wabers,, and S. L. Cooper. 1995. Use of adhesion-defective mutants of Staphylococcus aureus to define the role of specific plasma proteins in promoting bacterial adhesion to canine arteriovenous shunts. Infect. Immunl. 63:585590.
66. Yamada, K. M. 1989. Fibronectins: structure, function and receptors. Curr. Opin. Cell Biol. 1:956963.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error